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Random Matrix Model of QCD at Finite Density and the Nature of the Quenched Limit
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(Received 3 April 1996)

We use a random matrix model to study chiral symmetry breaking in QCD at finite chemical potential
m. We solve the model and compute the eigenvalue density of the Dirac matrix on a complex plane. A
naive “replica trick” fails form fi 0; we find that quenched QCD is not a simplen °! 0 limit of QCD
with n quarks. It is the limit of a theory with2n quarks:n quarks with original action andn quarks
with conjugate action. The results agree with earlier studies of lattice QCD atm fi 0 and provide a
simple analytical explanation of a long-standing puzzle. [S0031-9007(96)00467-X]
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The spontaneous breaking of chiral symmetry is one
the most important dynamical properties of QCD whi
shapes the hadronic spectrum. A great deal of underst
ing of this nonperturbative phenomenon at zero and fin
temperature has been achieved by various methods
In particular, we expect that the chiral symmetry is r
stored above a certain critical temperature. The stud
this new chirally symmetric phase of hot QCD is one
the primary objectives of heavy ion colliders. In contra
the behavior of QCD at large baryon density (conditio
which can arise in the heavy ion colliders or in neutr
stars) is not well understood. The main puzzle has fo
long time been a contradiction between a straightforw
physical expectation and numerical results from quenc
lattice QCD [2,3]. Simulations with dynamical quarks, o
the other hand, are very inefficient at finitem; the fermion
determinant is complex.

The puzzle concerns the dependence of the order
rameter (the chiral condensatek ccl) on the baryon
chemical potential. A nonanalytical change in the va
of k ccl should occur whenm . mc ø mBy3, wheremB

is the mass of the lightest baryon. At this point the p
duction of baryons becomes energetically favorable.
smallerm the value ofk ccl is nonzero. In contrast, lat
tice simulations of quenched QCD indicate thatmc ­ 0
(at zero bare quark mass); i.e., the chiral condensate
ishes ifm fi 0 [2,3]. A number of possible explanation
have been suggested [4]. However, the answer to
puzzle remains unclear.

This work was motivated by a desire to shed so
light on this question using the random matrix approa
which received considerable interest recently [5–12].
is based on the idea that, for the purpose of study
chiral symmetry breaking, fluctuations of the Dirac o
erator in the background of the gauge fields can be
proximated by purely random fluctuations of its matr
elements in a suitable basis. For example, in the ins
ton liquid model this basis can be formed from the Dir
zero modes for individual (anti)instantons, which due
overlaps form a band of small eigenvalues respons
for the chiral symmetry breaking [13]. A similar ran
72 0031-9007y96y76(24)y4472(4)$10.00
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dom matrix approach is fruitful in the studies of spec
of systems with a high level of disorder, such as sp
tra of heavy nuclei [14]. Introduction of chemical po
tential into such a model of chiral symmetry breaking
straightforward. The resulting Dirac matrix (timesi) is
non-Hermitian. Thus, the eigenvalues lie in the comple
plane rather than on a line. Such random matrix m
els have not received much attention previously, and
study is a step in an unexplored direction.

In this Letter we show how to solve such a model
the thermodynamic limit and discuss the implications.

In order to study chiral symmetry breaking, we sh
calculate the resolvent of the Dirac operatorD:

G ­ ktrsz 2 Dd21l , (1)

as a function of the bare quark massz which we take
to be a complex variablez ­ x 1 iy. The average is
over fluctuations of the random matrix elements ofD.
It should be obvious thatG is the same ask ccl. The
resolvent can be expressed through the average eigen
densityr:

Gsx, yd ­
Z

dx0 dy0 rsx0, y0d
1

z 2 z0
. (2)

A vector $G ­ sReG, 2ImGd is the electric field created
by the charge distributionr. This makes the inversion o
(2) obvious:

r ­
1

2p
$= $G ­

1
p

≠

≠zp
G , (3)

where≠y≠zp ; s≠y≠x 1 i≠y≠ydy2.
Analytical properties ofG are very closely related

to the chiral symmetry breaking. From (3) we s
that r vanishes if the functionG is holomorphic. A
discontinuity ofG along a cut going throughz ­ 0 is the
signature of the spontaneous chiral symmetry break
k ccl s10d fi k ccl s20d. This observation together with
(3) leads to the Banks-Casher relation [15]:k ccl ­
prs0d, wherers0d is the density perlengthon the cut at
© 1996 The American Physical Society
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z ­ 0. However, (3) is more general and can be appl
to a case when the nonanalyticity is not in the form o
cut, but occupies a two-dimensional patch, which is
case in our model.

The matrixD has the form

D ­

µ
0 iX

iXy 0

∂
1

µ
0 m

m 0

∂
, (4)

where we added the chemical potential termmg0 to the
Dirac matrix [5]. The N 3 N matrix elements ofX
are independently distributed complex Gaussian rand
variables: PsXd ­ const3 exph2N TrXXyj. The unit
of mass in the model is set byn4yk ccl0 , 200 MeV,
where n4 , 1 fm24 is the number of small eigenvalue
in a unit volume (instanton density [16]) andk ccl0 ,
s200 MeVd3 is the chiral condensate atT ­ 0, m ­ 0.

In order to find the resolvent (1), we introducen quark
fields (replicas) and calculate

Vn ­ 2
1
n

lnkdetnsz 2 Ddl . (5)

This quantity continued ton °! 0 (quenched limit)
becomes

V ­ 2k ln detsz 2 Ddl , (6)

from which we findG:

G ­ 2
≠

≠z
V . (7)

The trace in (1) is normalized as tr1 ­ Tr1ys2Nd. Fol-
lowing the electrostatic analogy of the previous secti
one can view ReV as the scalar potential for$G.

Using Hubbard-Stratonovitch transformation we obta

exph2nVnj ­
Z

Da detN
µ

z 1 a m

m z 1 ay

∂
3 exph2N Traayj , (8)

wherea is an auxiliary complexn 3 n matrix field. For
largeN the calculation of the integral amounts to findin
its saddle point. If we assume that the replica symme
is not broken (i.e.,a is proportional to a unit matrix), we
arrive at the saddle point equation:

sz 1 ad ­ afsz 1 ad2 2 m2g , (9)

The complex value ofa in (9) is the analytical continu-
ation of the real part of the diagonal matrix elements oa
in (8). The imaginary part is zero in the saddle point. T
solution of this cubic equation is straightforward. It is th
same as in a similar model [10] withv °! im. Finally,
it is easy to find using (7) and (8) thatG ­ a wherea is
the saddle point given by (9).

The Vn does not depend onn, and the limitn °! 0
seems obvious. However, below we shall compare
expectation to numerical data and see that the limitn °!
m

,

y

s

0 is in fact very different. Now let us summarize th
properties of this model forn . 0.

We see thatGszd is a holomorphic function. It has
three Riemann sheets, and we select the one whereG !
1yz for z ! `, which follows from

R
dx dy r ­ 1 and

the Gauss theorem. The only singularities on the physi
sheet are the pole atz ­ ` and 2 (for m2 # 1y8) or 4
(for m2 . 1y8) branch points connected by cuts. Th
branch points are where two of the three solutions
(9) coincide. The trajectory of a cut is determined b
a condition thata is the deepest minimum (out of 3) o
Reha2 2 lnfsz 1 ad2 2 m2gj.

At m ­ 0 the cut along the imaginary axis connec
two singularities atz ­ 62i. For nonzerom the singular-
ities start moving toward each other along the imagina
axis. At m2 ­ 1y8 each of the branch points bifurcate
in two pieces which move off they axis into the complex
plane. The cut goes through the origin (along they axis)
until m2 ­ 0.278, .... At this point it splits into two cuts
connecting complex conjugate points. This means th
m2

c ­ 0.278, ... in such a model.
For n ­ 0 one can easily determine the density o

eigenvalues numerically by calculating the eigenvalues
the random matrixD and plotting them on a complex
plane. The density of points on such a scatter plot
proportional tor. The results for different values ofm2

are shown in Fig. 1. They contradict naive expectatio
from the previous section. Atm ­ 0 all eigenvalues
are distributed between pointsz ­ 62i on the y axis.
However, already at very small nonzerom2 ø 1y8, the
eigenvalue density is nonzero in a “blob” of finite width i
the x direction which grows withm. The same behavior
is seen in quenched lattice QCD [2] and gives rise
the paradox described earlier: there is no discontinu
in the value ofk ccl at anym . 0. The matrix model
has an advantage: it is amenable to exact treatment wh
clarifies the nature of the problem.

The failure of the naive replica approach can b
understood if we look at the expression (5): it does n
containzp. On the other hand, Eq. (3) tells us thatr fi 0
if G depends onzp, i.e., if it is not holomorphic. In fact,
the correct replica trick for a non-Hermitian matrix shou
start from the quantity

Vn,n ­ 2
1
n

lnkdetnsz 2 Dd szp 2 Dydl , (10)

which is now real due to the introduction of the quark
with conjugate Dirac matrix. Naively, in the limitn °! 0
the conjugate quarks decouple but, as we shall see,
is not always the case. In mathematics an analogo
construction is called a V-transform [17] and allows on
to study spectra of non-Hermitian matrices. In the prese
context this formal construction has a clear and simp
physical meaning.

We can calculate (10) using the same method as
(5). Now, however, we have to introduce four auxiliar
4473
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exps2nVn,nd ­
Z

Da Db Dc Dd

3 detN

0BBB@
z 1 a m 0 id

m z 1 ay ic 0
0 idy zp 1 by m

icy 0 m zp 1 b

1CCCA
3 exph2Nsjaj2 1 jbj2 1 jcj2 1 jdj2dj . (11)
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FIG. 1. Scatter plots on a complex planesx, yd of the
eigenvalues of an ensemble of 20 random100 3 100 matrices
D at four values ofm2: 0.06 (a), 0.10 (b), 0.40 (c), and 1.2
(d). The solid curves follow Eq. (12).
4474
The set of solutions of the saddle point equation is ric
in this case. There is a solution withc ­ d ­ 0. In this
case the conjugate quarks do decouple and we obtain
same holomorphic functionG as before. However, ther
is another solution in which the condensatesc andd are
not zero. Then the functionG is not holomorphic and
thereforer fi 0. This saddle point dominates the integr
at smallz for 0 , m , 1.

The condensatesc andd are bilinears of the typek cxl,
mixing originalc and conjugatex quarks. These conden
sates do not break the original chiral symmetry but a s
rious (replica type) symmetry involving both original an
conjugate quarks. Similar condensates carrying bar
number were discussed in the SUs2d model of QCDwith
quarks [18]. In the quenched theory, as in [18], the ori
nal chiral symmetry is always restored atm . 0. The
spurious symmetry is spontaneously broken form , 1
and is restored form . 1.

The boundary of ther fi 0 region is given by

y2 ­ sm2 2 x2d22f4m4s1 2 m2d 2 s1 1 4m2 2 8m4dx2

2 4m2x4g . (12)

It is plotted in Fig. 1 for comparison with numerical dat
The baryonic condensatesc andd inside of the “blob” are
given by

jcj2 ­ jdj2 ­
m2

m2 2 x2 2 m2 2
x2

4sm2 2 x2d2 2
y2

4
.

(13)

On the boundary (12) they vanish and the two solutio
(holomorphic and nonholomorphic) match. In the ou
region,c ­ d ­ 0 andG ­ a is the solution of the cubic
equation (9). Inside of the “blob” the resolvent is give
by

G ­ a ­
1
2

x
m2 2 x2

2 x 2
iy
2

, (14)

and the density of the eigenvalues (3) is

r ­
1

4p

√
x2 1 m2

sm2 2 x2d2 2 1

!
. (15)

To appreciate the nontriviality of this result, one shou
notice that expression (1) which defines the resolv
appears to depend only onz. The limit n °! 0 must
be taken with great care, as is well known in the repl
approach [19].

In conclusion, the fermion determinant in QCD is com
plex at nonzero chemical potential. Lattice simulatio
of such a theory are extremely inefficient. Therefore,
reliable data from lattice QCD so far have been obtain
for a quenched theory. We learn from the random ma
model that the quenched theory at finitem behaves quali-
tatively different from the QCD with dynamical quark
Rather, the quenched approximation describes a th
where each of the quarks has a conjugate partner, so
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the fermion determinant is non-negative. We see that
such a theory the resultmc ­ 0 is natural. Similar ar-
guments have been given by several authors in diffe
settings and using less realistic models [4]. Here it can
demonstrated in a very clean and explicit way.

Simulations with dynamical quarks at strong coupli
are possible in SUs2d and SUs4d QCD [18] and also agree
with our results. Themc is finite in the SUs4d theory. On
the other hand, in the SUs2d theory, where the quarks ar
self-conjugate,mc ­ 0 due to the baryonic condensates

The matrix model describes many features of the ch
symmetry breaking in QCD very well [5–12]. One of th
apparent limitations, however, is that it is static—the
are no kinetic terms and we cannot study the spect
of masses. In the quenched QCDmc appears to coincide
with half of the mass of the so-called baryonic pion [4]
a bound state of a quark and a conjugate antiquark
is degenerate with thep meson, but carries a nonzer
baryon number. From the exact solution (12) we fi
mc ø

p
my2, for small quark massm ø 1. If we hadfp

in our model we could relatemc to the mass of the pion
The model also does not account for the confinemen
quarks. It remains to be seen if the confinement play
role in the case under consideration.
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