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Random Matrix Model of QCD at Finite Density and the Nature of the Quenched Limit
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We use a random matrix model to study chiral symmetry breaking in QCD at finite chemical potential
u. We solve the model and compute the eigenvalue density of the Dirac matrix on a complex plane. A
naive “replica trick” fails foru # 0; we find that quenched QCD is not a simple— 0 limit of QCD
with n quarks. It is the limit of a theory witRn quarks:n quarks with original action and quarks
with conjugate action. The results agree with earlier studies of lattice QGD #4t0 and provide a
simple analytical explanation of a long-standing puzzle. [S0031-9007(96)00467-X]

PACS numbers: 12.38.Lg, 11.30.Qc

The spontaneous breaking of chiral symmetry is one oflom matrix approach is fruitful in the studies of spectra
the most important dynamical properties of QCD whichof systems with a high level of disorder, such as spec-
shapes the hadronic spectrum. A great deal of understantta of heavy nuclei [14]. Introduction of chemical po-
ing of this nonperturbative phenomenon at zero and finitéential into such a model of chiral symmetry breaking is
temperature has been achieved by various methods [1§traightforward. The resulting Dirac matrix (timeé}is
In particular, we expect that the chiral symmetry is re-non-Hermitian Thus, the eigenvalues lie in the complex
stored above a certain critical temperature. The study gblane rather than on a line. Such random matrix mod-
this new chirally symmetric phase of hot QCD is one ofels have not received much attention previously, and this
the primary objectives of heavy ion colliders. In contrast,study is a step in an unexplored direction.
the behavior of QCD at large baryon density (conditions In this Letter we show how to solve such a model in
which can arise in the heavy ion colliders or in neutronthe thermodynamic limit and discuss the implications.
stars) is not well understood. The main puzzle has for a In order to study chiral symmetry breaking, we shall
long time been a contradiction between a straightforwardalculate the resolvent of the Dirac operafuor
physical expectation and numerical results from quenched
lattice QCD [2,3]. Simulations with dynamical quarks, on G =tz — D)), 1)
the other hand, are very inefficient at finjie the fermion

determinant is complex as a function of the bare quark masswhich we take

The puzzle concerns the dependence of the order pi2 D€ @ complex variable = x + iy. The average is
over fluctuations of the random matrix elements I»f

rameter (the chiral condensata/y)) on the baryon . . =
chemical potential. A nonanalytical change in the valueIt should be obvious thal is the same agyy). The

of (%) should occur whem > g, ~ myp/3, wheremp resolyen'g can be expressed through the average eigenvalue
is the mass of the lightest baryon. At this point the pro-dens'typ'

duction of baryons becomes energetically favorable. For

smalleru the value of ) is nonzero. In contrast, lat- G(x,y) = f dx'dy' p(x',y")
tice simulations of quenched QCD indicate that = 0

ishes ifu # 0 [2,3]. A number of possible explanations py the charge distributiop. This makes the inversion of
have been suggested [4]. However, the answer to thi®) opvious:

puzzle remains unclear.

This work was motivated by a desire to shed some 1 2> 1 o
light on this question using the random matrix approach p= EVG T o (3)
which received considerable interest recently [5-12]. It
is based on the idea that, for the purpose of studyingvhered/dz* = (9/dx + i9/dy)/2.
chiral symmetry breaking, fluctuations of the Dirac op- Analytical properties ofG are very closely related
erator in the background of the gauge fields can be apgo the chiral symmetry breaking. From (3) we see
proximated by purely random fluctuations of its matrixthat p vanishes if the functionG is holomorphic. A
elements in a suitable basis. For example, in the instardiscontinuity ofG along a cut going through = 0 is the
ton liquid model this basis can be formed from the Diracsignature of the spontaneous chiral symmetry breaking:
zero modes for individual (anti)instantons, which due to{ ) (+0) # () (—0). This observation together with
overlaps form a band of small eigenvalues responsiblé3) leads to the Banks-Casher relation [18}y) =
for the chiral symmetry breaking [13]. A similar ran- 7 p(0), wherep(0) is the density petengthon the cut at

1
Z—z

R ()
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z = 0. However, (3) is more general and can be applied is in fact very different. Now let us summarize the
to a case when the nonanalyticity is not in the form of aproperties of this model fot > 0.
cut, but occupies a two-dimensional patch, which is the We see thatG(z) is a holomorphic function. It has

case in our model. three Riemann sheets, and we select the one whiere
The matrixD has the form 1/z for z — o, which follows from [dxdy p = 1 and
i the Gauss theorem. The only singularities on the physical
D=<.OT ’X>+<O “) (4)  sheet are the pole at= o and 2 (foru?> = 1/8) or 4
ixt 0 mo 0 (for u> > 1/8) branch points connected by cuts. The

branch points are where two of the three solutions of
Dirac matrix [5]. The N X N matrix elements ofX (9) coincide. The trajectory of a cut is determined by

are independently distributed complex Gaussian randorfi cogdmon thata S the (geepest minimum (out of 3) of

variables: P(X) = constX exp{—N Trxxt}. The unit Rel¢® —Inllz + @) = w7 _

of mass in the model is set by /(g ~ 200 MeV, At p = 0 the cut along the imaginary axis connects

wherens ~ 1 fm~* is the number of small eigenvalues WO Singularities at = *2i. For nonzerqu the singular-

in a unit volume (instanton density [16]) ards ) ~ ities start n;ovmg toward each other along the imaginary

(200 MeV)? is the chiral condensate &t= 0, x = 0. axis. Atu” = 1/8 each of the branch points bifurcates
In order to find the resolvent (1), we introdugequark N tWO pieces which move off the axis into the complex

fields (replicas) and calculate pla_ne. The cut goes throygh the origin (qlong yhaxis)

until u? = 0.278, ... At this point it splits into two cuts

connecting complex conjugate points. This means that
w2 = 0.278, ... in such a model.

. i ) o For n = 0 one can easily determine the density of
This quantity continued ton — 0 (quenched limit)  gigenvalues numerically by calculating the eigenvalues of

where we added the chemical potential teuwy, to the

v, — —%In(det”(z _ Dy, (5)

becomes the random matrixD and plotting them on a complex
vV = —(Indetz — D)), (6) Plane. The density of points on such a scatter plot is
proportional top. The results for different values qf?
from which we findG: are shown in Fig. 1. They contradict naive expectations
9 from the previous section. A = 0 all eigenvalues
G = s V. (7) are distributed between points= *2i on they axis.

However, already at very small nonzegd < 1/8, the
The trace in (1) is normalized aslt= Tr1/(2N). Fol-  €igenvalue density is nonzero in a “blob” of finite width in
lowing the electrostatic analogy of the previous sectionfhe x direction which grows withu. The same behavior
one can view R¥ as the scalar potential f@r. is seen in quenched lattice QCD [2] and gives rise to

Using Hubbard-Stratonovitch transformation we obtainthe paradox described earlier: there is no discontinuity
in the value of( ) at anyu > 0. The matrix model

expl—nV,} :] Da detN<Z +a 2 ‘r> has_an advantage: it is amenable to exact treatment which
zta clarifies the nature of the problem.
X exp{—N Traa'}, (8) The failure of the naive replica approach can be

understood if we look at the expression (5): it does not
wherea is an auxiliary complex: X n matrix field. For  containz*. On the other hand, Eq. (3) tells us that 0
large N the calculation of the integral amounts to finding if G depends or*, i.e., if it is not holomorphic. In fact,
its saddle point. If we assume that the replica symmetryhe correct replica trick for a non-Hermitian matrix should
is not broken (i.e.q is proportional to a unit matrix), we start from the quantity
arrive at the saddle point equation:

(z +a) =a[(z + a)* — u?], (9) Vi

The complex value of: in (9) is the analytical continu- which is now real due to the introduction of the quarks

ation of the real part of the diagonal matrix elements of with conjugate Dirac matrix. Naively, in the limit — 0

in (8). The imaginary part is zero in the saddle point. Thethe conjugate quarks decouple but, as we shall see, this

solution of this cubic equation is straightforward. Itis theis not always the case. In mathematics an analogous

same as in a similar model [10] with — iu. Finally,  construction is called a V-transform [17] and allows one

it is easy to find using (7) and (8) th& = a wherea is  to study spectra of non-Hermitian matrices. In the present

the saddle point given by (9). context this formal construction has a clear and simple
The V,, does not depend on, and the limitn — 0  physical meaning.

seems obvious. However, below we shall compare this We can calculate (10) using the same method as for

expectation to numerical data and see that the limi—=  (5). Now, however, we have to introduce four auxiliary

_ —%In(det”(z ~ D) - phy, (10
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complexn X n fields, and we arrive at The set of solutions of the saddle point equation is richer
in this case. There is a solution with= d = 0. In this
exp(—nV,,) = ] DaDb DcDd case the conjugate quarks do decouple and we obtain the
) same holomorphic functioa as before. However, there
2 ta M ; 0 id is another solution in which the condensateandd are
< detN| M % fFTa L ; 0 not zero. Then the functio& is not holomorphic and
.0 id T +b K thereforep # 0. This saddle point dominates the integral
ict 0 Iz b atsmallz for 0 < u < 1.
X exg{—N(lal* + [b]* + |c]* + 1d)}.  (11) The condensatesandd are bilinears of the typéy y),

mixing originals and conjugatey quarks. These conden-
sates do not break the original chiral symmetry but a spu-
@) rious (replica type) symmetry involving both original and
conjugate quarks. Similar condensates carrying baryon
number were discussed in the @Umodel of QCDwith
quarks [18]. In the quenched theory, as in [18], the origi-
nal chiral symmetry is always restored at> 0. The
spurious symmetry is spontaneously broken for< 1
and is restored fo > 1.

The boundary of the # 0 region is given by

- yi=(u? = ) 7Apt(1 - p?) — (1 + 4p® - 8uthx?
(b) — 4px*]. (12)

It is plotted in Fig. 1 for comparison with numerical data.
The baryonic condensatesandd inside of the “blob” are

0.3 0.4

given by
2 x2 2
el = 1dP =—F— = w2 = s -
p* = x 4(p? — x?) 4
(13)
On the boundary (12) they vanish and the two solutions
LA — (holomorphic and nonholomorphic) match. In the outer
(© region,c = d = 0 andG = a is the solution of the cubic
equation (9). Inside of the “blob” the resolvent is given
by
1 X iy
Goa=y g -5, (9
and the density of the eigenvalues (3) is
1 X2+ u? )
p=——5">55—1]. (15)
06 08 1 477((M2 — x2)?
(d) To appreciate the nontriviality of this result, one should

notice that expression (1) which defines the resolvent
appears to depend only an The limit n — 0 must

be taken with great care, as is well known in the replica
approach [19].

In conclusion, the fermion determinant in QCD is com-
plex at nonzero chemical potential. Lattice simulations
of such a theory are extremely inefficient. Therefore, all

, [ reliable data from lattice QCD so far have been obtained
% o2 os oe os ’ for a quenched theory. We learn from the random matrix
FIG. 1. Scatter plots on a complex plang,y) of the :nqdel th"’.‘t the quenched theory at fmp;ebehqves quali-
eigenvalues of an ensemble of 20 randd® X 100 matrices atively different from the QCD with dynamical quarks.

D at four values ofu?: 0.06 (a), 0.10 (b), 0.40 (c), and 1.20 Rather, the quenched approximation describes a theory
(d). The solid curves follow Eq. (12). where each of the quarks has a conjugate partner, so that
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the fermion determinant is non-negative. We see that for 9503427 [“Quark-Gluon Plasma,” edited by R. Hwa (to

such a theory the resuli. = 0 is natural. Similar ar- be published)].
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