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Shape Deformation and Phase Separation Dynamics of Two-Component Vesicle
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We numerically study dynamics of shape deformations of vesicles resulting from intramembra
phase separation. At off-critical compositions resultant vesicle shapes closely resemble the echinoc
sis of red blood cells, while at the critical composition a bicontinuous domain structure emerges. T
coarsening process of domain structures on such a deformable surface is considerably slower than
on a rigid surface. The total length of domain boundariesNDB decreases ast21y3 for the rigid sphere,
whereas in the present systemNDB . t2z sz . 0.1d at the late stage due to the coupling between the
shape and the phase separation. [S0031-9007(96)00353-5]
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Since a seminal bending elastic model of the equi
rium shape of fluid membranes by Helfrich [1], a wid
variety of shape transformations of closed fluid me
branes, like red blood cells, has been studied extensi
from both experimental and theoretical points of view [2
This model simply treats membranes as a laterally hom
geneous elastic layer without internal degrees of freed
Nevertheless, it has succeeded in explaining equilibr
shapes of the erythrocyte.

It has recently been recognized, however, that inter
degrees of freedom of membranes can crucially influe
their shapes. An example is the transition from a bico
cave shape of erythrocytes to acrenatedone (echinocy-
tosis) [3–5]. Such a transition cannot be explained
the original bending elastic model and the origin of su
a transition isnot yet clear. It has been pointed ou
that a local asymmetry in the composition between
two halves of the bilayer plays an important role in t
formation of the crenated shape [4,5]. Another exa
ple is given by shape deformations induced by a ph
separation of amphiphiles constituting the membrane
13]. It has been observed that a phase separation oc
on a two-component artificial membrane, where ph
separated domains prefer increase or decrease of
curvatures depending on the local composition of
membrane [13]. In addition, it has been reported that i
two-component system the line tension of domain bou
aries can cause a budding [12]. Here, in order to study
shape deformation accompanied by a lateral phase se
tion, we consider a two-component vesicle as the simp
model of real biomembranes composed of several kind
amphiphiles. Up to now, the studies on two-compon
vesicles have been limited to those of axisymme
equilibrium states [9–12] and dynamics of fluid mem
branes has not yet been fully studied for two-compon
membranes [14,15] and even for single-component o
[16,17].

In this Letter, using a purely dissipative dynamic
model of a two-component vesicle, we simulate dynam
of the shape deformation and in-plane phase separa
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where an axisymmetric profile of vesicles isnot assumed.
The vesicle is represented by a two dimensional (2
closed surfaceS parametrized byhuj ; hu1, u2j. For
simplicity, we assume that one of the inner or t
outer layers of the bilayer is composed of two kin
of amphiphiles, while the other is composed of a sin
component [18]. The order parameterf is defined
as the local difference between the concentration oA
amphiphile fA and that ofB amphiphile fB per unit
area in the two-component area, i.e.,f ­ fA 2 fB. In
terms off, the two-component vesicle has the free ene
functionalF ­ F1 1 F2 1 F3,

F1 ­
k

2

Z
sH 2 Hspd2pg d2u 1 PV , (1)

F2 ­
Z Ω

1
2

j2gabf,af,b 1 fsfd
æ
p

g d2u , (2)

F3 ­ L
Z

fH
p

g d2u . (3)

F1 is the bending elastic energy wherek is the bend-
ing elasticity modulus,Hy2 the mean curvature,Hsp

thehomogeneousspontaneous curvature,
p

g d2u the area
element,P the pressure difference across the vesicle,
V the enclosed volume.F2 is the Ginzburg-Landau free
energy wherej is a correlation length,gab the con-
travariant metric tensor, andX,a ; ≠Xsudy≠ua for any
X. F3 provides the coupling energy between the sha
and the phase separation,L being a coupling constant
The resultantlocal spontaneous curvature arises from
cal asymmetry in the composition between two halves
the bilayer [5–11]. In order to get a simple description
dynamics, it is convenient to usea body coordinate sys
tem, in which the coordinatehuj assigned to a materia
point is invariant throughout shape deformations.Then,
the position vector of a material pointhuj at a timet is
expressed asr ­ rsu, td.

So far, equilibrium states of two-component vesic
have been studied by minimizing the total free energyF
© 1996 The American Physical Society
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under two constraints: (i) a fixed total area of the v
icle and (ii) a conserved total difference of the numb
of the amphiphilesA and B in each of the two sides o
the bilayer [7–12,19]. In our dynamical model we reco
sider these two constraints as follows. The membran
highly incompressible due to a hydrophobic property
the tail of amphiphiles and a repulsive short-ranged
teraction among the amphiphiles. If we consider dyna
ics on longer time scales than the characteristic relaxa
time of the fluctuations of the local membrane area, fl
membranes can be assumed to be (i′) locally incompress-
ible. Using the body coordinate system, a mathemat
expression of this constraint can be written asd

p
g ­ 0

which is the variation of an areal element due to the
formationrsud ° rsud 1 drsud. The simplest dissipative
model reads

≠rsu, td
≠t

­ 2Lr
d

drsu, td

∑
F 1

Z
gsu, td

p
g d2u

∏
, (4)

whereLr is a kinetic coefficient. The incompressibilit
condition for the local area of the vesicle (i′) is guaranteed
by a local Lagrange multipliergsud [20]. In the present
model, hydrodynamic effects are entirely neglected. O
model will be justified when the vesicle is immersed in
highly viscous fluid where hydrodynamic flows are imm
diately overdamped [16]. Using Eqs. (1)–(4), the eq
tion of motion can be explicitly expressed as≠rsu, tdy≠t ­
2Lr fA'n 1 Aagag, wherega and n are the tangentia
vector and the normal unit vector toS , respectively [21].
A' andAa are expressed as

A' ­
k

2
fsH 2 Hspd s2H2 2 HHsp 1 4Kd 2 2Hjaag

1 P 2 j2f,af,bbab

1 Lf2Ksf 2 kfld 2 fjaag 1 gH ,
(5)

Aa ­ j2sfa
, fb

, djb 2 LHfa
, 2 ga

,
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where kfl is the surface average off, Hsp ; Hsp 2
L

k kfl, g ; g 1 fj2s=fd2y2 1 fsfdg 1 ksH2
sp 2

H
2
spdy2, bab is a curvature tensor,H ­ Trsbb

a d, K ­

detsbb
a d the Gaussian curvature,Xb ja ; X

b
,a 1 G

b
agXg

the covariant derivative whereG
g
ab denotes the Christof-

fel symbol, and the notationXjab is the abbreviation
of Xjajb . The operatorjaa is equivalent to the Laplace
Beltrami operatorDLB which is used as the Laplacian i
a curved space [2]. Obviously the equilibrium conditio
are given byA' ­ Aa ­ 0, and the equation of equilib
rium shape for a laterally homogeneous vesicle is given
A' ­ Aa ­ 0 and f ­ kfl [22]. The last three terms
of A' are related to the local shape deformations cau
by the spatial variation off. The third term represent
the effect of the line tension of domain boundaries [1
The fourth term yields deformations coming from th
local asymmetry in the composition between the inner a
outer layers [4,5,13]. In the last term,gsud plays the role
of an effective local surface tension. The tangential fo
Aa yields lateral motion keeping the local area constan

Second, we also reconsider the constraint (ii). T
change of f on a surface element per unit time
given by the difference between the amount of a
phiphiles diffusing into the element and that diffusin
out of it. Thus (ii′) the equation of lateral continuity
≠fy≠t 1 ja ja ­ 0 will be assumed instead of the stat
constraint (ii). The diffusion fluxja of the order param-
eter is driven by the lateral gradient of the local che
ical potentialmsud ; dFydfsud, i.e., ja ­ 2Lfm,a ­
2LffdFydfg,a whereLf is a kinetic coefficient. The
dynamic equation off is thus [23]

≠fsu, td
≠t

­ Lff2j2fj
b
b 1 f 0sfd 1 LHgjaa . (6)

The equation forg follows from the incompressibility
condition≠

p
gy≠t ­ ga ? sry≠td,a

p
g ­ 0 [16] as
gjaa 2 H2g 1 j2fbabHf,af,b 2 sfa
, fb

, djabg 1
k

2
fHsH 2 Hspd sH2 1 HHsp 2 4Kd 1 2HHjaa

1LfHfjaa 1 sHfa
, dja 2 2KHsf 2 kfldg 2 PH ­ 0 . (7)
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We have numerically solved the coupled equatio
(4)–(7) to study ordering dynamics of a two-compon
vesicle quenched from an initial disordered state off

at a high temperature to a coexistent state off at a
low temperature [21]. In the initial state, the vesic
is spherical. The vesicle surface is discretized usin
deformable triangular lattice withN-lattice pointssN ­
9002d. Numerical errors violating the fixed local are
constraint have been suppressed below a harmless
by using a penalty functional for local areas [24].
all simulations performed here, we have setLr ­ 0.25,
Lf ­ j ­ 1, k ­ 2, Hsp ­ P ­ 0. The initial radius
of the vesicle isr0 ­ 22.27 and the potential isf ­
s
t

a

el

2f2y2 1 f4y4. Integration was performed using th
Euler scheme, in whichDt ­ 0.01 is used for t #

100, and Dt ­ 0.01 or Dt ­ 0.005 is used fort $ 100
depending on the magnitude of the shape deforma
and the coupling constantL. In Fig. 1 typical shape
deformations of a two-component vesicle att ­ 300
and L ­ 0.5 are shown with (I) an initial state. The
surface averagekfl vanishes in (a) (a critical quench
and is (b) kfl ­ 0.3 and (c) kfl ­ 20.3 (off-critical
quenches). The vesicle shape in (b) closely resem
the echinocytosis of erythrocytes, and that in (c) see
to correspond to the invagination. The bicontinuo
structure in Fig. 1(a) is still transient. It might eventual
4445
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FIG. 1. Orthogonal projections of vesicle shapes: (I) t
initial state, (a) a critical quenchkfl ­ 0, and off-critical
quenches (b)kfl ­ 0.3 and (c)kfl ­ 20.3 at t ­ 300. The
filled circles represent the cites wheref , kfl. There is no
exaggeration of the vesicle shape along the radial direction.

change into a budded state with only two domains
f, because such a budded state can be the free en
minimum for axisymmetric two-component vesicles
the critical composition [11,12]. Throughout all th
simulations, the deviation of the total areaSstd from
the initial valueSs0d is within 60.26% of Ss0d and the
deviation of the local areas ­ h

PN
i­1fdSst, idydSs0, id 2

1g2yNj1y2 is within 1.08%, wheredSst, id is the local area
assigned to theith lattice point. The number of lattice
points located at domain boundariesNDB [25] which is
proportional to the total length of domain boundarie
is shown as functions oft for critical quench in Fig. 2,
and for off-critical quench in Fig. 3. Here (1)L ­ 0.8,
(2) L ­ 0.5, and (3) Lr ­ 0 and L ­ 0 in the two
figures. Case (3) corresponds to phase separation
rigid sphere. As can be seen from Figs. 2 and 3,
deformations and coarsening for all cases (a)–(c) bec
slower with increasingL [26]. The total length of domain
boundaries is confirmed to decrease ast21y3 for the rigid
sphere case (3) in Figs. 2 and 3 [27] and as in the u
case of a conserved system on a 2D flat surface.
the present system the coarsening becomes significa
slowed down in the presence of the coupling. T
effective exponent ofNDB . t2z for L ­ 0.8 at t ­ 300
is approximatelyz . 0.1.

This slowing down of the coarsening arises from t
local coupling off to the deformation of the membran
4446
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FIG. 2. Log-log plots ofNDB versus time for three critical
quencheskfl ­ 0, (1) L ­ 0.8 (solid line), (2) L ­ 0.5
(dashed line), and (3)Lr ­ 0 and L ­ 0 (dotted line). The
last case (3) is the spinodal decomposition on a rigid perf
sphere. The guide line isNDB , t21y3. The curves ofNDB
for different L’s are averages over five independent runs.

The sum F1 1 F3 is lowered when phase separate
domains have local curvatureLfyk. This coupling thus
stabilizes the domain structure against further coarsen
with smaller curvatures and competes with the drivi
force of coarsening due to the boundary energy fromF2.
It is not clear at present whether the coarsening stop
an intermediate stage or the system ultimately reache
budded state.

In conclusion, we simulated the shape deformation a
phase separation dynamics on two-component 3D v
icles after critical and off-critical quenches using a pure
dissipative model with the two local constraints: (i′) the
local incompressibility of membrane area and (ii′) the lat-
eral diffusion of the order parameter. The local coupli
of the curvature and the composition of the membrane
11] and the line tension at domain boundaries arising fr
j2s=fd2 in F2 [12] strongly influence the formation o
protrusions on the membrane. These two effects may
nally induce birth of microvesicles which budded off from
protuberant parts on a mother vesicle [28]. Since the tr
sition of the biconcave shape of red blood cells to t
echinocyte one occurringin vivo and in vitro under vari-
ous different situations is highly complicated, the pres
theoretical explanation of the transition may be too na
a
e
e
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FIG. 3. Same as Fig. 2 but for three off-critical quench
kfl ­ 0.3, (1) L ­ 0.8 (solid line), (2)L ­ 0.5 (dashed line),
and (3)Lr ­ 0 andL ­ 0 (dotted line).
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to explain the real situations. In fact, the membrane
the red blood cell is composed of many components (e
intramembrane proteins, multicomponent lipids, a spec
network in the cytoplasmic side, and so on). Moreov
pH of a solvent inside the cell influences the shape
the vesicle. These complicated elements of real biom
branes are not taken into account in our model. It see
however, that many experimental evidences support
the local coupling between the composition and the cur
ture of the membrane plays a crucial role in the format
of the echinocytosis [29]. Experiments on dynamics
two-component fluid membranes on which a phase se
ration takes place are very informative to check the va
ity and limitation of the present dynamical model and
construct a more realistic model.
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