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Shape Deformation and Phase Separation Dynamics of Two-Component Vesicles
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We numerically study dynamics of shape deformations of vesicles resulting from intramembrane
phase separation. At off-critical compositions resultant vesicle shapes closely resemble the echinocyto-
sis of red blood cells, while at the critical composition a bicontinuous domain structure emerges. The
coarsening process of domain structures on such a deformable surface is considerably slower than that
on a rigid surface. The total length of domain boundaNgg decreases as '/? for the rigid sphere,
whereas in the present systévigg = ¢~ (z = 0.1) at the late stage due to the coupling between the
shape and the phase separation. [S0031-9007(96)00353-5]

PACS numbers: 87.22.Bt, 64.60.Cn, 68.15.+e

Since a seminal bending elastic model of the equilibawhere an axisymmetric profile of vesiclesrist assumed.
rium shape of fluid membranes by Helfrich [1], a wide The vesicle is represented by a two dimensional (2D)
variety of shape transformations of closed fluid mem-losed surfaceS parametrized by{u} = {u',u?}. For
branes, like red blood cells, has been studied extensivelsimplicity, we assume that one of the inner or the
from both experimental and theoretical points of view [2].outer layers of the bilayer is composed of two kinds
This model simply treats membranes as a laterally homoef amphiphiles, while the other is composed of a single
geneous elastic layer without internal degrees of freedontomponent [18]. The order parameter is defined
Nevertheless, it has succeeded in explaining equilibriunas the local difference between the concentratiom of
shapes of the erythrocyte. amphiphile ¢, and that of B amphiphile ¢z per unit

It has recently been recognized, however, that internarea in the two-component area, i.é.,= ¢4 — ¢p. In
degrees of freedom of membranes can crucially influenceerms of¢, the two-component vesicle has the free energy
their shapes. An example is the transition from a biconfunctional F = F; + F, + F3,
cave shape of erythrocytes toceenatedone gchinocy- K B
tosi§ [3—5]. Such a transition cannot be explained by Fi=— f(H — Hg)*\Jgd*u + PV, 1)
the original bending elastic model and the origin of such
a transition isnot yet clear. It has been pointed out |
that a local asymmetry in the composition between the Fr, = f{—fzgaﬁ(b,ad}”g + f(¢)}\/§d2u, 2
two halves of the bilayer plays an important role in the 2
formation of the crenated shape [4,5]. Another exam-
ple is given by shape deformations induced by a phase F3 = A] dHJgdu. (3)
separation of amphiphiles constituting the membrane [5—

13]. It has been observed that a phase separation occuFs is the bending elastic energy whekeis the bend-

on a two-component artificial membrane, where phaséng elasticity modulus,H#/2 the mean curvatureH,,
separated domains prefer increase or decrease of lodile homogeneouspontaneous curvaturgg d?u the area
curvatures depending on the local composition of theelement,P the pressure difference across the vesicle, and
membrane [13]. In addition, it has been reported that in & the enclosed volumeF; is the Ginzburg-Landau free
two-component system the line tension of domain boundenergy whereé is a correlation lengthg®? the con-
aries can cause a budding [12]. Here, in order to study thgavariant metric tensor, an8l , = 9X(u)/0u® for any
shape deformation accompanied by a lateral phase sepafé- F; provides the coupling energy between the shape
tion, we consider a two-component vesicle as the simplestnd the phase separatiof, being a coupling constant.
model of real biomembranes composed of several kinds dfhe resultantocal spontaneous curvature arises from lo-
amphiphiles. Up to now, the studies on two-componental asymmetry in the composition between two halves of
vesicles have been limited to those of axisymmetricdhe bilayer [5—11]. In order to get a simple description of
equilibrium states [9-12] and dynamics of fluid mem-dynamics, it is convenient to usebody coordinate sys-
branes has not yet been fully studied for two-componentem,in which the coordinate{u} assigned to a material
membranes [14,15] and even for single-component ongsoint is invariant throughout shape deformation¥hen,
[16,17]. the position vector of a material poifi} at a time: is

In this Letter, using a purely dissipative dynamical expressed as = r(u, 1).
model of a two-component vesicle, we simulate dynamics So far, equilibrium states of two-component vesicles
of the shape deformation and in-plane phase separatiohave been studied by minimizing the total free enefgy
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under two constraints: (i) a fixed total area of the veswhere (¢) is the surface average @b, Hy, = Hyp, —
icle and (ii) a cpnserved tgtal difference of the_ number%<¢>, ¥y =v+[E2VP)?/2 + f(¢p)] + K(ng
of the amphiphilesA and B in each of the two sides of — . _ B _

; ) H.)/2, b,y is a curvature tensord = Tr(ba), K =
the bilayer [7—12,19]. In our dynamical model we recon-""sP P _ P s
sider these two constraints as follows. The membrane ide{be) the Gaussian curvaturé?|, = Xa + TayX”
highly incompressible due to a hydrophobic property ofthe covariant derivative WherEZ[; denotes the Christof-
the tail of amphiphiles and a repulsive short-ranged infel symbol, and the notatioX|,s is the abbreviation
teraction among the amphiphiles. If we consider dynamof Xlals. The operatot§ is equivalent to the Laplace-
ics on longer time scales than the characteristic relaxatioBeltrami operatorA; g which is used as the Laplacian in
time of the fluctuations of the local membrane area, fluic® curved space [2]. Obviously the equilibrium conditions
membranes can be assumed to Belgcally incompress-  are given byA, = A“ = 0, and the equation of equilib-
ible. Using the body coordinate system, a mathematicafium shape for a laterally homogeneous vesicle is given by
expression of this constraint can be writtendagg = 0 AL =A% =0 and¢ = (¢) [22]. The last three terms
which is the variation of an areal element due to the deof A are related to the local shape deformations caused

formationr(u) — r(u) + 8r(u). The simplest dissipative DYy the spatial variation o. The third term represents
model reads the effect of the line tension of domain boundaries [12].

or(u, 1) s The fourth term yields deformations coming from the
> = — ,—[F + / v(u, ;)\/gd%,} (4) local asymmetry in the composition between the inner and
ot &r(u, 1) outer layers [4,5,13]. In the last termi(u) plays the role
where L, is a kinetic coefficient. The incompressibility of an effective local surface tension. The tangential force
condition for the local area of the vesiclé) (s guaranteed A“ yields lateral motion keeping the local area constant.
by a local Lagrange multipliey () [20]. In the present Second, we also reconsider the constraint (ii). The
model, hydrodynamic effects are entirely neglected. Ouehange of¢ on a surface element per unit time is
model will be justified when the vesicle is immersed in agiven by the difference between the amount of am-
highly viscous fluid where hydrodynamic flows are imme-phiphiles diffusing into the element and that diffusing
diately overdamped [16]. Using Egs. (1)—(4), the equaout of it. Thus (i) the equation of lateral continuity
tion of motion can be explicitly expresseda@su, 1)/ar =  d¢/dat + j*lo = 0 will be assumed instead of the static
—L,JA. n + A%g,], whereg, andn are the tangential constraint (ii). The diffusion flux“ of the order param-
vector and the normal unit vector %, respectively [21].  eter is driven by the lateral gradient of the local chem-
A, andA“ are expressed as ical potentialu(u) = 6F /8¢ (u), i.e., jo = —Lopra =
« —Ly[6F/6¢]. WhereLy is a kinetic coefficient. The
A = > [((H — Hy,) (—H®> — HH,, + 4K) — 2H|%]  dynamic equation o is thus [23]

£ P = Ehad b I L R REACEECI IO
+ ARK($ —(¢)) — ¢lal + VH, The equation fory follows from the incompressibility
A* = 2(p“PP)lg — AHP* — ¥ conditiond/g/dt = g% - (r/dt) /g = 0[16] as

Yo — HY + Eb*PHep ot p — (@2 ¢P)lap] + %[H(H — Hy)(H* + HHy, — 4K) + 2HH|?
+A[Hplg + (HdM)|a — 2KH(¢p — ()] — PH = 0. (7)

We have numerically solved the coupled equatidns—gbz/z + ¢*/4. Integration was performed using the
(4)—(7) to study ordering dynamics of a two-componentEuler scheme, in whichAr = 0.01 is used for¢ =
vesicle quenched from an initial disordered stated¢of 100, and At = 0.01 or At = 0.005 is used forr = 100
at a high temperature to a coexistent state¢ofat a depending on the magnitude of the shape deformation
low temperature [21]. In the initial state, the vesicleand the coupling constanmh. In Fig. 1 typical shape
is spherical. The vesicle surface is discretized using deformations of a two-component vesicle at= 300

deformable triangular lattice witiv-lattice points(N = and A = 0.5 are shown with (I) an initial state. The
9002). Numerical errors violating the fixed local area surface averagé¢) vanishes in (a) (a critical quench)
constraint have been suppressed below a harmless levad is (b){(¢) = 0.3 and (c) (¢) = —0.3 (off-critical

by using a penalty functional for local areas [24]. Inquenches). The vesicle shape in (b) closely resembles
all simulations performed here, we have #gt= 0.25, the echinocytosis of erythrocytes, and that in (c) seems
Ly=¢=1, k=2, Hy, =P =0. The initial radius to correspond to the invagination. The bicontinuous
of the vesicle isryp = 22.27 and the potential isf =  structure in Fig. 1(a) is still transient. It might eventually
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(1) Time Step=0 : Initial State (a) Critical <¢>=0 FIG. 2. Log-log plots ofNpgs versus time for three critical
qguenches(¢) =0, (1) A = 0.8 (solid line), (2) A =0.5
(dashed line), and (3L, = 0 and A = 0 (dotted line). The
last case (3) is the spinodal decomposition on a rigid perfect
sphere. The guide line i&pg ~ /. The curves ofNpg

for different A’s are averages over five independent runs.

The sum F; + F; is lowered when phase separated
domains have local curvature¢ /«x. This coupling thus
stabilizes the domain structure against further coarsening
with smaller curvatures and competes with the driving
force of coarsening due to the boundary energy fiBm

It is not clear at present whether the coarsening stops at

FIG. 1. Orthogonal projections of vesicle shapes: (I) thean intermediate stage or the system ultimately reaches a
initial state, (a) a critical quenck¢) = 0, and off-critical budded state

qguenches (bj¢) = 0.3 and (c){(¢) = —0.3 att = 300. The i . .
filled circles represent the cites whege< (). There is no In conclusion, we simulated the shape deformation and

exaggeration of the vesicle shape along the radial direction. phase separation dynamics on two-component 3D ves-
icles after critical and off-critical quenches using a purely
dissipative model with the two local constraints) the
change into a budded state with only two domains oflocal incompressibility of membrane area and (ine lat-
¢, because such a budded state can be the free energsal diffusion of the order parameter. The local coupling
minimum for axisymmetric two-component vesicles atof the curvature and the composition of the membrane [4—
the critical composition [11,12]. Throughout all the 11] and the line tension at domain boundaries arising from
simulations, the deviation of the total areds) from  &£*(V¢)? in F, [12] strongly influence the formation of
the initial valueS(0) is within =0.26% of S(0) and the protrusions on the membrane. These two effects may fi-
deviation of the local area = {Z 1[dS(t i)/dS(0,i) —  nally induce birth of microvesicles which budded off from
112/N}/2 is within 1.08%, wherelS(z, i) is the local area  protuberant parts on a mother vesicle [28]. Since the tran-
assigned to théth lattice point. The number of lattice sition of the biconcave shape of red blood cells to the
points located at domain boundari&% g [25] which is  echinocyte one occurrinm vivo andin vitro under vari-
proportional to the total length of domain boundaries,ous different situations is highly complicated, the present
is shown as functions of for critical quench in Fig. 2, theoretical explanation of the transition may be too naive
and for off-critical quench in Fig. 3. Here (l = 0.8,
(2) A=05, and 3)L, =0 and A =0 in the two
figures. Case (3) corresponds to phase separation on a 4000[ T
rigid sphere. As can be seen from Figs. 2 and 3, the L
deformations and coarsening for all cases (a)—(c) become
slower with increasing\ [26]. The total length of domain
boundaries is confirmed to decreasera%? for the rigid
sphere case (3) in Figs. 2 and 3 [27] and as in the usual %
case of a conserved system on a 2D flat surface. In 2000
the present system the coarsening becomes significantly
slowed down in the presence of the coupling. The 100 300
effective exponent oNpg = ¢~ for A = 0.8 atr = 300 log( t)
is approximately, = 0.1. FIG. 3. Same as Fig. 2 but for three off-critical quenches
This slowing down of the coarsening arises from the(g) = 0.3, (1) A = 0.8 (solid line), (2) A = 0.5 (dashed line),
local coupling of¢ to the deformation of the membrane. and (3)L, = 0 and A = 0 (dotted line).

(b) Off Critical <¢>=0.3 (c) Off Critical <¢>=—0.3
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T
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