
VOLUME 76, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 1996

02

rates
ently
rvation

in

4440
RNA Virus Evolution via a Fitness-Space Model
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We present a mean-field theory for the evolution of RNA virus populations. The theory ope
with a distribution of the population in a one-dimensional fitness space, and is valid for suffici
smooth fitness landscapes. Our approach explains naturally the recent experimental obse
[I. S. Novella et al., Proc. Natl. Acad. Sci. U.S.A.92, 5841–5844 (1995)] of two distinct stages
the growth of virus fitness. [S0031-9007(96)00371-7]

PACS numbers: 87.10.+e, 82.20.Mj
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RNA viruses offer a unique opportunity for the e
perimental study of molecular evolution. These viru
exhibit both high replication ratess105 day21d and high
mutation rates [1024 2 1025 mutation/(nucleotide/repl
cation)]; hence, evolutionary dynamics which would t
years to unfold in even relatively simple bacteria oc
within days in RNA virus colonies. The temporal d
namics of one such system has been studied in a s
of recent experiments [1]. In this paper, we show ho
simple model for the motion of the virus population o
fitness space can account for some interesting findin
these studies.

In the experiments by Holland and co-workers, clo
of vesicular stomatitis virus (VSV) were carried throu
a transmission series of up to 100 consecutive daily “
sages” (the experimental technique was first describe
[2]). Every passage begins with the inoculation of
proximately 105 viruses in a bottle containing a mon
layer of fresh cells. The viruses are allowed to replic
for one full day, with the number of viruses at the e
of the day reaching1010. Then a subsample of appro
mately 105 viruses is taken from the bottle and used
the next passage. During the series an average fitne
the evolving clone (ec) is measured as follows. A sm
sample of viruses is separated from the main popula
and mixed with a sample of wild-type (wt) virus; the w
type, which serves as a reference, is taken from a fr
nonevolving stock. This mixture is then carried throu
a few passages at which the ratiocr of ec concentratio
ce to the wt concentrationcw is measured daily. The log
arithm of the relative fitness is determined as a slop
logcr snd vs n, wheren is a number of (daily) passage [3

The specific findings we wish to study concern
evolution of colonies whose fitness had been artifici
lowered using a “genetic bottlenecking” procedure;
bottleneck is created by doing passages with only
particle transferred from one bottle to the next,
arises because the repeated small sampling does not
for the effective suppression of deleterious mutants
selection [4]. A typical plot of the temporal dynam
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of the logarithm of fitness gained by a clone w
initially low fitness is shown in Fig. 1. The logarithm
of fitness grows rapidly until it reaches zero (i.e., t
fitness of ec becomes equal to the fitness of wt). A
that, the logarithm of fitness continues to grow linear
however at a slower rate [5]. In about 50 days
relative fitness reached values of the order of10 which
is quite a remarkable increase. For comparison, fitn
in Escherichia coli[6] bacteria colonies increased by 8
after 400 generations of monitored evolution.

Our purpose is to show that a “mean-field” model
evolution of the virus population on a one-dimensio
fitness space can naturally account for this experime
data. Most discussions of evolution are based on the a
native notion of the sequence space originally introdu
by Wright [7] (see also [8,9]). In this extremely high
dimensional space the number of dimensions is equa
the number of nucleotides in the genome (for VSV vir
over 11 000), and every point represents a particular
netic sequence (genome). Each genome can be lab
with a fitness value (which is related to the replicati
rate of the corresponding virus); thus a fitness landscap
formed in the sequence space. Typically, one writes do
equations governing the population dynamics of e
genome taking into account replication and mutation. T
n

f

e

ow
a
FIG. 1. Evolution of fitness of a monoclonal-antibody re
sistant clone (MARM) during the transmission series o
80 passages on HeLA cells (Fig. 2b of [1]).
© 1996 The American Physical Society
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approach ignores the fact that in reality an average num
of species (molecules) per genetic sequence is very s
(except for maybe the most common “master” sequen
and fluctuations due to the discreteness of molecules
the stochastic nature of mutations can be very significa
Nonetheless, these models make a nontrivial predic
that a cloud of mutants surrounding the master seque
(the “quasispecies”) is formed in the course of an evo
tionary process. Unfortunately, a large number of eq
tions and the need for detailed assumptions regard
genome fitness functions and mutation rates make it
ficult to obtain simple qualitative insight into the tempo
ral dynamics of the quasispecies. To date, only relativ
small-scale simulations have been performed [10] of re
vance to RNA molecules (sequence length of about102) as
compared with genome length [Os104d for RNA viruses].

Our approach to the description of molecular evoluti
is rather different. As mentioned above, every seque
can be characterized by its replication rater . There may
be different sequences which exhibit similar replicati
rates; we shall lump them together and introduce a tim
dependent density of population per unit of fitness,psr, td
[11]. Without mutations, the dynamics of the populatio
can be described by

≠psr, tdy≠t ­ rpsr , td . (1)

Actually, this continuum description will be valid only
if there are a sufficient number of virus particles at
specific r ; this assumption is, however, much easier
justify for population dynamics in the one-dimension
fitness space than for high-dimensional sequence spac
on average the population is constrained to have cons
size ptot ­

R
psr , tddr (such as is accomplished by th

passages technique), Eq. (1) is modified to become

≠psr , tdy≠t ­ sr 2 r̄dpsr , td , (2)

where r̄ ­
R

rpsr , tddryptot is an average fitness of th
population. It is easy to see that if initially population
distributed arbitrarily over a range of fitnesseshrmin, rmaxj,
its average fitness will grow monotonically until it even
tually reachesrmax. In this final state the limit distribu-
tion functionp`srd ­ ptotdsr 2 rmaxd, i.e., all sequences
have identical fitness.

Our basic hypothesis is that one can also inclu
mutation effects in the equation forp without explicitly
taking into account the underlying genomic transitio
rates [12]. In the simplest form such an equation o
could have is

≠psr, td
≠t

­ sr 2 r̄dpsr, td 1 D
≠2psr , td

≠r2

1
≠

≠r
fydriftpsr , tdg . (3)

This choice depends on the landscape being smo
so that single mutations can only lead to small fitne
changes, and also requires uniformity of the mutation ra
i.e., the rate does not depend on the fitness itself. T
er
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drift term arises due to the predominance of deleteri
mutations over beneficial ones, as indicated by the red
tion in overall fitness seen in the bottlenecking protoc
ydrift depends, in general, on the fitness, although it ca
taken to be constant over a sufficiently small fitness ran
This model equation (without the drift) is reminiscent
mean-field models for diffusion-limited growth, wherep
describes a solid cluster growing in a linear gradient
diffusing particles [13].

We expect this type of equation to be valid f
systems with smooth landscapes such that the popula
is always sampling a large number of genomes w
similar fitness; it will break down if there is a tendency f
the population to get trapped in local maxima and he
become localized at specific genomes with low transit
probabilities to more fit variants. To understand how
description based on a mean-field type description
emerge in situations with smooth fitness landscapes
consider a simple model for which the fitness of a bina
string genome is just the proportion of 1’s [14]. Th
underlying dynamics is a continuous-time Markov proc
with reproduction and with single-bit flipping mutation
ratel. It is easy to see that this process can be descr
by the population equations

dpnstd
dt

­
n
N

pnstd 1 l

µ
n 1 1

N
pn11std 1

N 2 n 1 1
N

3 pn21std 2 pnstd
∂

, (4)

where pnstd is the time-dependent concentration
strands withn ones, N is the total genome size, an
the prefactors come from considering the rand
choice of which single bit gets flipped. If we defin
r ­ sn 2 Ny2dy

p
N , rescalel ­ l̃

p
N , t ­ t̃

p
N , and

take the continuousr limit, we obtain Eq. (3) (with
D ­ l̃y2 andydrift ­ 2l̃r). This genome model make
the rather unrealistic assumption of independent add
genomic contributions to the overall fitness. We wou
like to stress, however, that we expect the general ide
a fitness-space equation to remain valid for more comp
landscapes as long as trapping in metastable state
irrelevant [15].

The fact that the experiments find constant fitn
growth implies that the drift term relevant for the viru
population is relatively unimportant. The presence o
small constant drift term has no effect on the qualitat
features of the fitness dynamics and hence will be drop
in what follows. Then, as already mentioned, this mo
is similar to one studied within the context of diffusio
limited growth. There, it has been shown [16] that naiv
using the continuum equation (3) down to arbitrarily sm
psr , td leads to a divergence of the average value ofr (i.e.,
the mean fitness) in finite time. The essential cause of
effect is the unlimited growth rate ofp at larger. Given
this fact, any small nonzero value ofp at larger will start
to grow very quickly. In a real viral dynamics, this cann
occur. A mutant population cannot grow via reproduct
4441
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until there actually exists at least one mutant virus—t
is, the discreteness of the population provides a cu
[17]. Furthermore, the transferring of only a small pa
1025, of the population at the end of each passage
usually eliminate strains which do not have signific
numbers. In fact there is experimental evidence that e
very highly fit mutants do not grow in a population
their relative concentration is very small [18]. Thus,
assume that there exists a threshold value of concentr
pc below which the autocatalytic growth of concentrati
ceases. Therefore we replace Eq. (3) by

≠psr , td
≠t

­ usp 2 pcd sr 2 r̄d psr, td 1 D
≠2psr , td

≠r2
,

(5)
whereusxd is the Heaviside step function.

Figure 2(a) illustrates numerical simulation of Eq.
starting from a random distribution of the populati
within some intervalhrmin, rmaxj—this is meant to mimic
the “bottlenecked" population. In Fig. 2(b) tempo
dynamics of the average replication rater̄ is shown for
this run. A crossover from a fast growth of the replicat
rate to a relatively slow linear growth of̄r is observed
which resembles closely the experimental depende
(Fig. 1). The first (fast) phase involves formation
a pulselike distribution which is localized nearrmax.
In this distribution the selection term is approximate
balanced by a mutation (diffusion) term in Eq. (5). Th
distribution is highly peaked near the most fit of the init
state, which presumably arose from a wild-type vi
s

n

n

all

FIG. 2. Evolution of the viral colony concentration in fitne
space starting from random distribution within a rangeh5.0 ,
r , 18.0j in the framework of Eq. (5). The diffusion consta
is D ­ 1, ptot ­ 1, and threshold concentrationpc ­ 5 3
1024: (a) space-time diagrampsr , td and (b) average fitness̄r
versus time.
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which by chance did not accumulate many deleterio
mutations during the bottlenecking phase; indeed,
crossover value of the replication rate is observed to
close to the wild-type value.

At the second (slow) phase the distribution drifts slow
towards higher values of the replication rate while keep
its stationary pulselike form. If the initial condition
already corresponds to a pulse distribution, then
dynamics skip the first phase and proceed directly
the second. This is also consistent with observations
the neutral clone evolution [5].

The stationary-moving pulse solution and its selec
velocity can be found analytically. First, we introduc
new variablest̃ ­ D1y3t and r̃ ­ D21y3r to scale out
the diffusion constantD. Dropping tildes and assumin
that p in the asymptotic regime depends on one varia
z ­ r 2 ct, we haver̄ ­ ct 1 r0, where

r0 ­
Z

zpszddz

¡ Z
pszddz . (6)

The equation forpszd (in the regionp . pc) reads

p00 1 cp0 1 zp ­ r0p , (7)

(primes denote differentiation with respect toz) which has
the solution

pszd ­ p0e2czy2Ai s2zd , (8)

where we introduced a new variablez̃ ­ z 2 r0 2 c2y4
and dropped the tilde again. This solution is va
only for 2` , z , zc, where zc is defined by the
conditionpszcd ­ pc. At z . zc, we must match it with
a stationary moving solution of the diffusion equatio
(with D ­ 1), namely,

pszd ­ pce2csz2zcd. (9)

Matching across the interfacez ­ zc should satisfy two
boundary conditions,p1 ­ p2 and p0

1 ­ p0
2, and the

normalization condition,
R

`

2` pszddz ­ ptot. Herep2 is
solution (8) atz ­ zc, andp1 is solution (9) atz ­ zc.
These conditions yield a system of three equations forp0,
c, andzc,

p0e2czcy2Ai s2zcd ­ pc , (10)

2
c
2

p0e2czcy2Ai s2zcd 1 p0e2czcy2Ai 0
zs2zcd ­ 2cpc ,

(11)

p0

Z zc

2`
e2czy2Ai s2zddz 1

pc

c
­ ptot , (12)

For small pcyp0, matching pointzc is close to the first
zero of the Airy function, so we can introduce a sm
correctionj ­ z0 2 zc. Herez0 ø 2.3381... . For small
j, we find from (10) and (11) thatj ­ 2yc, and

p0 ­ scy2dpcescy2d sz021djAi 0s2z0dj21. (13)

[here jAi 0s2z0dj ø 0.700... .] Substituting this into



VOLUME 76, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 1996

the
;

an

p-

er
he
ric
he

ry
l

on
es
na
th

tin
ex

ss
n

ich
c-
tes
ee
u

er
o
re

nd
l-
nt

. L

,
i.

te,

ss
te

o).
on
ges

of

ial

ly
a
se,
as

.

s,

. A

d

o
ic

nly
see
tl.

ally

d,

.

FIG. 3. The rate of fitness increase as a function of
threshold ratiopcyptot: solid line, theoretical formula (15)
dots, numerical simulations of (5) withD ­ 1.

Eq. (12) and neglecting small second term in the left h
side, we obtain a closed equation for the pulse speedc,

cescy2d sz021d
Z z0

2`

e2czy2Ai s2zddz ­ 2
ptot

pc
jAi 0s2z0dj .

(14)
For largec the integral in (14) can be evaluated asym
totically using the Laplace method [19], as expsc3y24d, so
Eq. (14) simplifies to

cec3y241scy2d sz021d ­ 2sptotypcdjAi 0s2z0dj . (15)
The solution of this equation is shown in Fig. 3 togeth

with the results of direct numerical simulation of (5); t
theoretical estimate agrees quite well with the nume
at small pcyptot but underestimates the speed at hig
pcyptot. At small values of the thresholdpcyptot, the
fitness growth ratec depends on the threshold value ve
weakly, asf2 lns pcyptotdg1y3. Returning to dimensiona
variables, the rate of fitness growthc is proportional to
the two-third power of the diffusion constantD (which is
related to the mutation rate of the virus).

In this paper we introduced a model for viral populati
dynamics which operates in a one-dimensional fitn
space rather than in an extremely high-dimensio
sequence space. This model is expected to hold for
evolution on smooth fitness landscapes. The resul
equation (5) can quite naturally explain the results of
periments on the evolution of the VSVin vitro [1].
The first stage of the exponential growth of fitne
(Fig. 1) corresponds to formation of the quasistatio
ary population distribution in the fitness space, wh
is close to the wild-type distribution. On the se
ond stage, the quasispecies distribution “propaga
towards higher fitness values with a constant sp
which has been analytically deduced from Eq. (5). O
findings suggest that it is quite interesting to und
stand the conditions under which evolution in terms
genomes can be rephrased in terms of fitness and the
become amenable to simple analysis and simulation.
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