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RNA Virus Evolution via a Fitness-Space Model
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We present a mean-field theory for the evolution of RNA virus populations. The theory operates
with a distribution of the population in a one-dimensional fitness space, and is valid for sufficiently
smooth fitness landscapes. Our approach explains naturally the recent experimental observation
[I.S. Novellaet al., Proc. Natl. Acad. Sci. U.S.A92, 5841-5844 (1995)] of two distinct stages in
the growth of virus fitness. [S0031-9007(96)00371-7]

PACS numbers: 87.10.+¢, 82.20.Mj

RNA viruses offer a unique opportunity for the ex- of the logarithm of fitness gained by a clone with
perimental study of molecular evolution. These virusesnitially low fithess is shown in Fig. 1. The logarithm
exhibit both high replication rated0® day ') and high  of fitness grows rapidly until it reaches zero (i.e., the
mutation rates [0~* — 107> mutation/(nucleotide/repli- fitness of ec becomes equal to the fitness of wt). After
cation)]; hence, evolutionary dynamics which would takethat, the logarithm of fitness continues to grow linearly,
years to unfold in even relatively simple bacteria occurhowever at a slower rate [5]. In about 50 days the
within days in RNA virus colonies. The temporal dy- relative fithess reached values of the orderl@fwhich
namics of one such system has been studied in a series quite a remarkable increase. For comparison, fitness
of recent experiments [1]. In this paper, we show how an Escherichia coli[6] bacteria colonies increased by 8%
simple model for the motion of the virus population on aafter 400 generations of monitored evolution.
fithess space can account for some interesting findings in Our purpose is to show that a “mean-field” model of
these studies. evolution of the virus population on a one-dimensional

In the experiments by Holland and co-workers, cloneditness space can naturally account for this experimental
of vesicular stomatitis virus (VSV) were carried throughdata. Most discussions of evolution are based on the alter-
a transmission series of up to 100 consecutive daily “pasaative notion of the sequence space originally introduced
sages” (the experimental technique was first described iby Wright [7] (see also [8,9]). In this extremely high-
[2]). Every passage begins with the inoculation of ap-dimensional space the number of dimensions is equal to
proximately 103 viruses in a bottle containing a mono- the number of nucleotides in the genome (for VSV virus
layer of fresh cells. The viruses are allowed to replicateover 11 000), and every point represents a particular ge-
for one full day, with the number of viruses at the endnetic sequence (genome). Each genome can be labeled
of the day reaching0'°. Then a subsample of approxi- with a fitness value (which is related to the replication
mately 10° viruses is taken from the bottle and used forrate of the corresponding virus); thus a fitness landscape is
the next passage. During the series an average fithess fofmed in the sequence space. Typically, one writes down
the evolving clone (ec) is measured as follows. A smallequations governing the population dynamics of each
sample of viruses is separated from the main populatiogenome taking into account replication and mutation. This
and mixed with a sample of wild-type (wt) virus; the wild
type, which serves as a reference, is taken from a frozen
nonevolving stock. This mixture is then carried through
a few passages at which the ratip of ec concentration
c. to the wt concentration,, is measured daily. The log-
arithm of the relative fitness is determined as a slope of
logc,(n) vsn, wheren is a number of (daily) passage [3]. f

The specific findings we wish to study concern the 4
evolution of colonies whose fitness had been artificially _Z
lowered using a “genetic bottlenecking” procedure; this . . , . .
bottleneck is created by doing passages with only one 20 20 40 60 80 100
particle transferred from one bottle to the next, and Passage

arises because the repeated small sampling does not a”%. 1. Evolution of fitness of a monoclonal-antibody re-

for the effective suppression of deleterious mutants viasistant clone (MARM) during the transmission series of
selection [4]. A typical plot of the temporal dynamics 80 passages on HelLA cells (Fig. 2b of [1]).

Logarith of fitness
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approach ignores the fact that in reality an average numbaetlrift term arises due to the predominance of deleterious
of species (molecules) per genetic sequence is very smatiutations over beneficial ones, as indicated by the reduc-
(except for maybe the most common “master” sequencejijon in overall fitness seen in the bottlenecking protocol;
and fluctuations due to the discreteness of molecules andy,;s; depends, in general, on the fitness, although it can be
the stochastic nature of mutations can be very significantaken to be constant over a sufficiently small fithess range.
Nonetheless, these models make a nontrivial predictioifhis model equation (without the drift) is reminiscent of
that a cloud of mutants surrounding the master sequengaean-field models for diffusion-limited growth, whepe
(the “quasispecies”) is formed in the course of an evolu-describes a solid cluster growing in a linear gradient of
tionary process. Unfortunately, a large number of equasiffusing particles [13].
tions and the need for detailed assumptions regarding We expect this type of equation to be valid for
genome fitness functions and mutation rates make it difsystems with smooth landscapes such that the population
ficult to obtain simple qualitative insight into the tempo- is always sampling a large number of genomes with
ral dynamics of the quasispecies. To date, only relativelimilar fitness; it will break down if there is a tendency for
small-scale simulations have been performed [10] of relethe population to get trapped in local maxima and hence
vance to RNA molecules (sequence length of ali6titas  become localized at specific genomes with low transition
compared with genome lengt®[10%) for RNA viruses].  probabilities to more fit variants. To understand how a
Our approach to the description of molecular evolutiondescription based on a mean-field type description can
is rather different. As mentioned above, every sequencemerge in situations with smooth fitness landscapes, we
can be characterized by its replication rate There may consider a simple model for which the fitness of a binary-
be different sequences which exhibit similar replicationstring genome is just the proportion of 1's [14]. The
rates; we shall lump them together and introduce a timeunderlying dynamics is a continuous-time Markov process
dependent density of population per unit of fitngsé;,z)  with reproduction and with single-bit flipping mutation at
[11]. Without mutations, the dynamics of the populationrate A. It is easy to see that this process can be described

can be described by by the population equations
ap(r,t)/ot = rp(r,t). 1 dp,(t +1 N—n+1
oo = . W dn ) A(”—pn+1(r)+ —
Actually, this continuum description will be valid only dt N N N
if there are a sufficient number of virus particles at a X pn_i(t) = pa(®) ), 4)

specific r; this assumption is, however, much easier to

justify for population dynamics in the one-dimensionalwhere p,(r) is the time-dependent concentration of
fitness space than for high-dimensional sequence space. dfrands withn ones, N is the total genome size, and
on average the population is constrained to have constafiie prefactors come from considering the random
size pioy = [ p(r,t)dr (such as is accomplished by the choice of which single bit gets flipped. If we define
passages technique), Eqg. (1) is modified to become r = (n — N/2)/J/N, rescaler = A/N, t = 7+/N, and
ap(r.0)/at = (r — F)p(r,1), ) take the continuous- limit, we obtain Eq. (3) (with
] ] D = A/2 andvgir, = 2Ar). This genome model makes
where? = [rp(r,1)dr/pw: is an average fitness of the the rather unrealistic assumption of independent additive
population. It is easy to see that if initially population is genomic contributions to the overall fitness. We would
distributed arbitrarily over a range of fitnessesin, rmax),  like to stress, however, that we expect the general idea of
its average fitness will grow monotonically until it even- 5 fitness-space equation to remain valid for more complex
tually reaches,.x. In this final state the limit distribu- landscapes as long as trapping in metastable states is
tion functionp..(r) = p;o:6(r — rmax), i.€., all Sequences jrrelevant [15].
have identical fitness. _ The fact that the experiments find constant fitness
Our basic hypothesis is that one can also includgyowth implies that the drift term relevant for the virus
mutation effects in the equation for without explicitly population is relatively unimportant. The presence of a
taking into account the underlying genomic transitionsmaj| constant drift term has no effect on the qualitative
rates [12]. In the simplest form such an equation ongeatures of the fitness dynamics and hence will be dropped

could have is in what follows. Then, as already mentioned, this model
ap(r,t) _ %p(r,t) is similar to one studied within the context of diffusion-
e (r = F)p(r,0) + DT limited growth. There, it has been shown [16] that naively
using the continuum equation (3) down to arbitrarily small
+ ai[vdriftp(r’ N]. (3) p(r,1) leads to a divergence of the average value ffe.,
,

the mean fitness) in finite time. The essential cause of this
This choice depends on the landscape being smootleffect is the unlimited growth rate gf at larger. Given
so that single mutations can only lead to small fitnesghis fact, any small nonzero value pfat larger will start
changes, and also requires uniformity of the mutation ratelo grow very quickly. In a real viral dynamics, this cannot
i.e., the rate does not depend on the fitness itself. Theccur. A mutant population cannot grow via reproduction
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until there actually exists at least one mutant virus—thatvhich by chance did not accumulate many deleterious
is, the discreteness of the population provides a cutoffnutations during the bottlenecking phase; indeed, the
[17]. Furthermore, the transferring of only a small part,crossover value of the replication rate is observed to be
1073, of the population at the end of each passage wilclose to the wild-type value.

usually eliminate strains which do not have significant At the second (slow) phase the distribution drifts slowly
numbers. In fact there is experimental evidence that evetowards higher values of the replication rate while keeping
very highly fit mutants do not grow in a population if its stationary pulselike form. If the initial condition
their relative concentration is very small [18]. Thus, wealready corresponds to a pulse distribution, then the
assume that there exists a threshold value of concentratiaynamics skip the first phase and proceed directly to
p. below which the autocatalytic growth of concentrationthe second. This is also consistent with observations of

ceases. Therefore we replace Eg. (3) by the neutral clone evolution [5].
ap(r,1) 9 p(r,1) The stationary-moving pulse solution and its selected
T 0(p — po)(r — F)p(r,1) + D—=>5— velocity can be found analytically. First, we introduce

new variablest = D'/3r and 7 = D~'/3r to scale out
(5)  the diffusion constanD. Dropping tildes and assuming
whered(x) is the Heaviside step function. that p in the asymptotic regime depends on one variable

Figure 2(a) illustrates numerical simulation of Eq. (5); = r — ¢t, we haver = ¢t + ry, where

starting from a random distribution of the population
within some intervalrnin, 7max }—this is meant to mimic ro = f zp(2)dz / [ p(2)dz . (6)
the “bottlenecked” population. In Fig. 2(b) temporal
dynamics of the average replication ratés shown for  The equation fop(z) (in the regionp > p.) reads
this run. A crossover from a fast growth of the replication " ,
rate to a relatively slow linear growth of is observed, p- tcp *zp =rop, (7)
which resembles closely the experimental dependencgrimes denote differentiation with respectfiowhich has
(Fig. 1). The first (fast) phase involves formation of the solution
a pulselike distribution which is localized neaf.. .
In this distribution the selection term is approximately p(z) = poe” “"Ai(=2), (8)
balanced by a mutation (diffusion) term in Eq. (5). This\here we introduced a new variatle= z — ro — ¢2/4
distribution is highly peaked near the most fit of the initial and dropped the tilde again. This solution is valid
state, which presumably arose from a wild-type viruspnly for —» < z < z., where z. is defined by the
conditionp(z.) = p.. Atz > z., we must match it with
a stationary moving solution of the diffusion equation
(with D = 1), namely,

p(z) = pee 75, 9)

Matching across the interface= z. should satisfy two
boundary conditionsp. = p_ and p, = p’, and the
normalization condition,[pr(z)dz = pwt. Herep_ is
solution (8) atz = z., and p4 is solution (9) atz = z.
These conditions yield a system of three equationgfor
¢, andz,,

poe “2Ai(=z.) = p., (10)

C _ . _ .
——poe “Ai(—z.) + poe “Ail(=z.) = —cpe,

I 2
© 40 1
£ (11)
“ —cz/2p(_ & _
(b) Do e Ai(—z)dz + P Dtot 5 (12)
20 2 1 1 1 1 -
0 1 2 3 4 5 For small p./po, matching pointz, is close to the first

ti . . .
me zero of the Airy function, so we can introduce a small

FIG. 2. Evolution of the viral colony concentration in fitness correctioné = zy — z.. Herezy = 2.3381.... For small

space starting from random distribution within a raf{§é < . _
r < 18.0} in the framework of Eg. (5). The diffusion constant ¢, we find from (10) and (11) that = 2/c, and

is D=1, pi = 1, and threshold concentratiop, = 5 X = (¢/2)poe' /D@ DA (—z0)| L. 13
107*: (a) space-time diagram(r, ) and (b) average fitness po = (c/Dpe (=20) (13)
versus time. [here |Ai’(—zp)| = 0.700....] Substituting this into
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replication rate. That is why we argue that “exponential
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