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Nontopological Saddle-Splay and Curvature Instabilities
from Anisotropic Membrane Inclusions

J. B. Fournier*

Materials Department, University of California, Santa Barbara, California 93106
(Received 8 September 1995

Anisotropic inclusions are shown to induce spontaneous deviatoric bendings in lipidic membranes, by
orienting at right angles across the bilayer. In the limit of strong membrane curvatures, a nonanalytical
bending energy term is generated that favors saddlelike and cylindrical shapes, without penalizing
spherical ones. An “egg-carton” instability results in flat membranes as well as a wormlike shape
instability for vesicles. [S0031-9007(96)00321-3]

PACS numbers: 87.10.+¢, 02.40.—k, 68.10.Et, 82.70.—y

Fluid lipid bilayers are model systems of biological local curvature of the bilayer. To lowest order in the
membranes [1]. Pure surfactant bilayers are rather wetturvature tensow,; = 9?u/dx;dx;, the Hamiltonian of
understood in terms of local hydrophilic and hydropho-the inclusion can be written as
bic interactions, stress profiles, and geometrical consider- ) . 2
ations [1-3]. Recent studies focus baterogeneitiesis hluij ag) = ho + Tijlaguij + O ), (1)
means of controlling membrane elastic moduli. The efwith summation over repeated indices implied. This
fect of cosurfactants [4,5] and anchored polymers [6—8]equation describes the inclusion contribution to the spon-
the behavior of two component membranes [9,10] andaneous curvature of the membrane. The terfsprcan
polymerized bilayers [11-13] have been theoretically ande decomposed in a term proportional to the identity ten-
experimentally studied. Besides, models involving “hat”sor §;; and a term proportional te;a;. Callingc; andc;
and “saddle” defects [14] or antagonistic membrane comthe eigenvalues of;; (i.e., the principal curvatures) and
ponents [10] have been proposed to tentatively explairalling < the orientation of: with respect to, say, the axis
an apparent submicroscopic roughness in some lipid bief curvaturec;, we are led to
layers [15]. Isotropic membrane inclusions can yield .
spontaneous curvature effects [16] and corrugations [17],h(C1’C2’ B) = ho + aler + o) + wley = ) co2D,
however, only when present with different densities on (2)

both sides of the bilayer. In this Letter, we considerin which we can choose > 0 without loss of generality.
the effect ofanisotropicmembrane inclusions. Possible Hence, anisotropic inclusions behave as quadrupoles in
candidates are the dimeric surfactants called “geminithe membrane curvature field. They will be disoriented

[18,19] whose polar heads are linked by a spacer. Wgy thermal fluctuations whelr; — c,| < ¢*(T), with
show that their orientation should couple with the mem-

brane principal curvatures, reducing the bending rigidity c*(T) ~ 1’ 3)
x and increasingc. Stronger effects might be expected )
from dimers of detergents with large polar heads, or fromyiheryise, they will tend to orient along the most favor-
asymmetric integral proteins [20]. In the limit of large gpje axis of principal curvature. Let us estimate for
curvatures, we show that anisotropic inclusions yield §arious types of inclusions. For small geminated surfac-
nonanalytical saddle-splay contribution proportional 10 {ants of size comparable to the monolayer thickness, we
the modulus of the deviatoric bending. Above an in-gypecti/c* to be a molecular size. Larger inclusions
clusion concentration threshold, this term induces amight yield larger effects. Let us imagine for instance
“egg-carton” instability in flat membranes and a vesiclegp, integral protein with a conical section of angted,
instability yielding long wormlike shapes. . in the x-z plane and angle-6, in the y-z plane. The
Let us consider a fluid lipidic bilayer containing a jinigs are tilted around it over some relaxation length
density n of anisotropic inclusions. For the sake of Thig |t and the corresponding energy can be relaxed by
simplicity, we assume that is constant throughout the curving the membrane. To estimate the corresponaing
membrane and that the inclusions are equally distributege shall consider curving the membrane cylindrically in
on both sides of the bilayer. In this case, isotropicyhe ., plane (Fig. 1). Calling# the projection of the

inclusions would yield no effect by exact compensa;ion”pid orientation onto the membrane plane, the distortion
[17]. We consider a smoothly deformed membrane giveRynergy density reads [21]

by the equation:(x, y) of its midsurface. The orientation
of a single inclusion can be described by a unit vector _ lB =2 4 lK V., - — )2 4
a lying in the plane(x,y). Its energy depends on the fa 2 P 2 Vo -m =) @
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The second term arises from the splay of the lipids, whict{!C: 2. Contribution of anisotropic inclusions to the bending
is coupled with the membrane bending elasticity. The soglr;ﬁg%){ l?;ea;pwembrane. For = o] = c* the energy gain is
lution of the Euler-Lagrange equation associated with (4) '

is m(s) = 0 exp(—s/&), with s the curvilinear coordinate

along the surfacej the boundary tilt, andd = /K/B .

The resulting energy i8V = yx& 6% — kfc per unit (@) lc1 — 2| = ¢*.—If the deviatoric bending is
length. With the boundary tilt given by(c) = 6y — smaller than the threshold, the inclusions contribution
1Dc (the inclusion would fit perfectly in the membrane Simply renormalizes the membrane bending moduli.

for ¢ = 26,/D), we obtaine = —D(dW/dc)|.—o, yield-  From g(c1,c2) ~ —inT  w¥(e) — @) + 0@4), we

ing after dividing byT derive
* K D an

1/c T GOD(I + 25). (5) Ak = o (9a)
With K ~ « ~ 20T for a phospholipid membran@® ~ nw?
60 A, ¢ ~30A (a few lipid head sizes), and, ~ Ak = —. (9b)
45°, we obtain1/c* ~ 2000 A. For large head deter- r
gent dimers, we might expetyc* ~ 300 A. Hence, the bending modulus is reduced, as is usually

According to statistical mechanics, the free energy of ahe case for cosurfactants [1]. Furthermore, anisotropic
single inclusion derived from (2) is inclusions favomegativeGaussian curvature (i.e., saddle
w(ci,ca) = hy + aler + ¢2) shapes), as will be made clearer in the following.

7 g9 (b) le; — 2] = ¢*.—If the deviatoric bending is

- Tlnj e @/Me=e)es2d gy Jarger thanc* [23], which is possible for large inclusions,

o o g becomes approximately

wheredy is an irrelevant angle quantum. The integral in
(6) is a Bessel functior7 9y Io[w(ci — ¢2)/T]. The gler,c2) ~ nA = nwler = o, (10)
total contribution of the inclusions to the membrane enwhere A = %Tln[277|c1 — ¢»|/c*] can be treated as a
ergy, g(ci, ¢2), is given bysu(cr,c2) + 5u(—c1,—c2),  constant thanks to its weak logarithmic dependence. This
since inclusions in opposite sides of the bilayer experiencinear behavior can be easily understood from a mean

opposite curvatures. We obtain field picture. According to Eq. (2), the orientation of
1 — ¢ minimum energy for a single inclusion corresponds to
g(cl’CZ):_nTInIO C*(T) > (7) 9 =01if ¢, — ¢, <0 and tOT?:W/Z if c; —cy >

0. In both cases, the anisotropic energy contribution
is exactly wlc; — ¢»]. Since ¢; — ¢, changes sign
from one monolayer of the membrane to the other,
anisotropic inclusions will orient at right angles when
the membrane is shaped as a saddle. This corresponds
to the most favorable situation (Fig. 3). Conversely,

if the membrane is shaped as a sphere, there is exact
compensation on the two sides of the bilayer. Thus, in
contrast with the usual Gaussian curvature tetmc,,

in which we eliminated a constant contribution, namely,
nho — nT In(27 /), that includes the rotational entropy
of the inclusions. As expected in a symmetric bilayer,
the term proportional t@; + ¢, disapears; however, the
contribution resulting from the anisotropy remains. A
graph ofg is shown in Fig. 2. The membrane bending
energy is obtained by adding the contributigfe, ¢;) to
the Helfrich energy [22]

fler,ca) = 1 k(c; + c2)? + kejea, (8)  the presence of anisotropic inclusions provides an energy

2 gain within the saddles that imot compensated by
wherex and ik are the bending modulus and the Gaussiara corresponding energy loss in surrounding hats. In
modulus, respectively. We consider two limits. other words, the Gauss-Bonet theorem does not apply to
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lci — ¢»| is nonzero as well. This might cause an in-
stability in the shape of vesicles, such as that recently
reported in the presence of geraniol, a biological cosur-
factant [26]. Let us compare the energy of a spherical
vesicle S, of radius R, with that of a cylindrical one

C, of radiusr, and lengthL, terminated by spherical
end caps. The constraint of constant membrane area im-
plies 2wrL = 47 (R?> — r?). The two vesicles possess
the same Gaussian energy and furthermore the bending

FIG. 3. Anisotropic inclusions (arbitrary scale) in a membrane€Nergy8 « of S equals that of the end caps 6f Thus

with deviatoric bending. The inclusions depicted are supposethe energy excesAE of C with respect toS consists
to “prefer,” besides a mean curvature of whatever sign, aronly in the energy of the cylindrical region Gf, namely,
excess of curvature around their short axis and a default of

curvature around their long axis. By orienting at right angles _ 2 | K 1
across the bilayer, both inclusions can satisfy this differential AE(r) = 4m(R™ = r”) 2,2 nT Inlo x| (14)
preference. An additional mean curvature does not change the

tendency of the inclusions to align. Typical graphs ofAE(r) are shown in Fig. 4. The in-

stability condition isAE < 0 for r =< R. In the limit
) . ) of large vesicleskRc* > 1, expanding the Bessel func-
Eq. (10). This property was first understood by Fischekion in power series yieldsAE ~ 7 (R? — r2)[2x —

[24,25], who postulated by analogy with the spontaneous,7 /¢*2](1/r2). We thus obtain the same threshold as
mean curvature a term proportionalfq — c»| for pure  previously

membranes, but estimated it to be negligible.
Egg-carton instability—The saddle splay favored by n, = 2 *2, (15)

anisotropic inclusions yields an instability. Let us com- T

pare the energy of a corrugated membrane,

For n < n., vesicles should exhibit strong shape flucta-
u(x,y) = Usingx singy , (11)  tions. As soon aw = n., they turn to cylinders with a
with that of a flat one. Since the integral over thesmall equilibrium radius, of orderl/c* (Fig. 4). To es-
membrane of the Gaussian temw,c, iS a topological timate it, we can set. < R and use the asymptotic form
invariant, the instability must arise from the nonana-(10) for the inclusions contribution. This giveSE ~

lytical form (10). From the standard relations + ¢, = 47TR2[%K/}’2 — nTc* '/r]. Hencer, ~ kc*/nT,i.e.,
Tru;; andcic, = Detu;;, we infercy + co = uye + uyy 1 n
and e — cal = [(ug — uyy)* + 4u)2€y]1/2. Hence, for — ~2—c" (16)

Te ne

the egg carton (11)¢; + ¢, = —2¢°U singx singy and
lcy — a2l = 2¢?U| cosyx cosggy|. Balancing the inclu- This value is independent @ in the large vesicle limit.
sion gain (10) in the saddles, of ordewq?U, with  Long wormlike vesicles (Fig. 5) should behave as flexible
the average bending co#t, = %K(cl + ¢,)? of order polymers [26] and could undergo a “pearling” instability.
kg*U?, we arrive at the instability criterion Preliminary calculations show that such an instability
is possible although not as favorable as the egg-carton

n K . . .
— = . (12)  one in flat membranes. It would also be interesting to
q°U w
Since the smallest acceptable value;ot/ that allows us
to use the linear form (10) is precisedy, the egg-carton Se+03 |- ' ' ' 1

instability occurs when the inclusion density overcomes
kc*/w, i.e., above the threshold

¥ 0
K % 3
ne ~ —¢ . (13) = Re*=100

T =
The curvature modulation is then of ordef; however, g oseer < 5o 1

. . o*=
a more complete calculation would be required to deter-
mine the corrugation’s amplitude and wave vector. The tesos | i
inclusion coverage at threshold?n, ~ (T/«)8y [1 + 05 s - s o~

D/(2¢)]7% according to our estimation af* for coni- rc*

cal objects, can be very small for large inclusions WIthFIG. 4. Energy excess of cylindrical vesicles of radiuith

0o ~ 1. . . . . respect to spherical ones of radi&s for n ~ 1.5n.. The
Wormlike vesicle instability—The energy term (10) minimum is obtained forr, ~ 1/c*, independently of the

favors not only saddles but alsoylinders, for which  vesicle total area.
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