
VOLUME 76, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 1996

es, by
lytical
alizing
hape

4436
Nontopological Saddle-Splay and Curvature Instabilities
from Anisotropic Membrane Inclusions
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Anisotropic inclusions are shown to induce spontaneous deviatoric bendings in lipidic membran
orienting at right angles across the bilayer. In the limit of strong membrane curvatures, a nonana
bending energy term is generated that favors saddlelike and cylindrical shapes, without pen
spherical ones. An “egg-carton” instability results in flat membranes as well as a wormlike s
instability for vesicles. [S0031-9007(96)00321-3]

PACS numbers: 87.10.+e, 02.40.–k, 68.10.Et, 82.70.–y
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Fluid lipid bilayers are model systems of biologic
membranes [1]. Pure surfactant bilayers are rather w
understood in terms of local hydrophilic and hydroph
bic interactions, stress profiles, and geometrical consi
ations [1–3]. Recent studies focus onheterogeneitiesas
means of controlling membrane elastic moduli. The
fect of cosurfactants [4,5] and anchored polymers [6–
the behavior of two component membranes [9,10] a
polymerized bilayers [11–13] have been theoretically a
experimentally studied. Besides, models involving “ha
and “saddle” defects [14] or antagonistic membrane co
ponents [10] have been proposed to tentatively exp
an apparent submicroscopic roughness in some lipid
layers [15]. Isotropic membrane inclusions can yie
spontaneous curvature effects [16] and corrugations [
however, only when present with different densities
both sides of the bilayer. In this Letter, we consid
the effect ofanisotropicmembrane inclusions. Possib
candidates are the dimeric surfactants called “gem
[18,19] whose polar heads are linked by a spacer.
show that their orientation should couple with the me
brane principal curvatures, reducing the bending rigid
k and increasinḡk. Stronger effects might be expecte
from dimers of detergents with large polar heads, or fr
asymmetric integral proteins [20]. In the limit of larg
curvatures, we show that anisotropic inclusions yield
nonanalytical saddle-splay contribution proportional t
the modulus of the deviatoric bending. Above an
clusion concentration threshold, this term induces
“egg-carton” instability in flat membranes and a vesic
instability yielding long wormlike shapes.

Let us consider a fluid lipidic bilayer containing
density n of anisotropic inclusions. For the sake
simplicity, we assume thatn is constant throughout th
membrane and that the inclusions are equally distribu
on both sides of the bilayer. In this case, isotrop
inclusions would yield no effect by exact compensati
[17]. We consider a smoothly deformed membrane giv
by the equationusx, yd of its midsurface. The orientation
of a single inclusion can be described by a unit vec
$a lying in the planesx, yd. Its energy depends on th
0031-9007y96y76(23)y4436(4)$10.00
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local curvature of the bilayer. To lowest order in th
curvature tensoruij ­ ≠2uy≠xi≠xj, the Hamiltonian of
the inclusion can be written as

hsuij; akd ­ h0 1 Tijsakduij 1 O su2
ijd , (1)

with summation over repeated indices implied. Th
equation describes the inclusion contribution to the sp
taneous curvature of the membrane. The tensorTij can
be decomposed in a term proportional to the identity t
sordij and a term proportional toaiaj. Callingc1 andc2
the eigenvalues ofuij (i.e., the principal curvatures) an
calling q the orientation of$a with respect to, say, the axi
of curvaturec1, we are led to

hsc1, c2, q d ­ h0 1 asc1 1 c2d 1 vsc1 2 c2d cos2q ,
(2)

in which we can choosev . 0 without loss of generality.
Hence, anisotropic inclusions behave as quadrupole
the membrane curvature field. They will be disorient
by thermal fluctuations whenjc1 2 c2j & c?sT d, with

c?sT d ,
T
v

, (3)

otherwise, they will tend to orient along the most favo
able axis of principal curvature. Let us estimatec? for
various types of inclusions. For small geminated surf
tants of size comparable to the monolayer thickness,
expect1yc? to be a molecular size. Larger inclusion
might yield larger effects. Let us imagine for instan
an integral protein with a conical section of angle1u0

in the x-z plane and angle2u0 in the y-z plane. The
lipids are tilted around it over some relaxation lengthj.
This tilt and the corresponding energy can be relaxed
curving the membrane. To estimate the correspondingv,
we shall consider curving the membrane cylindrically
the x-z plane (Fig. 1). Calling$m the projection of the
lipid orientation onto the membrane plane, the distort
energy density reads [21]

fd ­
1
2

B' $m2 1
1
2

Ks=' ? $m 2 cd2. (4)
© 1996 The American Physical Society
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FIG. 1. Lipid tilt distortion around a conical inclusion in a fla
(right) or curved (left) membrane.

The second term arises from the splay of the lipids, whi
is coupled with the membrane bending elasticity. The s
lution of the Euler-Lagrange equation associated with (
is mssd ­ u exps2syjd, with s the curvilinear coordinate
along the surface,u the boundary tilt, andj ­

p
KyB'.

The resulting energy isW ­
1
2 kj21u2 2 kuc per unit

length. With the boundary tilt given byuscd ­ u0 2
1
2 Dc (the inclusion would fit perfectly in the membran
for c ­ 2u0yD), we obtainv ­ 2Ds≠Wy≠cdjc­0, yield-
ing after dividing byT

1yc? ­
K
T

u0D

µ
1 1

D
2j

∂
. (5)

With K , k , 20T for a phospholipid membrane,D ,
60 Å, j , 30 Å (a few lipid head sizes), andu0 ,
45±, we obtain1yc? , 2000 Å. For large head deter-
gent dimers, we might expect1yc? , 300 Å.

According to statistical mechanics, the free energy o
single inclusion derived from (2) is

msc1, c2d ­ h0 1 asc1 1 c2d

2 T ln
Z 2p

0

dq

q0
e2svyTd sc12c2d cos2q , (6)

whereq0 is an irrelevant angle quantum. The integral
(6) is a Bessel function2pq

21
0 I0fvsc1 2 c2dyT g. The

total contribution of the inclusions to the membrane e
ergy, gsc1, c2d, is given by n

2 msc1, c2d 1
n
2 ms2c1, 2c2d,

since inclusions in opposite sides of the bilayer experien
opposite curvatures. We obtain

gsc1, c2d ­ 2nT lnI0

"
c1 2 c2

c?sTd

#
, (7)

in which we eliminated a constant contribution, namel
nh0 2 nT lns2pyq0d, that includes the rotational entropy
of the inclusions. As expected in a symmetric bilaye
the term proportional toc1 1 c2 disapears; however, the
contribution resulting from the anisotropy remains.
graph ofg is shown in Fig. 2. The membrane bendin
energy is obtained by adding the contributiongsc1, c2d to
the Helfrich energy [22]

fsc1, c2d ­
1
2

ksc1 1 c2d2 1 k̄c1c2 , (8)

wherek andk̄ are the bending modulus and the Gaussi
modulus, respectively. We consider two limits.
-
)

-

e

,

,

n

FIG. 2. Contribution of anisotropic inclusions to the bendi
energy of a membrane. Forjc1 2 c2j * c? the energy gain is
almost linear.

(a) jc1 2 c2j & c?.—If the deviatoric bending is
smaller than the thresholdc?, the inclusions contribution
simply renormalizes the membrane bending mod
From gsc1, c2d , 2

1
4 nT21v2sc1 2 c2d2 1 O s4d, we

derive

Dk ­ 2
nv2

2T
, (9a)

Dk̄ ­
nv2

T
. (9b)

Hence, the bending modulusk is reduced, as is usuall
the case for cosurfactants [1]. Furthermore, anisotro
inclusions favornegativeGaussian curvature (i.e., sadd
shapes), as will be made clearer in the following.

(b) jc1 2 c2j * c?.—If the deviatoric bending is
larger thanc? [23], which is possible for large inclusions
g becomes approximately

gsc1, c2d , nA 2 nvjc1 2 c2j , (10)

where A ­
1
2 T lnf2pjc1 2 c2jyc?g can be treated as

constant thanks to its weak logarithmic dependence. T
linear behavior can be easily understood from a m
field picture. According to Eq. (2), the orientation o
minimum energy for a single inclusion corresponds
q ­ 0 if c1 2 c2 , 0 and to q ­ py2 if c1 2 c2 .

0. In both cases, the anisotropic energy contribut
is exactly vjc1 2 c2j. Since c1 2 c2 changes sign
from one monolayer of the membrane to the oth
anisotropic inclusions will orient at right angles whe
the membrane is shaped as a saddle. This corresp
to the most favorable situation (Fig. 3). Converse
if the membrane is shaped as a sphere, there is e
compensation on the two sides of the bilayer. Thus
contrast with the usual Gaussian curvature termk̄c1c2,
the presence of anisotropic inclusions provides an ene
gain within the saddles that isnot compensated by
a corresponding energy loss in surrounding hats.
other words, the Gauss-Bonet theorem does not appl
4437
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FIG. 3. Anisotropic inclusions (arbitrary scale) in a membra
with deviatoric bending. The inclusions depicted are suppo
to “prefer,” besides a mean curvature of whatever sign,
excess of curvature around their short axis and a defaul
curvature around their long axis. By orienting at right ang
across the bilayer, both inclusions can satisfy this differen
preference. An additional mean curvature does not change
tendency of the inclusions to align.

Eq. (10). This property was first understood by Fisch
[24,25], who postulated by analogy with the spontane
mean curvature a term proportional tojc1 2 c2j for pure
membranes, but estimated it to be negligible.

Egg-carton instability.—The saddle splay favored b
anisotropic inclusions yields an instability. Let us com
pare the energy of a corrugated membrane,

usx, yd ­ U sinqx sinqy , (11)

with that of a flat one. Since the integral over th
membrane of the Gaussian term̄kc1c2 is a topological
invariant, the instability must arise from the nonan
lytical form (10). From the standard relationsc1 1 c2 ­
Truij andc1c2 ­ Detuij, we infer c1 1 c2 ­ uxx 1 uyy

and jc1 2 c2j ­ fsuxx 2 uyyd2 1 4u2
xyg1y2. Hence, for

the egg carton (11),c1 1 c2 ­ 22q2U sinqx sinqy and
jc1 2 c2j ­ 2q2Uj cosqx cosqyj. Balancing the inclu-
sion gain (10) in the saddles, of ordernvq2U, with
the average bending costEb ­

1
2 ksc1 1 c2d2 of order

kq4U2, we arrive at the instability criterion

n
q2U

*
k

v
. (12)

Since the smallest acceptable value ofq2U that allows us
to use the linear form (10) is preciselyc?, the egg-carton
instability occurs when the inclusion density overcom
kc?yv, i.e., above the threshold

nc ,
k

T
c?2. (13)

The curvature modulation is then of orderc?; however,
a more complete calculation would be required to de
mine the corrugation’s amplitude and wave vector. T
inclusion coverage at threshold,d2nc , sTykdu22

0 f1 1

Dys2jdg22 according to our estimation ofc? for coni-
cal objects, can be very small for large inclusions w
u0 , 1.

Wormlike vesicle instability.—The energy term (10)
favors not only saddles but alsocylinders, for which
4438
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jc1 2 c2j is nonzero as well. This might cause an i
stability in the shape of vesicles, such as that rece
reported in the presence of geraniol, a biological cos
factant [26]. Let us compare the energy of a spher
vesicle S , of radius R, with that of a cylindrical one
C , of radius r, and lengthL, terminated by spherica
end caps. The constraint of constant membrane area
plies 2prL ­ 4psR2 2 r2d. The two vesicles posses
the same Gaussian energy and furthermore the ben
energy8pk of S equals that of the end caps ofC . Thus
the energy excessDE of C with respect toS consists
only in the energy of the cylindrical region ofC , namely,

DEsrd ­ 4psR2 2 r2d
∑

k

2r2 2 nT lnI0

µ
1

rc?

∂∏
. (14)

Typical graphs ofDEsrd are shown in Fig. 4. The in
stability condition isDE , 0 for r & R. In the limit
of large vesiclesRc? ¿ 1, expanding the Bessel func
tion in power series yieldsDE , psR2 2 r2d f2k 2

nTyc?2g s1yr2d. We thus obtain the same threshold
previously

nc ­ 2
k

T
c?2. (15)

For n & nc, vesicles should exhibit strong shape fluc
tions. As soon asn * nc, they turn to cylinders with a
small equilibrium radiusre of order1yc? (Fig. 4). To es-
timate it, we can setre ø R and use the asymptotic form
(10) for the inclusions contribution. This givesDE ,
4pR2f1

2 kyr2 2 nTc?21yrg. Hencere , kc?ynT , i.e.,

1
re

, 2
n
nc

c?. (16)

This value is independent ofR in the large vesicle limit.
Long wormlike vesicles (Fig. 5) should behave as flexib
polymers [26] and could undergo a “pearling” instabilit
Preliminary calculations show that such an instabil
is possible although not as favorable as the egg-ca
one in flat membranes. It would also be interesting
s

-
e

FIG. 4. Energy excess of cylindrical vesicles of radiusr with
respect to spherical ones of radiusR, for n , 1.5nc. The
minimum is obtained forre , 1yc?, independently of the
vesicle total area.
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FIG. 5. Wormlike vesicles induced by anisotropic inclusion

study whether an instability yieldingspikeson the vesicle
surface (like the blood cell echinocytosis) would n
compete with the transformation to wormlike vesicles.

In summary, inclusions with ananisotropic sponta-
neous curvature could play an important role in the m
phology of membranes. Whereas isotropic inclusio
yield no spontaneous mean curvature when symm
cally absorbed in a bilayer, anisotropic inclusions yie
a spontanous deviatoric bendingc1 2 c2 fi 0 by orient-
ing at right angles across the bilayer. This favors s
dlelike or cylindrical membrane shapes. The effect
small anisotropic inclusions is mainly to reduce the be
ing modulusk and to increase the Gaussian modulusk̄.
Large inclusions, such as big dimeric detergents of p
teins, yield in the limit of strong mesoscopic curvatur
an energy term proportional to themodulusof the de-
viatoric bending. Such a nonanalytical term favors s
dles without penalizing spheres, contrary to the us
Gaussian curvature term. We showed that above an
clusion concentration thresholdnc (as small as the inclu
sions are large), flat membranes undergo an egg-ca
instability with a mesoscopic roughness. This might be
alternative to the “hat model” to explain the roughness
real membranes [14]. Abovenc, spherical vesicles shoul
transform towormlikevesicles with a diameter also pro
ably in the mesoscopic range. This might explain the
cently observed “entangled tubular vesicle phase” [2
obtained in the presence of geraniol, a branched
surfactant that could possibly yield anisotropic asso
tions with the membrane lipids [27]. Extension of t
present model should include inhomogenities in the dis
bution of the inclusions and the investigation of a spik
vesicle regime.
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