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We examine the consequences of Berry’s phase for the dynamics of Josephson junctions and
arrays in which moving vortices are present. For both a large annular Josephson junction an
junction array, Berry’s phase produces a new current drive in the superconducting phase dyna
these weak link systems. This Berry phase effect is shown to be physically inequivalent to a
effect in junction arrays associated with the Aharonov-Casher phase. [S0031-9007(96)00361-4
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Ao and Thouless [1] recently drew attention to th
relevance of Berry’s phase [2] for the dynamics o
vortices in type-II superconducting films. They argue
that Berry’s phase would cause the Magnus force to
on a moving vortex. Their work led one of us to examin
the nondissipative force which acts on a moving vort
within the context ofs-wave BCS superconductivity [3].
It was found (inter alia) that vortex motion does generat
a Berry phase in the BCS ground state, that this Be
phase enters as a topological term in the condens
effective action known as a Wess-Zumino (WZ) term
and that the WZ term leads to the Magnus force acti
on the moving vortex [4]. Reference [3] also remarke
that situations could be envisioned in Josephson junctio
and 2D Josephson junction arrays in which Berry’s pha
might also lead to physical effects.

In this Letter we examine the consequences of Berr
phase for two classes of weak link superconducti
systems: large annular Josephson junctions (AJJ) and
Josephson junction arrays (JJA). We argue that, whene
these systems contain a moving vortex, Berry’s pha
will modify the electric current density passing throug
the weak links. This modification, in turn, will cause
a new current drive to appear in the superconducti
(SC) phase dynamics of these weak link systems wh
is a generic consequence of the topology and motion
the vortex. In the case of a JJA, we also show th
our Berry phase effects are physically inequivalent
known effects associated with the Aharonov-Casher (A
phase. The structure of this paper follows a progress
development of the Berry phase effects occurring in
type-II film to successively more complicated weak lin
systems. First, we review the type-II results, then w
examine the simplest possible weak link system—a sin
Josephson junction. We then extend the single JJ anal
to the case of a 2D JJA. This Letter marks the first tim
Berry’s phase has been connected to dynamical effe
in weak link systems [5]. A detailed presentation of th
work will be reported elsewhere [6].

We begin by summarizing the manner in which Berry
phase enters into the dynamics of vortices in type
0031-9007y96y76(23)y4404(4)$10.00
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films—for a detailed presentation, see Ref. [3]. Throu
out this Letter we assume (1)T  0, (2) ans-wave BCS
superconductor whose gap phasef  fsssr 2 r0stdddd con-
tains a moving vortex singularity with trajectoryr0std, (3)
a clean superconductor so that there are no pinning
ters for the vortex or scattering centers for the SC e
trons, and (4) adiabatic vortex motion so that phase
voltages are small compared to the energy level sp
ing of the quasiparticle states bound to the vortex c
(DE , D

2
0yeEf in volts).

The SC dynamics is described via the Bogoliub
HamiltonianHbfr0g which depends parametrically on th
vortex positionr0. Vortex motion produces an adiabat
time dependence in the HamiltonianHbfr0stdg which can
be treated using the quantum adiabatic theorem. Exp
calculation shows that ifjCstdl is the many-body stat
of the SC electrons which att  0 equals the BCS
ground state in which a single vortex is present atr0s0d,
i.e., jCs0dl  jBCS; r0s0dl, then the many-body state
time t equals the BCS ground state with the vort
at r0std multiplied by a phase factor which contains
nonintegrable Berry phaseG:

jCstdl  exp

∑
iG 2 siyh̄d

Z t

0
E0stddt

∏
jBCS; r0stdl

and

G  2
Z

d2x dt rs

µ
1
2

≠tf 1
e
h̄

A0

∂
. (1)

Here E0std is the energy ofjBCS; r0stdl, and A0 is the
electromagnetic scalar potential induced by the mov
vortex.

The dynamical significance ofG follows from its
appearance in the condensate effective action,Sc 
S0 2 h̄G 1 S2. This effective action is defined vi
the ground-state–to–ground-state transition amplitu
expf2iScyh̄g  kBCS; r0sTdjCsTdl. It is the presence o
G in the phase ofjCsT dl that leads to its appearance
Sc. We will not require the explicit form ofS0 and S2;
they have been calculated in Refs. [3,7], and the intere
reader is referred to those papers for further deta
© 1996 The American Physical Society
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Berry phase contributions to low energy effective actio
are well known [8], and such contributions are know
as WZ terms,SWZ  2h̄G. WZ terms are topologica
in origin and occur whenever the line bundle structu
inherent in the quantum adiabatic theorem is twis
[9]. SWZ describes a topological coupling between t
vortex and the SC electrons. A variation ofSWZ with
respect tor0std gives the forcefB acting on the vortex
due to this coupling. Detailed calculation shows th
fB equals the Magnus force of classical hydrodynam
fB  2rsh Ùr0 3 ẑy2. Here,ẑ lies along the vortex axis
and h is Planck’s constant. We will refer tofB as
the Berry-Magnus (BM) force. A supercurrent dens
rsevT causes the Lorentz force,fL  rshvT 3 ẑy2, to
act on the vortex. For extreme type-II films, the to
nondissipative forceFnd acting on the vortex is the sum
of the Lorentz and BM forces. This completes our revi
of the type-II film results; we go on to examine the
extension to certain weak link systems, beginning w
a single Josephson junction.

AJJ.—In a Josephson junction, two superconduct
(say, 1,2) are coupled through a weak link via t
Josephson effect. Throughout this paper, all weak li
are assumed to be tunneling barriers (TB). As is w
known [7], the actionSJJ governing the SC electrons ha
the form SJJ  Sbs1d 1 Sbs2d 1 Sc 1 St . Sbsid is the
BCS action of an isolated superconductor, andi  1, 2;
Sc describes the capacitive coupling of electric cha
across the TB; andSt describes the Josephson coupli
of the gap phase of each superconductorfi across the
TB [10]. We restrict ourselves to large JJ’s becau
they allow localized regions of magnetic flux (vortice
to appear inside the TB. We assume unit thickness in
z direction so that the SC dynamics is 2D. Under the
assumptions, the TB maps onto a 1D regionP , R2, and
vortex motion is restricted toP. Finally, we assume the
SC electrons respond adiabatically to a moving vortex
the TB. This is expected to be true for most kinds
vortex motion since the phase slip voltages produced
a moving vortex are typically of order0.01 0.1 mV [11],
while the smallest spacing between single quasipart
energy levels for which transitions are not forbidden
the Pauli principle (atT  0) is equal to the BCS gap
D , 1 mV.

To begin, focus on superconductori, and assume a
moving vortex is present in the TB. Just as with t
type-II film discussion above, vortex motion causes
Bogoliubov Hamiltonian ofi to develop an adiabatic
time dependence. This continues to be true even tho
the vortex now resides in the TB andnot in i. This
raises the question of whether a Berry phase app
in i’s ground state. The crucial issue is whether t
Berry phase is nonintegrable. If it is, then it will b
dynamically relevant since it cannot be removed
single-valued phase transformations of the instantane
energy eigenstates [2]. Nonintegrability requires t
s
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existence of at least one closed loopC in P for which
the associated Berry phase is nonzero. In the usual li
JJ (LJJ), no such closed loop exists. In this case, the
is topologically equivalent to the unit intervalI  f0, 1g.
All closed loops C in I will originate at some point
p0, move to a pointp1 along the unique contourC1

which connects these two points, then return top0 along
2C1. Consequently, however much Berry’s phase m
twist in traversingC1, this twist is removed on the retur
along2C1. Thus, in a LJJ, the ground-state Berry pha
Gsid  0 for all closed loops inP. Consequently, no
WZ term appears inSbsid, and Berry’s phase is irrelevan
for the dynamics of a LJJ. This conclusion doesnot,
however, apply to an AJJ [11]. The essential differen
is that the TB of an AJJ is ringlike, and thus topologica
equivalent to the unit circleS1. S1 allows closed loops
Cn which wind n times around the unit circle. It is eas
to show using Eq. (1) thatGsid  2npNs for Cn. Here,
Ns is the mean number of SC electrons in supercondu
i. Thus, in an AJJ, Berry’s phase is nonintegrable a
physically relevant. As we saw above, Berry’s pha
causes a WZ term to appear inSbsid, and it is through
the WZ term that it can influence the SC dynamics of
AJJ. Note that, becauseGsid is proportional toNs, the
WZ term is an extensive quantity. This is quite necessa
given its appearance in the SC effective action.

To bring out the dynamical significance of the W
terms inSJJ, we consider a current-biased AJJ. Asso
ated with the bias currentI is the current densityjsad 
srseyT dn̂sad. a parametrizes a position along the circ
lar TB, n̂sad is the unit vector which is normal to the TB
at positiona, andyT is the velocity of the bias supercu
rent which, for simplicity, is taken to be space-time ind
pendent. The low energy degree of freedom of a JJ is
gauge invariant phase differencegsa, td  f2sa, td 2

f1sa, td 2 s2pyf0d
R2

1 A ? dl. The actionSg governing
this low energy dynamics was first derived for a LJJ
Ref. [7]. A similar analysis can be done for an AJ
though care must be taken to track the consequence
the WZ terms present inSbsid. A detailed analysis [6]
shows that the WZ terms modify the current density in
TB. One can see this by examining the current drive te
Scd in Sg . One finds that the current density which co
ples tog contains a modificationDjBstd due to Berry’s
phase. Specifically,

Scd 
Z

dt Rda

µ
h̄
2e

∂
n̂sad

3 f rseyT n̂sad 1 DjBg gsad . (2)

Here, R is the inner radius of the TB, andDjBstd 
2rse Ùr0std. Because of the scalar product, we see t
DjB enhances the bias current densityjsad in the half-
circle behind the vortex, and reduces it in the half-circ
ahead of the vortex. The total current passing throu
the TB, however, is still equal toI . This Berry phase
4405
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modification of the charge flow through the TB is
generic consequence of the topology and motion of
vortex.

The equation of motion forg is found by varyingSg

with respect tog. One finds [6]

g̈ 2 =2
'g 1 sing  b 2 b n̂sad ? sÙr0yyT d , (3)

where length and time intervals are measured in unit
the Josephson penetration length and inverse Josep
plasma frequency, respectively,b  IyIc, and Ic is
the critical current of the junction. As expected, w
obtain a biased sine-Gordon equation [10], although
Berry phase modification of the current density produ
the second term on the right-hand side of Eq. (3).
analogy with the type-II discussion we will refer to th
familiar current driveb in Eq. (3) as the Lorentz drive
since it originates from the bias currentI. The new
current drive will be called the Magnus drive since
is a consequence of Berry’s phase. It is clear fr
Eq. (3) that, whenjÙr0j ø yT , the Lorentz drive is the
dominant driving force, with perturbative correctio
coming from the Magnus drive. However, whenjÙr0j ¿
yT , the Magnus drive is dominant and should lead
noticeable corrections to solutions of Eq. (3) which on
include the Lorentz drive. One effect which may
sensitive to the Magnus drive is the critical value of t
external bias currentbc at which vortex bunching firs
occurs [11,12]. Whenb  bc, g develops oscillations
in the region behind the vortex. These oscillations le
to an attractive interaction between vortices which cau
the bunching. Because Berry’s phase increases the cu
density behind the vortex, one expects that a sma
external bias currentbp , bc will be capable of initiating
the necessary oscillations ing. A careful numerical
analysis of Eq. (3) is planned which will allow us
test the validity of this conjecture. This concludes o
discussion of a single JJ. In the next section we exp
our Berry phase analysis to include a 2D JJA.

2D JJA.—A JJA is a lattice whose sitesi are occupied
by SC grains. Nearest neighbor grains are coup
through a weak link via the Josephson effect. The w
links are assumed to be small TB’s, and, for simplicity,
assume a square lattice (lattice constanta0). The sites of
the dual lattice are the equilibrium positions for a vorte
and the TB’s provide the paths by which a vortex mov
from one dual lattice site to another. Consequently, vo
motion is restricted to the spaceP which is the union
of the dual lattice sites, and the collection of TB
The actionSJJA which governs the dynamics of the S
electrons in the array is a straightforward generaliza
of the action for a single JJ.SJJA is a sum over the
BCS actionSbsid of the grainsi, and the actionsScki, jl
and Stki, jl which describe the capacitive and Joseph
coupling of nearest neighbor grainsi and j across the
weak linkki, jl. Based on estimates similar to those giv
in the AJJ discussion, we assume the SC electrons
4406
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JJA will respond adiabatically to a moving vortex und
the conditions usually encountered in the flux-flow regim
of the array.

As with an AJJ, vortex motion produces a nonint
grable Berry phase in the BCS ground state of each
the grains. From Eq. (1), it is easy to show that a
closed loopCnsid which encirclesi n times produces
a Berry phaseGsid  2npNssid. Here, Nssid is the
mean number of SC electrons ini. Thus a WZ term
appears in each of the BCS actionsSbsid, and, conse-
quently, they will also appear in the array actionSJJA.
The low energy degree of freedom of each of the we
links is again the gauge invariant phase difference acr
the link gi,j  fi 2 fj 2 s2pyf0d

Ri
j A ? dl. One can

apply the analysis of Ref. [7] toSJJA to obtain the ac-
tion SJJA

g which governs the phase dynamics of the JJ
though one must again be careful to track the effects
the WZ terms. One finds, assuming only nearest nei
bor coupling of the grains, thatSJJA

g is equal to a sum in
which each weak link contributes the phase action fou
in the AJJ discussionSg, but withg ! gi,j [6]. Just as in
the AJJ discussion, the WZ terms cause a modification
the current density passing through the weak links. T
modification causes the Magnus current drive to appea
the equation of motion forgi,j,

g̈i,j 2 =2
'gi,j 1 singi,j  b 2 b n̂i,j ? sÙr0yyT d . (4)

In Eq. (4) we have assumed a uniform bias currentb 
IyIc passes through the array. The appearance of
Magnus drive in Eq. (4) is again a consequence of
topology and motion of the vortex. As with the AJJ, th
regimejÙr0j ø yT will be dominated by the Lorentz drive
while the Magnus drive will dominate whenjÙr0j ¿ yT .
A numerical analysis of the phase dynamics of a JJA
the presence of the Magnus drive is clearly necessary.

The preceding discussion has considered the lat
limit of the array’s SC dynamics; the continuum lim
(CL) is also of interest. Ifl is the length scale over
which gi,j varies, the CL of the array’s SC dynamic
corresponds tol ¿ a0. Thus gi,j varies little from
grain to grain in this limit. (Note thata0 !y 0 in this
limit.) In the CL, it is reasonable to coarse grain th
array’s SC dynamics. One finds [6], perhaps not
surprisingly, thatSJJA transforms under coarse grainin
into the action appropriate for a type-II film:SJJA !

S̃JJA  S̃0 1 S̃WZ 1 S̃2, where

S̃WZ 
Z

d2xdt r̃s

µ
h̄
2

≠tf 1 eÃ0

∂
.

Quantities with tildes correspond to coarse grained
erages. S̃WZ arises from the coarse graining of the W
terms present inSJJA. The presence of the WZ term in
S̃JJA causes the BM forcefB  2r̃shsÙr0 3 ẑdy2 to act
on a vortex, just as in the type-II film case. We point o
that this BM force is physically distinct from the Magnu
force introduced in Ref. [13], and which is a consequen
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of the AC phase [14]. It is important to recognize th
physical nonequivalence of these two forces, so we w
close by contrasting their origins and consequences.

Fundamentally, the AC phaseGAC is a consequence
of electrodynamics and topology, and it appears in
wave function of a quantum vortex [14]. In the JJ
scenario of Ref. [13], a nonvanishingGAC requires a
nonfluctuating electric chargeQf to be present on eac
grain. This requires the grain self-capacitanceC0 to be
sufficiently small, and the application of a gate volta
Vgsid to each grain. On the other hand, Berry’s pha
GB is a consequence of adiabatic quantum dynamics
topology. For the systems we consider,GB appears in
the BCS ground state wave function of each grain.
moving vortex is sufficient to produce a nonzeroGB in
large AJJ’s and JJA’s. Furthermore, the vortex in t
Berry phase scenario is classical, not quantum. Thus
an array, the physical independence of these two ph
is clear: (1) One is inherently an electromagnetic effe
the other is not; (2)GAC appears in the wave functio
of a quantum vortex, whileGB appears in the many-bod
wave function of a SC grain; and (3) the experimen
circumstances necessary to produceGAC in an array are
physically inequivalent, and more restrictive than tho
necessary to generateGB. These substantial fundament
differences manifest also in quantitative differences, as
now show by considering the Hall effect in a perfec
ordered array in the CL.

The forces acting on an array vortex will be the coa
grained (1) Lorentz forces r̃shvT 3 ẑy2d, (2) Magnus
force s2a Ùr0 3 ẑd, and (3) dissipative forces2h Ùr0d. For
the BM force, aB  r̃shy2. The AC-Magnus (ACM)
force has the form [13]fAC  2sQfyeV dh Ùr0 3 ẑy2,
where V is the grain volume andQf  C0Vg is the
electric charge induced on the grain by the applied volt
Vg. Thus,aAC  C0Vghy2eV . For steady state vorte
motion, the total force on the vortex is zero:r̃shvT 3

ẑy2 2 a Ùr0 3 ẑ 2 h Ùr0  0. Solving this equation for
Ùr0 determines the Hall angleQH , tanQH  2 Ùx0y Ùy0 
ayh. From this expression we can compare the size
the Hall angles produced by the BM and ACM force
To obtain a comparison that is independent of a mo
for h, we evaluate the ratioR  tanQ

B
Hy tanQ

AC
H 

r̃seVyC0Vg. For typical array values (̃rs , 1027 m23,
V , 10221 m3, C0 , 10 fF, Vg , 1 mV), one findsR ,
104. Thus the BM force overwhelms the ACM force i
a Hall effect experiment. Clearly the two forces cann
be the same. In the Hall experiment of Chenet al. [15],
Vg ; 0 so thatfAC ; 0. Thus the observed nonzero Ha
angles are clearly due to the BM forcesaB fi 0, aAC 
0d. If one uses the Kim-Bardeen-Stephen empiri
ill
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expression forh [16], it is possible to reproduce th
Chenet al. resultssQH , 1±d using reasonable values fo
the subgap conductivity [6]. Finally, since the BM forc
dominates the ACM force, one expects the Hall angle w
be (effectively) insensitive to variations ofVg , 1 mV,
whenC0 , 1 fF.
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Note added. —Since this work was submitted, a prepri
has appeared [17] which also argues that Berry ph
effects will occur in JJA’s, though it concludes that th
BM force will not be active in arrays.
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