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Anomalous Flux Quantization in a Hubbard Ring with Correlated Hopping
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We solve exactly a generalized Hubbard ring with twisted boundary conditions. The magnitude
of the nearest-neighbor hopping depends on the occupations of the sites involved and the term
which modifies the number of doubly occupied sitestAB ­ 0. Although h-pairing states with off-
diagonal long-range order are part of the degenerate ground state, the behavior of the energy as
function of the twist rules out superconductivity in this limit. A smalltAB breaks the degeneracy
and for moderate repulsiveU introduce superconducting correlations which lead to “anomalous” flux
quantization. [S0031-9007(96)00300-6]
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One of the most interesting problems of the phys
of highly correlated electronic systems is the charac
ization of the metallic, insulating, and superconduct
phases, as well as the transitions among them. K
has shown that the Drude weightDc is the adequate
quantity to identify the metal-insulator transition (MIT
[1], while Yang introduced the concept of off-diagon
long-range order (ODLRO) to characterize the superc
ducting nature of a metallic phase [2]. ODLRO inall
relevant low-energy eigenstates implies a periodicity
hy2e in the free energy as a function of a magnetic fl
threading a system with annular topology. This “anom
lous” flux quantization (AFQ) [3,4] in the ground sta
(GS) meansEsF 1 pd ­ EsFd, whereE is the GS en-
ergy andF is the twist angle. It is a necessary but n
sufficient condition for superconductivity. SinceDc ,
≠2Ey≠F2, the function EsFd gives crucial information
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about the metallic and superconducting character of
system [1,4,5].

Exactly solvable highly correlated models displaying
MIT or ODLRO are good laboratories to investigate th
nature of the MIT and electronic mechanisms of superc
ductivity. The Bethe ansatz solution with twisted boun
ary conditions of the one-dimensional (1D) Hubbard mod
[6] allowed application of Kohn’s ideas to the MIT in thi
model [6,7]. In addition, the interest in electronic mo
els exhibiting superconductivity (or dominant superco
ducting correlations at long distances in 1D), in particul
those with correlated hopping increases recently [8–1
However, very few exact results exist. Several of the
are related with the so-calledh-pairing mechanism, which
allows us to construct eigenstates with ODLRO [8–1
In particular, the widely studied [13–15] effective mod
for cuprate superconductors,
H ­ HU 1 Ht ­ U
X

i

ni"ni# 1
X

kijls
scy

iscjs 1 H.c.d

3 htAAs1 2 nisd s1 2 njsd 1 tBBnisnjs 1 tABfniss1 2 njsd 1 njss1 2 nisdgj , (1)
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has been exactly solved recently in 1D in the limittAB ­ 0
for open [9] and periodic [10,11] boundary conditions.h-
pairing states with ODLRO are part of thedegenerateGS
for moderate on-site repulsionU and arbitrary band filling.
Unfortunately, the functionEsFd has not been obtaine
and, then, the AFQ andDc were not studied. Our mai
interest in this study is motivated by the following tw
facts: First, the superconducting character of the deg
erate GS is not obvious, even when states with ODL
are part of the GS manifold. Second, the GS was foun
be a Mott insulator forU . UMI ­ 2DsjtAAj 1 jtBBjd at
half filling, in a simple cubic lattice inD dimensions, with
a MIT for D . 1 [14,15]. Strictly inD ­ 1, however, we
find that forn ­ 1, Dc ­ 0 ;U, in spite of a vanishing
charge gapfor U , UMI. The possibility of an insulating
phase with this feature was first remarked by Kohn [1] a
we think that this is, to our knowledge, the first nontriv
realization of that kind of insulators.
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In this Letter, we solve exactly the 1D model (1) wi
tAB ­ 0, for twisted boundary conditionsF" sF#d for spin
up (down) fermions. This allows us to calculate t
Drude weightDc and the spin stiffnessDs and to discuss
the nature of the MIT as the particle densityn ! 1.
The behavior ofEsF", F#d rules out superconductivity in
the model fortAB ­ 0. In addition, we show how the G
degeneracy is broken in favor of a state with domin
superconducting correlations when a finitetAB is allowed,
for moderate repulsiveU.

We first consider the Hamiltonian (1) with2tAA ­
tBB ­ t . 0, tAB ­ 0. The other possible choices o
the sign of tAA and tBB lead to an equivalent mode
[16]. At each site i, we introduce two fermionsfis

and two bosonsbis0 wherebi1 ; e semptyd and bi2 ;
d sdoublond. In this representation,Ht of (1) in a ring
of L sites with twists Fs for particles with spins

reads
© 1996 The American Physical Society
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Ht ­
X
i­1

Hi,i11 1 HL,1 ­ 2t
L21X

i­1,ss0

s f
y
i11sfisb

y
is0 bi11s0 1 H.c.d

2 t
X
s

f f
y
1sfLsseiFs b

y
11bL1 1 e2iF2s b

y
12bL2d 1 H.c.g . (2)
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The numbersNs ­
P

i f
y
isfis , Ne ­

P
i e

y
iseis , Nd ­P

i d
y
isdis are all conserved. In each subspa

with fixed N", N#, Ne, Nd , any state has the formQNb
m­1 b

y
ismds0smd

QNf

j­1 f
y
is jdss jdj0l, where j labels the

Nf ­ N" 1 N# fermions from left to right andis jd, ss jd
denote the position and the spin of thejth fermion. Simi-
larly ismd, s0smd [with ism 1 1d . ismd] are the position
and the pseudospin [9] of themth boson. The numbe
of bosons isNb ­ Ne 1 Nd ­ L 2 Nf . For the peri-
odic casesFs ­ 0d, the Hamiltonian is invariant unde
cyclic permutations of the fermions and bosons and
is convenient to work in the basis of the irreducib
representations of the direct product groupCNf ≠ CNb
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[11]. Our idea is to use appropriate weighted repres
tations to cancel out the difference in phases inH1,L in
order to map the problem into one of spinless fermio
with twisted boundary conditions. We think of the rin
as a periodic system in whichf

y
i1L" ­ f

y
i", e

y
i1L ­ e

y
i ,

but f
y
i1L# ­ e2isF"2F#df

y
i#, d

y
i1L ­ e2isF"1F#dd

y
i . Thus

HL,1 ­ eiF"

P
ss0 f

y
11LsfLsb

y
11Ls0bLs0 .

We look for a basis of many particle states tran
forming as irreducible representations ofCNf

≠ CNb

under the above mentioned boundary conditio
The part of these states which describes the sin
occupied sites can be constructed using the op
tors
Fyshis jdj, hkljd ­
N"Y
k̃l "

f̃
y

k̃l "

N#Y
l­1

f
y
kl # , f

y
k# ­

1p
Nf

NfX
j­1

e2ikjf
y
is jd#, kl ­

2pnl 2 sF" 2 F#d
Nf

,

f̃
y

k̃"
­

1p
Nf

NfX
j­1

e2ik̃jf
y
is jd"s1 2 f

y
is jd#fis jd#d , (3)
rm,

y

where in contrast to the wave numberskl, the k̃l are not
shifted (̃klNfy2p is integer), and are chosen in such
way that

P
l k̃l ­ 0spd for Nf odd (even). Thenl are

N# different integers lying in the intervalf0, Nf 2 1g, and
each of theNf!yN"!N#! possible choices of the set ofnl

define a spin configuration. It is easy to see that un
cyclic permutationCNf , which carries each fermioni
position to the rightCNf

Fy ­ 2s21dNf expsi
P

l kldFy.
In a similar way, using a transformation that interchan
spin and pseudospin [17], the pseudospin configura
can be described by an operatorByshismdj, hk0

ljd, such
thatCNb By ­ expsi

P
l k0

ldBy, with theNd differentk0
l ­

f2pn0 2 sF" 1 F#dgyNb. The (nonorthonormal) bas
states that we use are denoted byjchis jdj, hkj, hk0jl ­
ByFyj0l.

Ht permutes a fermion and a nearest-neighbor bo
The cyclic orders of fermions and bosons are conser
Thus the numbershkj and hk0j are conserved. We dro
these indices for simplicity.Hl,l11jchis jdjl ­ 0 unless
one and only one of the sitesl and l 1 1 is contained
in his jdj. We restrict ourselves to these states in
following discussion. It can be seen that forl , L,
Hl,l11jCssshis jdjdddl ­ 2tjCssshi0s jdjdddl, wherehi0sldj differs
from his jdj in the position of one fermion only, which
shifted from sitel to l 1 1 or conversely. IfisNf d ­ L,
then HL,1 jCssshis jdjdddl ­ 2teiF"CNfC

21
Nb

jc hi0s jdjl ­

ts21dNf expfis
PN#

l­1 kl2
PNd

l­1 k0
l 1 F"dg jchi0s jdjl, where

i0s1d ­ 1, and for j , Nf , i0s j 1 1d ­ is jd. When
N# ­ Nd ­ 0, Ht takes the form of a problem of spin
less fermions with fluxF". The above equations sho
er

s
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that in the general case the problem takes the same fo
with an effective flux:

Feff ­ F" 1

N#X
l­1

kl 2

NbX
l­1

k0
l ­

√
N"

Nf
2

Nd

Nb

!
F"

1

√
N#

Nf
2

Nd

Nb

!
F# 1

2p

Nf

N#X
l­1

nl 2
2p

Nb

NdX
l­1

n0
l .

(4)

The energy of the system is given by

E ­ 22t
NfX

j­1

cos

√
2pn

00
j 1 Feff

L

!
1 UNd , (5)

where theNf integer numbersn00
j should be different and

can be chosen in the intervalf2Ly2 1 1, Ly2g.
For fixed Nf ­ nfL and total number of particles

N ­ nL ­ Nf 1 2Nd , minimization of (5) leads to

EgsF", F#d ­ UNd 2 2tfsinsnfpdy sinspyLdg cosswd ,

(6)

wherew ­ FeffyL for Nf odd andw ­ sFeff 2 pdyL
for Nf even. The value ofU determinesNd for the
GS. For eachF", F#, the numbersN", N# as well as
hnj, hn0j should be chosen to minimizejwj (mod 2p). It
can be easily seen that in the simplest caseF" ­ F# ­
0 and U ­ 0 that the GS is highly degenerate (man
choices of quantum numbers lead towy2p integer).
For U . Uc ­ 24t cosspnd, Nd ­ 0 [9–11], and we
recover the solution of theU ­ 1` Hubbard model
4397
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with twisted boundary conditions. In this caseEsF" 1

2pyN , F# 1 2pyNd ­ EsF", F#d, since the shift inFs

can be absorbed decreasing one of then by 1, what
is always possible if0 fi N# fi Nf . For F" ­ F#, this
result has been obtained previously [18]. WhenNd fi

0, a change in bothFs by 2pyjNb 2 Nej can be
counterbalanced by a change in thehn0j, leading to

Eg

√
F" 1

2p

jL 2 Nj
, F# 1

2p

jL 2 Nj

!
­ EgsF", F#d ,

(7)

for L fi N , whereas for a half-filled systemEg depends
only on the differenceF" 2 F#, a behavior typical of
an insulator. ForU , 24 cosspnd, Nd . 0 and h-
pairing states with ODLRO are present in the GS [9–1
However, we do not find AFQ, but a periodicity whic
depends on the particle densityn. An example for finite
chains is shown in Figs. 1(a) and 1(b). The number
peaks ofEgsF" ­ F# ­ Fd for 0 # F # 2p is at least
Ljn 2 1j, diverging in the thermodynamic limit, while
the height of each peak decreases as1yL3, as in the
U ­ 1` Hubbard model. The response of the syst
to the flux is like that of a single particle with charg
L 2 N or larger. One might ask whether a collection
weakly coupled chains behaves like a superfluid of th
particles. However, since the compressibility diverg
in the interesting regime [9], charge can be transfer
between chains without cost of energy, and the respo
to the flux of different chains does not add coheren
Thus the system does not show the Meissner effect [2
We should also note that the SU(2)h symmetry which
allows for the construction of eigenstates with ODLR
g
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FIG. 1. Ground state energy as a function of twist an
(a) for jtAAj ­ jtBBj ­ 1, tAB ­ 0, density n ­ 2y3, U ­ 0,
and ring lengthL ­ 12, (b) same as (a) withU . 4; (c) for
tAA ­ tBB ­ 21, tAB ­ 20.2, U ­ 0, n ­ 2y3.
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is broken in the presence of a flux. Thus theh-pairing
states do not necessarily give rise to superconduc
currents in the presence of an external flux. The phys
in the region withU , 24t, where nf ­ 0 [9–11] is
more obvious. In this case, there are alsoh-paired states
with ODLRO in the degenerate GS. However, the
states are static, and from Eq. (6)EsF", F#d ­ UNd for
all Fs. This demonstrates that the ODLRO of theh-
paired statesis not a sufficient condition for the existenc
of superconductivity.

The GS Drude weight and spin stiffness are

Dc ­
L
2

≠2EsF, Fd
≠F2

Ç
w­0

­
t
p

√
1 2 n
1 2 nf

!2

sinspnfd ,

Ds ­
L
2

≠2EgsF, 2Fd
≠F2

Ç
w­0

­
t
p

√
n" 2 n#

nf

!2

sinspnfd ,

(8)

where nf is a function ofUyt and n [9,11]. For half-
filling, Dc ­ 0, ;U. The result is not surprising for
jUj . 4t, where the system is a Mott insulator, but rath
unexpected forjUj , 4t, where the charge gap vanishe
The behavior of the Drude weight forn ! 1 is the same
as that of a system ofnf carriers with effective mass
diverging ass1 2 nfd2ys1 2 nd2.

The ground state is highly degenerate as a conseque
of the rich symmetry structure of Eq. (1) whenjtAAj 2

jtBBj ­ tAB ­ 0. In particular, for an open chain there is
local spin and pseudospin symmetry at each site [9]. Si
tAB ­ 0 is an accident rather than a generic feature, it
very important to discuss the effect of a finitetAB, particu-
larly taking into account that this term lifts the GS degene
acy. WhentAB fi 0, the sign oftAB or those oftAA andtBB

simultaneously, can be changed using symmetry proper
[15], but models with differenttAAtBB are not equivalent.
In the following, we consider the casetAA ­ tBB ­ 2t,
which interpolates between two exactly solvable cases:
one considered above and the Hubbard model. This c
preserves the SU(2) pseudospin symmetry whentAB fi 0
[15]. We have studied numericallyEsF" ­ F# ­ Fd for
finite systems with fixed densitiesn fi 1, ne, nd fi 0 at
tAB fi 0. An example is shown in Fig. 1(c). We find tha
a smalltAB gives rise to anEsFd with two well-defined
local energy minima which strongly suggests AFQ in t
thermodynamic limit [the fact that there is a small diffe
ence betweenEsF 1 pd andEsFd is a finite-size effect
[19]]. Study of the correlation exponentKr [9] confirms
the dominance of superconducting correlations at la
distances.

What is the origin of the superconducting correlation
Is it related with theh pairing? Note that the (nondegen
erate) GS fortAB ! 0 is exactly known in two cases. Fo
U . 24t cosspnd and U . 0, NeNb ­ 0 [9–11] and
the low energy physics of the model becomes equi
lent to that of a Hubbard model with interactionUH ­
t2Uyt2

AB ! `. In this limit Ogata and Shiba [20] have
shown that the GS wave function can be factorized in t
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parts: one describing the position and the other the spi
the Nf fermions. This GS wave function can be mapp
into the corresponding one forU , 0 and a magnetic field
high enough to ensureN"N# ­ 0 using the transformation
that interchanges spin and pseudospin [17]. It is nat
to expect that the effect of a smalltAB is to introduce anti-
ferromagnetic correlations between spins and pseudos
in the general case. This fact led us to propose anansatz
for the GS in the limittAB ! 0 consisting ofthree fac-
tors, describing the positions of fermions and bosons
the spin and pseudospin variables. The first two fac
are those of the GS Bethe ansatz solution of theU ­ 1`
Hubbard model. The last one is the GS of a Heisenb
model for the pseudospin variables, which is also the
of the large negative-U Hubbard model in a system wit
Nb sites and2Nd particles. We have computed the ove
lap of our ansatz with the exact GS obtained from ex
diagonalization in different chains (up toL ­ 12 sites),
and we found that it is equal tos1 2 a2t2

ABd1y2, with
a , 2 2 4, for 0 fi tAB , 0.1, confirming our conjec-
ture for tAB ! 0. It is easy to verify with our ansat
that in the thermodynamic limit, forL ! `, the pair
correlation functionCsld ­ kcy

i1l"c
y
i1l#ci#ci"l can be ex-

pressed in terms of the corresponding correlation func
of the largejUj attractive Hubbard modelCHsld for den-
sity sn 2 nfdys1 2 nfd as CHsld ­ s1 2 nfd fCHsl0dgav ,
where the averagel0 is centered aroundLs1 2 nfd. Thus
the superconducting properties of the system are es
tially those of the largeU attractive Hubbard model with
dilute superfluid density. The superconducting prop
ties of the model are not related with theh pairing.
For tAA ­ tBB, the generators of the total pseudospin
gebra areh0 ­

P
i s21dic

y
i"c

y
i#, h1 ­ sh2dy, and hz ­

s1y2d
P

i s1 2
P

s nisd. The h-pairing mechanism ap
pliesh2 to an eigenstate withh fi 0 to obtain eigenstate
with hz , h which possess ODLRO [8–11]. Howeve
since by construction, our ansatz for the GS hashz ­ h,
and the true (nondegenerate) ground state has the
quantum numbers, it cannot be the result of applyingh2

to any eigenstate. Exact diagonalization results show
this is also the case in 2D, even fortAB ­ 0 [15].

In summary, we have shown that at least in the
generalized Hubbard model (1) forjtAAj 2 jtBBj ­ tAB ­
0, the h pairing does not lead to superconductivity. T
possibility of constructing eigenstates with ODLRO usi
the SU(2) symmetry does not guarantee the existenc
superconducting currents giving rise to anomalous
quantization and Meissner effect. The ODLRO m
be analyzed in the presence of a finite magnetic
threading the ring. This fundamental fact is in the sp
of the proposals of Refs. [2–4]. We have also exami
the character of the metal-insulator transition near h
filling and we have presented strong evidence that
GS degeneracy is broken in favor of a GS with domin
superconducting correlations in 1D when a smalltAB is
turned on.
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