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Wall Tension and Heterogeneous Substrate
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The wall tension of a heterogeneous wall is considered within a semi-infinite planar Ising m
Using Monte Carlo simulation techniques, we have obtained the microscopic validity of Ca
law describing the wall tension of a heterogeneous substrate as the average of the wall te
corresponding to the pure components. [S0031-9007(96)00343-2]
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Wetting phenomena are very important in many tech
cal processes. It is quite remarkable that many predicti
or interpretations still refer to the well-known Young
equation established two centuries ago. Consider a
uid B, in coexistence with its vapor phaseA, put on top
of a solid wall W . The different tensions characterizin
the three pairs of media are denotedtAW , tBW , andtAB.
Young’s equation relates the contact angleu of a sessile
drop ofB on the top ofW

tAB cosu ­ tAW 2 tBW ; Dt . (1)

Numerous studies have been devoted to that equa
The microscopic validity of Eq. (1) has in particular be
established in [1,2]. Let us here stress that this equa
holds for perfectly pure and flat substratesW , which of
course never appear in nature.

The generalization of this equation to take into acco
heterogeneous substrates has been started by Cass
and by Wenzel [4] to treat the case of rough substra
A first attempt to reconsider the effect of roughness
been studied in detail in [5]. That is the reason why
here concentrate on the effect of chemical heterogenei
Consider thus a substrate constituted of two speciesW1

andW2. Two approaches may be developed: The first o
concerns the behavior of the contact angle of this ses
drop, and the second one is related to the wall tens
Dt. Let us start with the first case. By putting a drop
liquid on top of a heterogeneous substrate, we can obs
the appearance of two anglesua and ur , respectively,
advancing and receding angles. The difference betw
ua and ur is a dynamical effect which leads to the s
called hysteresis of contact angles [6,7].

The equilibrium properties of such a system are inst
contained in the wall tensionDt that we will study here.
For simplicity, let us restrict ourselves to ad ­ 2 system.
Assume also that the speciesW1 and W2 appear on top
of the wall with a concentrationf1 and f2 s f1 1 f2 ­
1d. Let us denoteDt1 and Dt2 the pure wall tensions
associated withW1 and W2, respectively. Cassie’s law
gives the prediction that

Dt12 ­ f1Dt1 1 f2Dt2 , (2)

where Dt12 is the wall tension of the heterogeneo
substrate 1-2. This equation simply states that the w
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tension has to be related to the average of the p
component quantities. However, for microscopic hete
geneities, the validity of Eq. (2) is certainly questionab
Starting from van der Waals theories and electrost
considerations, Israelachvili and Gee [8] suggest inst
averaging the wall tension to average the polarizabilit
dipole moments, or surface charges. This leads to a
equation of the form

Dt12 ­ f f1stAB 1 Dt1d2 1 f2stAB 1 Dt2d2g1y2

2 tAB .
This equation should then replace Cassie’s whene
the heterogeneities on the top of the substrate are
microscopic scale. It is far from obvious how to establ
the validity of that equation from an experimental po
of view since this requires very detailed knowledge
the properties of the substrate surface. Nevertheless
can analyze that problem within appropriate microsco
simulations. That is precisely the aim of this Letter.

Using Monte Carlo simulation techniques we w
indeed obtain the microscopic validity of Cassie’s la
Let us now introduce the model that we will consid
here. The two-dimensional Ising model is defined on
lattice Z 3 Z. To each lattice pointsi1, i2d we associate
a spin variablesi which may take two values11 and21
according to the presence of a molecule ati (11 if the site
i is occupied by a molecule and21 if the sitei is vacant).
The interaction energy of these spins is described by
Hamiltonian

Hssd ­ 2J
X
kijl

sisj , (3)

where J . 0 is the coupling between nearest-neighb
kijl spins. LetS ­ f2L, Lg 3 f2L, Lg be a finite square
in Z 3 Z and let us fix the value of the spins outsi
S to be si ­ 11 for i ” S. We restrict the sum in
Eq. (3) over all nearest-neighbor pairskijl which have
a nonempty intersection withS. The sum in Eq. (3) is
therefore well defined and will be denotedH1. Let Z1

be the partition function associated with this Hamiltonia
defined for the inverse temperatureb as

Z1 ­
X

s[S

expf2bH1ssdg .
© 1996 The American Physical Society
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The partition functionZ2 with 2 boundary conditions
si ­ 21, for i ” S, can be defined in a similar way.

In order to introduce a wall in the system, we co
sider the model on a semi-infinite latticeZ 3 Z1. To
particularize the wall on which the sessile drop w
be put, we add to the Hamiltonian a boundary m
netic field h, describing the properties of the wall. L
L ­ f2L, Lg 3 f0, 2Lg be a finite square inZ 3 Z and
W ­ hsi1, 0d; i1 [ f2L, Lgj be the wall. Let us fix the
value of the spins outsideL to be si ­ 11 for i ” L.
The interaction energy for this choice of boundary con
tions is described by the Hamiltonian

H1wssd ­ 2J
X

kijl[L

sisj 2 J
X

i[≠LnW

si 2 h
X

k[W

sk ,

where≠L is the border of the boxL. In a similar way we
can define the HamiltonianH2w for boundary conditions
si ­ 21 for i ” L. Using these two kinds of boundar
conditions, the wall tensionDt can be defined as

bDt ­ lim
L!`

2
1

2L 1 1
ln

Z1wsLd
Z2wsLd

, (4)

whereZ1w and Z2w are the partition functions assoc
ated with these HamiltoniansH1w andH2w, respectively.
This can be explicitly calculated and the analytical f
mula can be found in [10]. A summary of the know
rigorous result is given in [11]. Since by symmetryX

s[L

expf2bH2ws2sdg ­
X

s[L

expf2bH1wssdg ,

we easily get

Z2wsLd
Z1wsLd

­

P
s[L expf2bH2vssdgP
s[L expf2bH1vssdg

­

P
s[L expf2bH1wssdg exps22bh

P
k[W skdP

s[L expf2bH1wssdg

­

*
exp

√
22bh

X
i[W

si

!+
m

, (5)

where the averagek?lm has to be taken with respect to th
measure

mshsjd ­
expf2bH1wssdg

Z1w .

After this change of reference measure, the limit in Eq.
can be written as

bDt ­ lim
L!`

1
2L 1 1

ln

*
exp

√
22bh

X
i[W

si

!+
m

.

This equilibrium average can now be estimated by diff
ent techniques. Using cluster expansion [1] for our Is
model, one can show that in the limitb ! `, Cassie’s
law holds. For higher temperatures, we use Monte C
techniques based on Metropolis dynamics [12]. We p
form our simulations in a box of64 3 64 spins with a
-

l
-

i-

-

FIG. 1. Relaxation ofDt calculated during one simulation
for a purely homogeneous substrate withh ­ 0.45 andTkB ­
1.40. Each point represents an average over 100 MCS.

coupling constantJ ­ 1. Beginning from a random ini-
tial configuration of spins the system evolves accord
to the Metropolis dynamics towards the equilibrium. A
shown in Fig. 1, after 10 000 Monte Carlo steps (MC
our system already presents a plateau. CalculatingDt

in that time region we obtain a good agreement with t
analytical results, which confirms that the system
close equilibrium.

For a given temperatureTkB ­ 1.4, our numerical
simulations for a homogeneous wall are plotted in Fig
)

-

o
r-

FIG. 2. The analytical results forDt corresponding to a
homogeneous substrate and two temperatures,TkB ­ 1.4 (solid
line) and TkB ­ 1.8 (dashed line); the simulation results a
obtained as the average over 50 independent runs and
presented with their standard deviation error bars.
4389
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FIG. 3. Dt12 as a function of the patches sizen for a given concentrationf2 ­ 0.25. In (a), the patches of impurities of siz
n are regularly distributed, the data points are obtained as the average over 50 independent runs and are presented w
bar corresponding to three standard deviations. In (b), the patches of impurities of sizen are randomly distributed, the data poin
are the average of wall tension over 100 independent random substrates. The dashed line is Cassie’s law prediction
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and compared to the analytical result. The time avera
and their associated statistical fluctuations are comp
between 9000 and 10 000 MCS. The difference is
than 3% away from the exact result. To take into acco
the importance of the finite size effects, we have a
considered a system of300 3 300 sites for TkB ­ 1.4.
The corresponding results are almost identical to
64 3 64 ones.

Let us now introduce our two species 1 and 2 wit
the wall. This can easily be done by considering t
values for the couplingh: h1 with the concentrationf1
and h2 with the concentrationf2 s f1 1 f2 ­ 1d. These
couplings refer to the attraction energy between
substrate and the molecule of liquid. The strategy
we have chosen here is to first consider a given subs
with f1L sites with couplingh1 and f2L sites with h2.
For this frozen disorder, we have studiedbDt12 which is
equal [cf. Eq. (5)] to the limit

bDt12 ­ lim
L!`

ln
1
L

*
exp

√
22b

X
i[W

hisi

!+
n

,

where now the averagek?ln has to be taken with respe
to the Gibbs measure

nshsjd ­
1

Z
1w
h

exp

"
Jb

√ X
kijl[L

sisj 1
X

i[≠LnW

si

!

1 b
X

k[W

hksk

#
,

where hi ­ h1 or h2, depending on the positioni, and
4390
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FIG. 4. The histogram of the distribution of the size
patches for random distribution of the fixed number of sing
sites in (a) and fixed number of groups of four sites in (b).
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FIG. 5. Dt12 as a function of the concentrationf2 of the
regularly distributed sites with coupling constantsh1 ­ 0.05
andh2 ­ 0.45. Data points correspond to the average over
independent runs; the error bars correspond to three stan
deviations. The dashed line shows Cassie’s prediction w
the dotted line gives the Israelachvili-Gee law whereDtAB has
been computed in Ref. [9].

Using ergodicity and detailed balance conditions,
asymptotic time behavior of that quantity can be identifi
to the equilibrium averageDt12. This technique allows
thus a detailed analysis ofDt12 as a function of the
concentration of sites with coupling constantsh1 and
h2. Our simulation has shown that the quantityDt12

does not depend on the details of the geometry.
fixed concentrationf2 ­ 0.25 we give in Fig. 3 Dt12

as a function of the sizen of regular patches ofn sites
covering the substrate. For the same concentrationf2 ­
0.25, we also give in Fig. 3 the wall tensionDt12 for a
random distribution of the sites of heterogeneities. T
Dt12 is in fact the average over 100 independent rand
substrates with fixedf2 ­ 0.25. To characterize the
associated distribution of substrates, we give in Fig. 4
histogram of the size of the patches of the heterogenei
By 1, we measure isolated heterogeneities, by2, 3, 4, . . .
patches of consecutive impurities. This independence
Dt12 with respect to the substrate geometry, in ter
of patches and of random distribution of heterogeneit
allows thus a detailed analysis ofDt12 as a function of
0
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the concentration of sites with couplingh1. The results
for the given temperatureTkB ­ 1.40 are given in Fig. 5.
These results clearly indicate the validity of Cassie’s la

In conclusion, we have shown how ideal experime
performed on computers can be helpful in getting a mic
scopic understanding of the rich variety of phenomena
pearing in the vicinity of surfaces. There is no doubt th
our validity of Cassie’s law via Monte Carlo techniqu
will usefully be complemented by other techniques, su
as molecular dynamics.
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