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Wall Tension and Heterogeneous Substrate
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The wall tension of a heterogeneous wall is considered within a semi-infinite planar Ising model.
Using Monte Carlo simulation techniques, we have obtained the microscopic validity of Cassie’s
law describing the wall tension of a heterogeneous substrate as the average of the wall tensions
corresponding to the pure components. [S0031-9007(96)00343-2]

PACS numbers: 68.45.Gd

Wetting phenomena are very important in many technitension has to be related to the average of the pure
cal processes. Itis quite remarkable that many predictionsomponent quantities. However, for microscopic hetero-
or interpretations still refer to the well-known Young’'s geneities, the validity of Eq. (2) is certainly questionable.
equation established two centuries ago. Consider a ligstarting from van der Waals theories and electrostatic
uid B, in coexistence with its vapor phage put on top considerations, Israelachvili and Gee [8] suggest instead
of a solid wallW. The different tensions characterizing averaging the wall tension to average the polarizabilities,
the three pairs of media are denotegdy, 7pw, and 74p. dipole moments, or surface charges. This leads to a new
Young’s equation relates the contact anglef a sessile equation of the form

drop of B on the top ofW Aty = [fi(Tap + A7) + fa(rap + ATp)*]?

TABCOSQZTAW—TBWEAT. (1) — Tup.

Numerous studies have been devoted to that equatiofhis equation should then replace Cassie’s whenever
The microscopic validity of Eq. (1) has in particular beenthe heterogeneities on the top of the substrate are of
established in [1,2]. Let us here stress that this equatiomicroscopic scale. It is far from obvious how to establish
holds for perfectly pure and flat substratés which of  the validity of that equation from an experimental point
course never appear in nature. of view since this requires very detailed knowledge of

The generalization of this equation to take into accounthe properties of the substrate surface. Nevertheless, we
heterogeneous substrates has been started by Cassie ¢ah analyze that problem within appropriate microscopic
and by Wenzel [4] to treat the case of rough substratesimulations. That is precisely the aim of this Letter.

A first attempt to reconsider the effect of roughness has Using Monte Carlo simulation techniques we will
been studied in detail in [5]. That is the reason why weindeed obtain the microscopic validity of Cassie’s law.
here concentrate on the effect of chemical heterogeneitieset us now introduce the model that we will consider
Consider thus a substrate constituted of two spetigs here. The two-dimensional Ising model is defined on the
andW,. Two approaches may be developed: The first on¢attice Z X Z. To each lattice pointi;,i,) we associate
concerns the behavior of the contact angle of this sessilg spin variabler; which may take two values 1 and—1
drop, and the second one is related to the wall tensioaccording to the presence of a moleculé @t 1 if the site
Ar. Let us start with the first case. By putting a drop of i is occupied by a molecule anell if the sitei is vacant).
liquid on top of a heterogeneous substrate, we can observithe interaction energy of these spins is described by the
the appearance of two anglés and é,, respectively, Hamiltonian

advancing and receding angles. The difference between

6, and 6, is a dynamical effect which leads to the so- H(o) = —Jztfﬂfj, €))
called hysteresis of contact angles [6,7]. (@)

The equilibrium properties of such a system are insteahere J > 0 is the coupling between nearest-neighbor
contained in the wall tensioA r that we will study here. (ij) spins. LetX =[—L,L] X [—L, L] be afinite square
For simplicity, let us restrict ourselves tada= 2 system. in Z X Z and let us fix the value of the spins outside
Assume also that the speci@ and W, appear on top 2 to be o; = +1 for i &€ 3. We restrict the sum in
of the wall with a concentratiorf, and f> (f1 + f>» =  EQ. (3) over all nearest-neighbor paif&) which have
1). Let us denoteAr; and Ar, the pure wall tensions a nonempty intersection witk. The sum in Eq. (3) is
associated with¥, and W,, respectively. Cassie’s law therefore well defined and will be denotéti”. Let Z™
gives the prediction that be the partition function associated with this Hamiltonian,

At = LT + o7, @) defined for the inverse temperatygeas

where A7y, is the wall tension of the heterogeneous VARES Z exgd—BH " (0)].
substrate 1-2. This equation simply states that the wall ocES
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The partition functionZ~ with — boundary conditions 1 T T T T T T T T
o; = —1,fori & %, can be defined in a similar way.

In order to introduce a wall in the system, we con-
sider the model on a semi-infinite lattice@ X Z*. To 08 [
particularize the wall on which the sessile drop will
be put, we add to the Hamiltonian a boundary mag- .
netic field 2, describing the properties of the wall. Let 06F 4+t .
A =[-L,L] X [0,2L] be a finite square i X Z and +
W ={(i1,0);i;1 € [-L,L]} be the wall. Let us fix the *
value of the spins outsidA to beo; = +1 for i & A.
The interaction energy for this choice of boundary condi-
tions is described by the Hamiltonian *

H™ (o) = —J Z gio; —J Z U'i_hZUk’

(ij)EA iEIA\W kEW

04 F*+ g

£ [K]

+
0.2 n B

whered A is the border of the boA. In a similar way we O T s e 0
can define the Hamiltonia ~* for boundary conditions MCS

Ti = ._1 for i & A. Usmg these two k|r_1ds of boundary FIG. 1. Relaxation ofAr calculated during one simulation
conditions, the wall tensioAr can be defined as for a purely homogeneous substrate with= 0.45 and Tk —
+w 1.40. Each point represents an average over 100 MCS.
BA lim ! In 27(A) 4
T = - )
L—» 2L+ 1  Z7v(A)
where Z*" and Z~" are the partition functions associ- coupling constanf = 1. Beginning from a random ini-
ated with these Hamiltoniarf$ ™ andH ~", respectively. tial configuration of spins the system evolves according
This can be explicitly calculated and the analytical for-to the Metropolis dynamics towards the equilibrium. As
mula can be found in [10]. A summary of the known shown in Fig. 1, after 10000 Monte Carlo steps (MCS)

rigorous result is given in [11]. Since by symmetry our system already presents a plateau. Calculafimg
in that time region we obtain a good agreement with the
Z exd—BH " (—o)] = Z exd—BH ™ (0)], analytical results, which confirms that the system is
cEA cEA close equilibrium.
we easily get For a given temperatur@kpz = 1.4, our numerical

3 B simulations for a homogeneous wall are plotted in Fig. 2
Z7'A) _ 2senexd—BH “(0)]

ZH(A)  Y,erexd—BH(a)]

_ Seerd—BH"(0)]exp~2Bh S iew %) ’ ——
> serexd—BH ™ (0)]
iew m {/‘/’/’
where the average), has to be taken with respect to the 06 - } ]
measure £
_ exil=pH " (0)] 5 ¥
nw({o}) = Z+w . de o4r //, i
After this change of reference measure, the limitin Eq. (4)
can be written as wl |
. 1
pae = gl 1 3 0)), |
0 L I 1 L L
This equilibrium average can now be estimated by differ- 0 0.1 0.2 0.3 0.4 05

. . - . h
ent techniques. Using cluster expansion [1] for our Ising

model, one can show that in the limit — =, Cassie’s FIG. 2. The analytical results foAr corresponding to a

- homogeneous substrate and two temperatiies= 1.4 (solid
law holds. For higher temperatures, we use Monte Carl‘ﬂne) and Tkp = 1.8 (dashed line); the simulation results are

techniques based on Metropolis dynamics [12]. We perpptained as the average over 50 independent runs and are
form our simulations in a box 064 X 64 spins with a presented with their standard deviation error bars.
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FIG. 3. Aty as a function of the patches sizefor a given concentratiorf, = 0.25. In (a), the patches of impurities of size

n are regularly distributed, the data points are obtained as the average over 50 independent runs and are presented with an error
bar corresponding to three standard deviations. In (b), the patches of impurities afaieeandomly distributed, the data points

are the average of wall tension over 100 independent random substrates. The dashed line is Cassie’s law prediction while the
dash-dotted line has to be associated with Israelachv

and compared to the analytical result. The time averageg, " is the partition function defined as
and their associated statistical fluctuations are computed

between 9000 and 10000 MCS. The difference is less
than 3% away from the exact result. To take into account Zh+w = Z ex J/B( Z oiog; + Z o-,-)
the importance of the finite size effects, we have also oEA (iyeA i€EIA\W

considered a system @00 X 300 sites forTkg = 1.4.

The corresponding results are almost identical to the
64 X 64 ones. * 'Bk; hkak:|'

Let us now introduce our two species 1 and 2 within
the wall. This can easily be done by considering two 1000 —e—— 200 —1——
values for the coupling:: #; with the concentratiory, ] (a) ] ®
and i, with the concentratiorf, (f; + f» = 1). These 900 - 1 180 - 7
couplings refer to the attraction energy between the s00 | w60 L 1
substrate and the molecule of liquid. The strategy that
we have chosen here is to first consider a given substrate ;5 L i 140 b ]
with fiL sites with couplingh; and f,L sites with h,.
For this frozen disorder, we have studigd 7, which is 600 |- - 120 | .

equal [cf. Eqg. (5)] to the limit

| 500 - b 100 | B
,BATU = Lll_rpxln z<eX[<—2B Z hi0i>>u , 400 L i o | ]

ieEw
where now the average), has to be taken with respect 300 L _ 60 | ]
to the Gibbs measure
200 1 40 B
1
v({o}) = TweXP[J,B( > oo+ Y 0'1‘) 100 [ 1 20 b .
Z (iJ)EA i€aA\W

0(J 1 2 3 4 5 6 0 4 8 12

size of patches size of patches
+ B Z heoy |, . o :

rew FIG. 4. The histogram of the distribution of the size of

patches for random distribution of the fixed number of single
where h; = hy or hy, depending on the positioh and sites in (a) and fixed number of groups of four sites in (b).
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0.55 T T T T — the concentration of sites with coupliig. The results
for the given temperaturgkz = 1.40 are given in Fig. 5.
o5 T These results clearly indicate the validity of Cassie’s law.
045 - }' i In conclusion, we have shown how ideal experiments
i performed on computers can be helpful in getting a micro-
04 - scopic understanding of the rich variety of phenomena ap-
Py pearing in the vicinity of surfaces. There is no doubt that
035 |- Ry 1 our validity of Cassie’s law via Monte Carlo techniques

will usefully be complemented by other techniques, such
as molecular dynamics.
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