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Tricritical and Critical End-Point Phenomena under Random Bonds
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The effect of bond randomness on tricritical and critical end-point phenomena is studi
renormalization-group theory. In three dimensions, the pure-system tricritical point is replace
line segment of second-order transitions dominated by randomness and bounded by a multicritic
and a random-bond tricritical point, which reaches zero temperature at threshold randomnes
topology indicates a violation of the empirical universality principle. The random-bond tricritical
renormalizes onto the fixed distribution of random-field Ising criticality. [S0031-9007(96)00332-

PACS numbers: 64.60.Kw, 05.70.Jk, 75.10.Nr, 75.40.Cx
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Although originally thought to play a rather innocuo
role, quenched bond randomness can drastically a
first-order phase transitions. Thus, symmetry-break
first-order phase transitions are converted to second-o
phase transitions by infinitesimal bond randomness
spatial dimensionalityd # 2 and by bond randomnes
beyond a threshold strength ford . 2, as indicated by
general arguments [1–3] which are supported, ford # 2,
by rigorous mathematical work [4] and renormalizatio
group calculations [5]. We present here renormalizat
group calculations ford ­ 3, on the effects of quenche
bond randomness on a system that exhibits first-o
phase transitions within tricritical and critical end-po
phase diagrams. We find that new second-order p
transitions are introduced, in violation of the empiric
universality principle which states that, along the seco
order phase boundary between any given two pha
critical exponents should not change. Furthermore,
effect of quenched bond randomness on tricritical poi
a long-standing question mark, receives a surprising
simple answer below.

A microscopic model that exhibits first-order pha
transitions within tricritical and critical end-point pha
diagrams is the Blume-Emery-Griffiths model [6,7], w
Hamiltonian

2bH ­
X
kijl

Jsisj 1
X
kijl

Ks2
i s2

j 2
X

i

Ds2
i ,

where si ­ 0, 61 at each sitei of a lattice andkijl
indicates summation over all nearest-neighbor pairs
sites. This Hamiltonian can be rewritten asX

kijl
fJsisj 1 Ks2

i s2
j 1 Dss2

i 1 s2
j d 1 Dyss2

i 2 s2
j dg ,

where j is, on the cubic lattice, on the increasi
coordinate side ofi. The ordered phases of this mod
are up magnetized,ksil . 0, and down magnetized
ksil , 0. The symmetry that is broken is global sp
reversal symmetry. Since each of the terms in
Hamiltonian above is invariant under this symmet
the corresponding coupling constants,J, K , D, Dy, are
bond strengths. Bond randomness obtains when the
0031-9007y96y76(23)y4380(4)$10.00
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strengths vary randomly across the system, governed b
quenched probability distributionPsJij , Kij , Dij, D

y
ijd.

The renormalization-group solution of the quenche
random system is via the recursion of the probabili
distribution [8–10], given by

P0s K0
i0j0d ­

Z "Y
ij

dKijPsKijd

#
dsssK0

i0j0 2 RshKijjdddd ,

(1)

where Kij ; sJij, Kij , Dij, D
y
ijd, the primes refer to the

rescaled system,RshKijjd is a local recursion relation
for the bond strengths, and the positional indexij runs
through the localities of the unrenormalized system th
effectively influence the renormalized interactions at t
renormalized localityi0j0. A basic premise is that the crux
of the quenched randomness problem lies in the convo
tion given in Eq. (1), i.e., that the novelties brought by th
quenched randomness derive from the proper treatmen
the functional integration in the equation, rather than t
precise form of the local recursion relation. The integr
tion complicates, after a few rescalings, even the simpl
starting distribution. Thus, the level of approximation
defined by the level of detail of the form into which th
renormalized distribution is forced.

The local recursion relation was obtained using t
Migdal-Kadanoff procedure [11,12] ind ­ 3 dimensions
with a length rescaling factor ofb ­ 2. First, “bond mov-
ing” is performed, combining groups ofbd21 interactions:

J̃ij ­ Ji1j1 1 Ji2j2 1 · · · , (2)

and similarly for the other coupling constants. Secon
a decimation is performed, yielding the renormalize
interactions:

J 0
i0j0 ­ lnsR3yR4dy2 , D0

i0j0 ­ lnsR1R2yR2
0dy2 ,

K 0
i0j0 ­ lnsR2

0R3R4yR2
1R2

2 dy2 , D
y0

i0j0 ­ lnsR1yR2dy2 ,
(3)

where
© 1996 The American Physical Society
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R0 ­ 2 expsD̃ij 2 D̃
y
ij 1 D̃jk 1 D̃

y
jkd 1 1 ,

R1 ­ expsJ̃ij 1 K̃ij 1 2D̃ij 1 D̃jk 1 D̃
y
jkd

1 exps2J̃ij 1 K̃ij 1 2D̃ij 1 D̃jk 1 D̃
y
jkd

1 expsD̃ij 1 D̃
y
ijd ,

R2 ­ expsD̃ij 2 D̃
y
ij 1 J̃jk 1 K̃jk 1 2D̃jkd

1 expsD̃ij 2 D̃
y
ij 2 J̃jk 1 K̃jk 1 2D̃jkd

1 expsD̃jk 2 D̃
y
jkd ,

R3 ­ expsJ̃ij 1 K̃ij 1 2D̃ij 1 J̃jk 1 K̃jk 1 2D̃jkd
1 exps2J̃ij 1 K̃ij 1 2D̃ij 2 J̃jk 1 K̃jk 1 2D̃jkd
1 expsD̃ij 1 D̃

y
ij 1 D̃jk 2 D̃

y
jkd ,

R4 ­ expsJ̃ij 1 K̃ij 1 2D̃ij 2 J̃jk 1 K̃jk 1 2D̃jkd
1 exps2J̃ij 1 K̃ij 1 2D̃ij 1 J̃jk 1 K̃jk 1 2D̃jkd
1 expsD̃ij 1 D̃

y
ij 1 D̃jk 2 D̃

y
jkd .

Equations (2) and (3) are approximate recursion relat
for the cubic lattice and, simultaneously, exact recurs
relations for a three-dimensional hierarchical lattice [13

As mentioned above, the crux of our calculati
consists in the evaluation of the probability conv
lution in Eq. (1), which we now detail. The initia
quenched probability distribution has a symmetry,PsJij ,

Kij , Dij , D
y
ijd ­ PsJij , Kij, Dij , 2D

y
ijd, which is preserved

under the renormalization-group transformation and wh
is calculationally exploited in the steps described belo
The probability distributionPsJij , Kij , Dij, D

y
ijd is repre-

sented by histograms. Each histogram is character
by five quantities,Jij, Kij , Dij, D

y
ij and the associate

probability p. Our calculation consists of the followin
steps: (1) The histograms are placed on a grid in the s
of interactionsJij, Kij , Dij, D

y
ij. All histograms that fall

within the same grid cell are combined in such a way
to preserve the averages and standard deviations o
interactions. The histograms that fall outside the grid, r
resenting a very small probability, are similarly combin
into a single histogram. (2) Two distributions are conv
luted as in Eq. (1) withRsKi1j1 Ki2j2 d ­ Ki1j1 1 Ki2j2 ,
regenerating the original number of histograms.
The previous two steps are performedd 2 1 times,
which completes the implementation of bond movin
Eq. (2), for quenched random interactions. (4) T
two steps are again repeated, but this time withR as
given by the decimation of Eq. (3). This completes
entire renormalization-group transformation, yielding t
histograms for the renormalized quenched probab
distribution P0sJ 0

i0j0 , K 0
i0j0 , D0

i0j0 , D
y0
i0j0d. Most of our cal-

culations have used up to 13 530 independentsDy
ij $ 0d

histograms, with corresponding renormalization-gro
flows of 67 650 quantities. Several more detailed c
culations, involving the renormalization-group flows
3 921 890 quantities, confirmed the numerical accurac
our procedure.
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The thermodynamic densities are obtained within t
renormalization-group calculation [9]. Using the cha
rule,

n ­
1
N

X
kijl

≠ lnZ
≠Kij

­
1
N

X
ki0j0l

≠ lnZ

≠K0
i0j0

?

ki0j0lX
kijl

≠K0
i0j0

≠Kij
,

whereN is the number of nearest-neighbor pairs andZ
is the partition function. The last sum is over thebd

unrenormalized pairskijl contributing to the renormalized
pair ki0j0l. This sum is replaced, as an approximation,
its average value,

ki0j0lX
kijl

≠K0

i0j0

≠Kij
>

Z 24ki0j0lY
kijl

dKijPsKijd

35 ki0j0lX
kijl

≠K0

i0j0

≠Kij
; ≠K0

≠K ,

which yields the simple density recursion relationn >
b2dn0 ? ≠K0y≠K. Repeated applications of this recursio
relation connect the thermodynamic densities of a traj
tory initial point and phase-sink fixed point, permitting th
evaluation of the former.

We find that, in d ­ 2, in quenched random-bon
systems with the initial distribution

PsKijd ­ dsKij 2 KddsDij 2 DddsDy
ijd

3 fdsJij 2 J 2 sd 1 dsJij 2 J 1 sdgy2 , (4)

all symmetry-breaking first-order phase transitio
are converted to second-order, and all non-symme
breaking first-order phase transitions are elimina
[1,2,5]. These results are illustrated withs ­ Jy4 in
Fig. 1, for systems that have tricritical (e.g., forKyJ ­ 0)
and critical end-point (e.g., forKyJ ­ 4) phase diagrams
before the introduction of bond randomness. We ha
also verified that the phase boundaries for both cases
converted to second order down to zero temperature w
randomness as small ass ­ Jy100. Under the increased
accuracy of our present calculations, the reentrance s
in preliminary (done with only 8 independent histogram
as opposed to 13 530 or more here) calculations [5
eliminated.

We find qualitatively different behavior ind ­ 3. We
first discuss our results forKyJ ­ 0 [Figs. 2(a)–2(c)],
for which the pure (nonrandom) system has a tricritic
phase diagram. Upon introduction of quenched bond r
domness, the pure-system tricritical point is replaced
a line segment of second-order phase transitions do
nated by randomness, that is renormalizing to a fix
distribution with nonzero widths. This line segment
bounded by a multicritical point and a random-bond t
critical point, which are separately dominated by ra
domness. The fixed distributions are characterized
Table I in terms of their averages and standard deviatio
J ­

R
dKijPsKijdJij and

sJ ­

"Z
dKij PsKijd sJij 2 J d2

#1y2

, (5)

and similarly for the other coupling constants. Thus,
4381
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FIG. 1. In d ­ 2, the effect of bond randomness on (a) t
critical and (b) critical end-point phase diagrams. The unren
malized system has the quenched random-bond distributio
Eq. (4) with s ­ Jy4. The solid circles represent the pha
boundary points, which are all second order, of the rand
bond system. For reference, the phase diagrams of the
random systems are drawn with the undotted lines, show
coexistence boundaries (dashed) of first-order phase transit

one end of the new segment, the multicritical point s
arates two different lines of second-order phase tra
tions, each with its own fixed point of fixed distributio
reached under repeated rescalings. Accordingly, the p
4382
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transition points of each line have the same critical
ponents, which differ between the two lines, in violatio
of the empirical universality principle [14]. At the othe
end of the new segment, the random-bond tricritical po
separates this second-order line segment and the co
tence region of a first-order phase transition. As seen
Figs. 2(a) and 2(b), the coexistence boundaries drop v
sharply to the tricritical point. Although this behavior a
pears discontinuous in the figures, in reality it correspo
to an extremely small, but still positive tricritical expo
nentbu ­ 0.020. This is ascertained because we find th
the fixed distribution of the random-bond tricritical poi
(Fig. 3) is, in fact, the fixed distribution of the random
field Ising criticality [10], with the identifications

Iij ­ sJij 1 Kijdy4, Hij ­ sJij 1 Kijdy2 1 Dij ,

H
y
ij ­ D

y
ij , Gij ­ sJij 1 Kijdy4 1 Dij , (6)

valid at Jij ! `, referring to the random-field Ising
HamiltonianX
kijl

fIijsisj 1 Hijssi 1 sjdy2 1 H
y
ijssi 2 sjdy2 1 Gijg ,

wheresi ­ 61 at each sitei.
Phase diagrams qualitatively similar to Figs. 2(

and 2(b) are obtained with quenched randomn
in J [e.g., Eq. (4)] that does not include negativ
viz. antiferromagnetic, values. With this restrictio
randomness inJ cannot be made strong enough
eliminate all first-order transitions. However, quench
bond randomness, without the calculational complicat
of frustration, can be studied with the initial distributio
lude
to (f )], of
ifferent
iolation
undotted
FIG. 2. In d ­ 3, the effect of bond randomness on (a)–(c) tricritical,KyJ ­ 0, and (d)–(f ) critical end-point,KyJ ­ 4, phase
diagrams. The unrenormalized system has the quenched random-bond distribution of Eq. (7) with (a)syJ ­ 0.2, (b) syJ ­ 0.527,
(c) syJ ­ 1, (d) syJ ­ 0.13, (e) syJ ­ 2, (f ) syJ ­ 4. The solid circles represent the phase boundary points, which inc
second-order transitions and coexistence boundaries [which recede as randomness is increased from (a) to (c) or from (d)
the random-bond system. In (a)–(c) and (e) and (f ), the joining, at a multicritical point, of two second-order lines (having d
critical properties), in the absence of any other phase-transition line going through the multicritical point, constitutes the v
of the empirical universality principle. For reference, the phase diagrams of the nonrandom systems are drawn with the
lines, showing coexistence boundaries (dashed) of first-order phase transitions.
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TABLE I. Averages and standard deviations [see Eq. (
at fixed distributions for the new second-order segmentsNpd,
the multicritical point sMpd, and the random-bond tricritica
point sRpd

J, K , D, D
y sJ , sK , sD , sDy

Np `, 20.355 2 J , 0.176, 0 1.250J , 21.250K , `, `
Mp 0.183, 20.028, 0.026, 0 0.155, 0.041, `, `

Rp `, 0.418J , 0.709J , 0 0.297J , 1.211K , 1.011D, 0.512D

PsKijd ­ dsJij 2 JddsKij 2 KdfdsDij 2 D 2 sd
3 dsDy

ijd 1 dsDij 2 D 1 sddsDy
ijd 1 dsDij 2 Dd

3 dsDy
ij 2 sd 1 dsDij 2 DddsDy

ij 1 sdgy4 . (7)

Recall that the symmetry that is broken is global sp
reversal symmetry and, since each of the terms in
Hamiltonian is invariant under this symmetry, each of
corresponding coupling constants,J, K , D, or Dy, is a
bond strength. Thus, Fig. 2(c) shows that, with suffici
amount of quenched bond randomness, the first-o
phase transition is entirely eliminated via the rando
bond tricritical point reaching zero temperature.

Figures 2(d)–2(f ) show our results forKyJ ­ 4, for
which the pure system has a critical end-point ph
diagram. Forsmall amounts of bond randomness,
-
is

iti-

s;

s,
.

w,
.
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FIG. 3. In d ­ 3, the random-bond tricritical fixed distribu
tion. With the associations of Eq. (6), this fixed distribution
equivalent to the fixed distribution of random-field Ising cr
cality [10].
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critical end-point phase diagram persists, with the isola
critical point lowered in temperature and transformed t
random-field Ising critical point [Fig. 2(d)]. This can b
seen from the very precipitous behavior of the coexiste
boundary, correspond to a very small but positive criti
exponentsb ­ 0.020 [10,15], equal to the tricriticalbu

above. As bond randomness is increased, the rand
bond tricritical phase diagram [Fig. 2(e)] and the fu
second-order phase diagram [Fig. 2(f )] are obtain
These phase diagrams have been discussed above.

An experimental verification of this violation of unive
sality is of course called for. A prime candidate for th
study is the onset of superfluidity in helium mixtures im
mersed in aerogel [16,17].

This research was supported by the U.S. Departmen
Energy under Grant No. DE-FG02-92ER45473.

[1] A. N. Berker, J. Appl. Phys.70, 5941 (1991).
[2] A. N. Berker, Physica (Amsterdam)194A, 72 (1993).
[3] A. N. Berker and A. Falicov, Tr. J. Phys.18, 347 (1994).
[4] J. Wehr and M. Aizenman, Phys. Rev. Lett.62, 2503

(1989).
[5] K. Hui and A. N. Berker, Phys. Rev. Lett.62, 2507 (1989);

63, 2433(E) (1989).
[6] M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev.

4, 1071 (1971).
[7] For experimental applications see [6] for helium mixture

J. Lajzerowicz and J. Sivardière, Phys. Rev. A11, 2079
(1975); J. Sivardière and J. Lajzerowicz,ibid. 11, 2090
(1975); 11, 2101 (1975), for solid-liquid-gas system
multicomponent fluid and liquid crystal mixtures; M
Schick and W.-H. Shih, Phys. Rev. B34, 1797 (1986),
for microemulsions; and K. E. Newman and J. D. Do
Phys. Rev. B27, 7495 (1983), for semiconductor alloys

[8] D. Andelman and A. N. Berker, Phys. Rev. B29, 2630
(1984).

[9] S. R. McKay and A. N. Berker, J. Appl. Phys.64, 5785
(1988).

[10] A. Falicov, A. N. Berker, and S. R. McKay, Phys. Rev.
51, 8266 (1995).

[11] A. A. Migdal, Zh. Eksp. Teor. Fiz69, 1457 (1975) [Sov.
Phys. JETP42, 743 (1976)].

[12] L. P. Kadanoff, Ann. Phys. (N.Y.)100, 359 (1976).
[13] A. N. Berker and S. Ostlund, J. Phys. C12, 4961 (1979).
[14] This universality violation was also seen independen

in M. Kardar, A. L. Stella, G. Sartoni, and B. Derrid
Phys. Rev. E52, R1269 (1995). In this work, it wa
discovered that random-bondq-state Potts models hav
q-independent critical behavior dominated by strong r
domness, distinct from theirq-dependent critical behavio
dominated by weak randomness found in [8].

[15] M. S. Cao and J. Machta, Phys. Rev. B48, 3177 (1993).
[16] S. B. Kim, J. Ma, and M. H. W. Chan, Phys. Rev. Lett.71,

2268 (1993).
[17] A. Falicov and A. N. Berker, Phys. Rev. Lett.74, 426

(1995). In this paper, a phase diagram, qualitativ
different from the ones here, is induced bycorrelated
bond randomness.
4383


