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Tricritical and Critical End-Point Phenomena under Random Bonds
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The effect of bond randomness on tricritical and critical end-point phenomena is studied by
renormalization-group theory. In three dimensions, the pure-system tricritical point is replaced by a
line segment of second-order transitions dominated by randomness and bounded by a multicritical point
and a random-bond tricritical point, which reaches zero temperature at threshold randomness. This
topology indicates a violation of the empirical universality principle. The random-bond tricritical point
renormalizes onto the fixed distribution of random-field Ising criticality. [S0031-9007(96)00332-8]

PACS numbers: 64.60.Kw, 05.70.Jk, 75.10.Nr, 75.40.Cx

Although originally thought to play a rather innocuous strengths vary randomly across the system, governed by a
role, quenched bond randomness can drastically affeefuenched probability distributioﬁ(]ii’Kl-]-,Di]-’DiTj)_
first-order phase transitions. Thus, symmetry-breaking The renormalization-group solution of the quenched
first-order phase transitions are converted to second-ordésindom system is via the recursion of the probability
phase transitions by infinitesimal bond randomness fogistribution [8—10], given by
spatial dimensionalityd = 2 and by bond randomness
beyond a threshold strength far> 2, as indicated by
general arguments [1—-3] which are supported,dfos 2, Pl(K?’J’) - [|:l_[ dKi.fP(Ki.i):|5(K§ﬁi' — RAKy}),
by rigorous mathematical work [4] and renormalization- Y 1)
group calculations [5]. We present here renormalization-

group calculations forl = 3, on the effects (')f'que'nched where K;; = (Jij,Kij,Dij,D;rj), the primes refer to the
bond randomness on a system that exhibits first-ordefescaled "systemR({K;;}) is a local recursion relation
phase transitions within tricritical and critical end-point f5; the bond strengths, and the positional indgxruns
phase diagrams. We find that new second-order phasgrough the localities of the unrenormalized system that
transitions are introduced, in violation of the empirical effectively influence the renormalized interactions at the
universality principle which states that, a_long the secondyenormalized locality’j'. A basic premise is that the crux
order phase boundary between any given two phasegt the quenched randomness problem lies in the convolu-
critical exponents should not change. Fu_rth_e.rmore,. theon given in Eq. (1), i.e., that the novelties brought by the
effect of quenched bond randomness on tricritical pointsyenched randomness derive from the proper treatment of
a long-standing question mark, receives a surprising anghe functional integration in the equation, rather than the
S|mple.answer below. o precise form of the local recursion relation. The integra-
A microscopic model that exhibits first-order phaseion complicates, after a few rescalings, even the simplest
transitions within tricritical and critical end-point phase starting distribution. Thus, the level of approximation is
diagrams is the Blume-Emery-Griffiths model [6,7], with gefined by the level of detail of the form into which the

Hamiltonian renormalized distribution is forced.
BH =S Jsis; + S K252 — S As?, _The local recursion relation was obtamfed using the
p Z 535 Z 5% Zl: S Migdal-Kadanoff procedure [11,12] id = 3 dimensions

(i) (i)
where s; = 0, =1 at each sitei of a lattice and(ij)
indicates summation over all nearest-neighbor pairs o
sites. This Hamiltonian can be rewritten as 7 SR
1y 11 12)2

with a length rescaling factor @f = 2. First, “bond mov-
ipg" is performed, combining groups &f ! interactions:

" (2)

and similarly for the other coupling constants. Second,
a decimation is performed, yielding the renormalized
interactions:

Z[Jsisj + Ksizsjz- + D(s? + s]2) + D1L(si2 — sjz-)],

(i)
where j is, on the cubic lattice, on the increasing
coordinate side of. The ordered phases of this model
are up magnetized(s;) > 0, and down magnetized, , _ ;o 2
(s; < 0. The symmetry that is broken is global spin- Jujr = In(Rs/R4)/2, Duj In(JrI,€1R2/R0)/2,
reversal symmetry. Since each of the terms in theK], = IN(RjR3R4/RIR3)/2, Diy = In(R1/R>)/2,
Hamiltonian above is invariant under this symmetry, (3)
the corresponding coupling constants,K, D, DT, are
bond strengths. Bond randomness obtains when the bondhere
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Ry = 2expD;; — D;fj + Dy + b;.fk) +1, The thermodynamic densities are obtained within the
~ - - - .t renormalization-group calculation [9]. Using the chain
R1 = eX[iJ,-j + Kij + 2Dl} + Djk + D/k) rule
~ ~ ~ ~ ~ 1_ ’
+ exr(—]ij + Kij + 2Dij + Djk + Djk) 1 9InZ 1 9Nz {'j" BKQ/]-/
= =1 - — -
+ expD;; + Dij), n N % 0K, N (%> % 9K, ’
R, = exp(Dij - Dl‘l; + ]jk + i(jk + ZDjk) h h b ¢ . hb ) q
S . ~ where N is the number of nearest-neighbor pairs &
+ explDyj = Dy = Jje + Kjx + 2Dj) is the partition function. The last sum is over thé

aK;/jl

+ expDjx — D;rk), unrenormalized pair§j) contributing to the renormalized
N _ 5 _ _ _ P ; ; e
Ry = exp(Jy + Ky + 2D;; + Ty + Ky + 2Dj) pa|r<z j'). This sum is replaced, as an approximation, by
~ . - ~ . . its average value,
+ eXK—J,‘j + Kij + 2Dij — ij + Kjk + 2Djk) @' @i @
~ ~ ~ ~ =" 9K/, , - =" 9K/, , oK’

+ expDyj + Dfy + Dy = DJ). > L= f|:l_[ dKijP(Kij)} KL = 3K 5

Ry = exqjij + i{ij + 2Dij - .7]']( + i(jk + Z[)jk) @) @) @

+exp(—J; + Ky + 2D;; + Ty + Ky + 2Dy) which yields the simple density recursion relatian=
b~n’ - 9K’/9K. Repeated applications of this recursion
relation connect the thermodynamic densities of a trajec-
) ) ] _tory initial point and phase-sink fixed point, permitting the
Equations (2) and (3) are approximate recursion relationgyajuation of the former.
for the cubic lattice and, simultaneously, exact recursion \e find that, ind = 2, in quenched random-bond
relations for a three-dimensional hierarchical lattice [13]. systems with the initial distribution
As mentioned above, the crux of our calculation "
consists in the evaluation of the probability convo-  P(Ky) = 6(Ki; — K)8(Di; — D)6(D;;)
lution in Eg. (1), which we now detail. The initial X[8W;j —J — o)+ 8U; —J + 0)]/2, (4)
quenched probability distribution has a symmety/;;, . ) "
K. D DT) — P, Kii. D;; _Df) hich i d all symmetry-breaking first-order phase transitions
ijs Dijs Dij) = P ijs Rij, Pij, =0ij), WNICN 1S PreseIved oo oqnverted to second-order, and all non-symmetry-
under the renormalization-group transformation and Whlcrbreaking first-order phase transitions are eliminated

is calculationally exploited in the steps deJ;scrlbed below[l’z,s]. These results are illustrated with = J /4 in

The probability distributionP(Jy;, Ki;, Dij, Dy;) is repre- Fig. 1, for systems that have tricritical (e.g., &®yJ = 0)
sented by histograms. Each hlrstogram is characterizeghq critical end-point (e.g., f&k /J = 4) phase diagrams
by five quantities,/;;,K;;, D;;,D;; and the associated pefore the introduction of bond randomness. We have
probability p. Our calculation consists of the following also verified that the phase boundaries for both cases are
steps: (1) The histograms are placed on a grid in the spaggnverted to second order down to zero temperature with
of interactionsJ,-j,Kl-j,D,»j,Dij. All histograms that fall randomness as small as= //100. Under the increased
within the same grid cell are combined in such a way asccuracy of our present calculations, the reentrance seen
to preserve the averages and standard deviations of tlie preliminary (done with only 8 independent histograms,
interactions. The histograms that fall outside the grid, repas opposed to 13530 or more here) calculations [5] is
resenting a very small probability, are similarly combinedeliminated.

into a single histogram. (2) Two distributions are convo- We find qualitatively different behavior id = 3. We
luted as in Eq. (1) withR(K; ;K;,j,) = K;j, + K;,;,,  first discuss our results foK/J = 0 [Figs. 2(a)—2(c)],
regenerating the original number of histograms. (3)for which the pure (nonrandom) system has a tricritical
The previous two steps are performed— 1 times, phase diagram. Upon introduction of quenched bond ran-
which completes the implementation of bond moving,domness, the pure-system ftricritical point is replaced by
Eqg. (2), for quenched random interactions. (4) Thea line segment of second-order phase transitions domi-
two steps are again repeated, but this time withas nated by randomness, that is renormalizing to a fixed
given by the decimation of Eq. (3). This completes thedistribution with nonzero widths. This line segment is
entire renormalization-group transformation, yielding thebounded by a multicritical point and a random-bond tri-
histograms for the renormalized quenched probabilitycritical point, which are separately dominated by ran-
distribution P’(Jf/juK,-/A/I,Df/jul)%f)- Most of our cal- domness. The fixed' distributions are characteri;e_d in
culations have used up to 13530 independé]ﬁ = 0) Table | in terms of their averages and standard deviations,

histograms, with corresponding renormalization-group’ = J dK;;P(K;;)J;j and

S AT LR .
+ exr(Dij + DlT/ + Djk - Djk)-

flows of 67650 quantities. Several more detailed cal- — 172

culations, involving the renormalization-group flows of o; = deijP(Kij)(Jij =JI) 5)
3921 890 quantities, confirmed the numerical accuracy of

our procedure. and similarly for the other coupling constants. Thus, at
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3 ; r transition points of each line have the same critical ex-
I K/J=0 (a) ponents, which differ between the two lines, in violation
2| l of the empirical universality principle [14]. At the other
. end of the new segment, the random-bond tricritical point
ordered disordered : . . .
separates this second-order line segment and the coexis-
-------------------------- 1 tence region of a first-order phase transition. As seen in
4 coexisktence Figs. 2(a) and 2(b), the coexistence boundaries drop very
. . : . sharply to the tricritical point. Although this behavior ap-
1 08 06 04 02 0 pears discontinuous in the figures, in reality it corresponds
to an extremely small, but still positive tricritical expo-
4.0 K/J =4 (b) nentB, = 0.020. This is ascertained because we find that
the fixed distribution of the random-bond ftricritical point
. (Fig. 3) is, in fact, the fixed distribution of the random-
R field Ising criticality [10], with the identifications

Lij = (Jij + Kij)/4, H;j = (J;; + K;j)/2 + Dj;,

. - - Hj; = D}, Gij = (Ji; + Kij)/4 + Dy, (6)

1 08 06 04 02 0 valid at J;; — o, referring to the random-field Ising
Density <s > Hamiltonian

FIG. 1. Ind = 2, the effect of bond randomness on (a) tri- I e . Tre — o y
critical and (b) critical end-point phase diagrams. The unrenor-z[l’fs’sf + Hij(si +sp)/2 + Hij(si = s))/2 + Gyl

malized system has the quenched random-bond distribution of'/
Eq. (4) with o = J/4. The solid circles represent the phase\yheres, = =1 at each site.

boundary points, which are all second order, of the random- i o P ;
bond system. For reference, the phase diagrams of the non- Phase diagrams qualitatively similar to Figs. 2(a)

random systems are drawn with the undotted lines, showin@nd 2(b) are obtained with quenched randomness
coexistence boundaries (dashed) of first-order phase transition& J [e.9., EQ. (4)] that does not include negative,
viz. antiferromagnetic, values. With this restriction,
one end of the new segment, the multicritical point seprandomness inJ cannot be made strong enough to
arates two different lines of second-order phase transieliminate all first-order transitions. However, quenched
tions, each with its own fixed point of fixed distribution bond randomness, without the calculational complication
reached under repeated rescalings. Accordingly, the phasé frustration, can be studied with the initial distribution
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FIG. 2. Ind = 3, the effect of bond randomness on (a)—(c) tricritida),J = 0, and (d)—(f) critical end-pointK /J = 4, phase
diagrams. The unrenormalized system has the quenched random-bond distribution of Eq. (7) avith €a).2, (b) o/J = 0.527,

() o/J=1,d)o/J =013, (e)o/J =2, (f) /] = 4. The solid circles represent the phase boundary points, which include
second-order transitions and coexistence boundaries [which recede as randomness is increased from (a) to (c) or from (d) to (f)], of
the random-bond system. In (a)—(c) and (e) and (f), the joining, at a multicritical point, of two second-order lines (having different
critical properties), in the absence of any other phase-transition line going through the multicritical point, constitutes the violation
of the empirical universality principle. For reference, the phase diagrams of the nonrandom systems are drawn with the undotted
lines, showing coexistence boundaries (dashed) of first-order phase transitions.

4382



VOLUME 76, NUMBER 23

PHYSICAL REVIEW LETTERS

3 UNE 1996

TABLE .
at fixed distributions for the new second-order segni@fit),
the multicritical point (M*), and the random-bond tricritical
point (R¥)

7.X.D,D"
N* o, —0.355 — 7,0.176,0 1.2507, —1.250K, 0, o0
M* 0.183,—0.028,0.026,0 0.155,0.041, 0, %
R* ©,0.4187,0.7097,0 0.2977,1.211K,1.011D,0.512D

O-J9U-K90-D90-D1'

P(K;;) = 6(J;j — J)6(K;; — K)[6(Dij — D — o)
X 8(Di) + 8(D;; — D + o)8(D}) + 8(D;; — D)
X 8(Dj; — o) + 8(D;; — D)8(DY + )1/4.  (7)

Recall that the symmetry that is broken is global spin-
reversal symmetry and, since each of the terms in the

Averages and standard deviations [see Eq. (5)]critical end-point phase diagram persists, with the isolated

critical point lowered in temperature and transformed to a
random-field Ising critical point [Fig. 2(d)]. This can be
seen from the very precipitous behavior of the coexistence
boundary, correspond to a very small but positive critical
exponentsB = 0.020 [10,15], equal to the tricriticaj3,
above. As bond randomness is increased, the random-
bond tricritical phase diagram [Fig. 2(e)] and the fully
second-order phase diagram [Fig. 2(f)] are obtained.
These phase diagrams have been discussed above.

An experimental verification of this violation of univer-
sality is of course called for. A prime candidate for this
study is the onset of superfluidity in helium mixtures im-
mersed in aerogel [16,17].
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