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The phase diagrams and transitions of nonequilibrium systems with multiplicative noise are st
theoretically. We show the existence of both strong- and weak-coupling critical behavior, of
distinct active phases, and of a nonzero range of parameter values over which the susceptib
infinite in any dimension. A scaling theory of the strong-coupling transition is constructed. [S0
9007(96)00273-6]
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Though they have been argued [1] to describe a div
and important set of physical systems out of equilibriu
among them autocatalytic chemical processes and se
different problems in quantum optics, dissipative par
differential equations (PDE’s) with multiplicative nois
remain poorly understood. Such equations typically ad
two types of phases: trivial or “absorbing” phases
which the dynamical variable(s) or order paramete
vanish identically at all points in space, and remain z
in perpetuity; and nontrivial or “active” phases in whic
these variables have nonzero expectation values. To
much of the theoretical effort [1,2] on systems of th
type has been devoted to calculating the critical value
the control parameter at which the continuous transi
between these two phases occurs [3].

In this paper we present a somewhat broader inves
tion of the multiplicative-noise problem, along the lin
of existing analyses of critical phenomena in the direc
percolation problem [4], and in the many physica
relevant stochastic PDE’s with additive noise.
particular, we analyze the phase structure and crit
properties of multiplicative-noise problems with differe
symmetries. We show that above an upper criti
dimension,dc ­ 2, the transition can belong to one
two distinct universality classes described by differ
fixed points: a weak coupling, mean-field fixed poi
accessible for noise strengthD less than a (nonuniversa
critical value Dc; and a strong coupling fixed poin
with nontrivial exponents, accessible forD . Dc. The
separatrix atD ­ Dc is described by a third, unstabl
nontrivial fixed point. For d # 2, only the strong
coupling critical behavior occurs. We analyze the me
field transition, compute the critical exponents on
separatrix in an expansion ine ; d 2 2, and formulate
a scaling description of the strong coupling transitio
which we check against previous exact results ford ­ 0
(the single-variable problem). We also demonstrate
occurrence of a rather striking phenomenon: For disc
symmetry and anyd, there is a region of the phas
diagram in which the response of the system to an in
itesimal uniform field (i.e., the uniform susceptibility
is everywhere infinite. For systems withN-component
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order parameters andOsNd symmetry with N $ 2, we
argue for the existence of two distinct active phas
for d . 2, one which breaks theOsNd symmetry and
one which does not. We illustrate this with an exa
calculation forN ­ `.

The models we study are defined by the equation

≠tnas $x, td ­ m=2na 2 rna 2
uj $nj2n

r
a

N
1 j $njha . (1)

Here $n ; hn1, . . . , nNj is an N-component, real vecto
field, r and us. 0d are real parameters, and$h is a
Gaussian noise vector with correlationskhas $x, td 3

hbs $x0, t0dl ­ Ddabds$x 2 $x0ddst 2 t0dyN and noise
strengthD. We deal primarily with the cubic nonlin-
earity r ­ 1, though for the single-component theor
N ­ 1, we also discuss the quadratic nonlinearity,r ­ 0,
relevant for, e.g., chemical reactions [1]. We work in t
Ito [5] representation.

We first discuss mean-field theory [2], implement
by dropping the noise term in (1), and ignoring spat
variations in$ns$x, td, which is replaced by$nstd. For N ­
1, Eq. (1) then has two steady-state solutions, represen
the absorbing and active phases:nstd ­ 0, stable for
r . 0, and n ­ s2ryud1ys11rd, stable for r , 0. For
the continuous symmetry caseN $ 2 [where only the
cubic nonlinearity,r ­ 1, preserves theOsNd symmetry
and so need be considered] a result identical to that
N ­ 1, r ­ 1 holds, except that in the active phase t
orientation of$n is unspecified, the magnitude being give
by $n2 ­ 2ryu. In both cases the transition between t
phases occurs atr ­ rc ­ 0, and the critical exponen
b characterizing the vanishing ofn as r ! rc takes
the value b ­ 1ys1 1 rd, independent of dimension
d. The correlation length and dynamical exponen
assume their usual mean-field values,n ­ 1y2 and z ­
2, respectively. (Alternatively, the mean-field resu
can be obtained [2] from a model with infinite-rang
interactions, or, equivalently,d ­ `.)

It is easy to determine the critical dimensiondc above
which this mean-field result is valid, by considering th
absorbing phase wherek $ns $x, tdl ­ 0. In this phase, one
can calculate certain correlation and response functi
© 1996 The American Physical Society



VOLUME 76, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 1996

er
-

th

gu
l
ct
tio
-

y,

n

l

rd
1),
in

o

ne
th

e

an

r

k-

ts

is

l-
ran-
g”

s.
be
ve
er

le

the

es
ed

tion
ar

is
ly

an-

ith

ive
d

se
for
)]
is

ate
on
ded
exactly, by summing perturbation expansions to all ord
[6]. We first specialize toN ­ 1, where the exact renor
malized noise,DR, and coupling constant,uR, are given
by DR ­ DA and uR ­ uA, with A ­ 1yf1 2 DIdsrdg,
and Idsrd ;

R
fddkys2pddg f1y2smk2 1 rdg. Note that

Idsrd is finite for all r $ 0, providedd . 2 [7]. Hence
for small enoughD the denominator ofA remains
bounded below by a positive number, even whenr de-
creases to zero. ThusDR and uR remain finite and
nonzero throughout the absorbing phase, right down to
critical point, which continues to occur precisely atr ­ 0,
providedD is small enough andd . 2. In this regime, all
other quantities of interest likewise experience no sin
lar renormalization nearr ­ 0, so the mean-field critica
point at r ­ 0 and mean-field exponents remain exa
[In fact, some quantities, such as the response func
gs $k, vd ­ s2iv 1 mk2 1 rd21, experience no diagram
matic renormalization in the absorbing phase [6].]

For d # 2, by contrast,Idsrd diverges atr ­ 0, soDR

and uR both blow up for somepositivevalue of r , even
for infinitesimal D. This invalidates mean-field theor
and suggests that the critical valuerc is shifted away from
zero, and that the mean-field critical exponents can
longer be trusted. The same is true ford . 2, providedD
exceeds the special valueDc for which DR first diverges
at r ­ 0. These results strongly suggest thatdc ­ 2,
but that even ford . dc there may be nontrivial critica
behavior at largeD [8].

This expectation is confirmed by straightforwa
renormalization-group (RG) analysis [9] of models (
in the absorbing phase and at the critical point. Imag
rescaling space, time, and the field according to$x ­ b $x0,
t ­ bzt0, and $ns $x, td ­ bz $n0s $x0, t0d, where z and z are
as yet undetermined exponents. Writingb ­ el, using
standard methods and the results quoted above,
readily derives the following recursion relations:

dmydl ­ sz 2 2dm ,

drydl ­ 2r ,

duydl ­ ufs1 1 rdz 1 z 1 s1 1 2rdAdDg
1 Osru2d,

dDydl ­ Dsz 2 2 2 e 1 AdDd.

(2)

Here e ­ d 2 2, andAd ­ 1y4p 1 Osed is a positive,
d-dependent constant. Owing to the aforementio
absence of any diagrammatic renormalization of
response function in the absorbing phase, them and r
equations are exact. Theu and D equations contain no
further diagrammatic corrections in the caser ­ 0. For
r ­ 1, there are, as indicated in (2), corrections to thu
equation ofOsu2d.

Finite fixed points of these recursion relations c
only be reached by choosingz ­ 2 and tuning the
initial value of r, to zero. Choosingz ­ 2fz 1 s1 1

2rdAdDgys1 1 rd maintains theu equation at a fixed
point with up ­ usl ­ 0d. Then one need only look fo
stable fixed points of theD equation.
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For d . 2 (e . 0), this equation has a stable “wea
coupling” fixed point at Dp ­ 0, which supplements
the other fixed point values:rp ­ 0 and up ­ usl ­
0d. This fixed point gives rise to mean-field exponen
(e.g., z ­ 2 and n ­ 1y2 follow immediately from the
nonrenormalization of the response function), and
reached for initial values ofD less thanDc ­ eyAd .

For D . Dc, however, the recursion relation forD
runs off to D ­ `, rendering the critical behavior inca
culable by perturbative techniques. Presumably the t
sition is controlled by a nonperturbative “strong-couplin
fixed point in this regime. Ford # 2, however, the weak-
coupling fixed point withDp ­ 0 is unstable forany
positiveD, and strong-coupling behavior always obtain

While the strong-coupling transition cannot yet
described in full detail [10], certain aspects of it ha
been elucidated in previous work. In particular, Beck
and Kramer [2] have derived results for the amount,rc,
by which the critical value ofr is shifted away from
r ­ 0 at this transition. They find thatrc , 0 (in the
Ito representation) ford ­ 1 and d ­ 2. There is also
a rather complete solution [1,3] of the single-variab
(d ­ 0) problem for N ­ 1, where rc is also shown
to be negative. These results allow one to make
striking prediction that forN ­ 1 the susceptibility of
model (1) at zero frequency (v ­ 0) and wave vector
( $k ­ 0) diverges over some nonzero range of valu
of r. To understand this, first recall that, as discuss
above, the response functiongs $k, td in the absorbing
phase does not undergo any diagrammatic correc
due to the nonlinearity, and so is given by the line
resultgs $k, td ­ ustde2smk21rdt. It follows at once that the
susceptibility at$k ­ v ­ 0, defined asx ­

R`
0 dt gs $k ­

$0, td, is infinite for all negative values ofr that lie in
the absorbing phase. The previous results thatrc , 0
for d # 2 (which we extend tod . 2 below), therefore
imply the divergence ofx in the entire range0 $ r $ rc.
For d ­ 0 we demonstrate explicitly below that th
range is controlled by a fixed line with a continuous
varying exponent. Note that the critical exponentsz and
n associated with the response function take their me
field values, 2 and 1y2, respectively, at the pointr ­ 0
where the susceptibility diverges. This is consistent w
the recursion relations forr andm in (2). Keep in mind,
however, that the strong-coupling transition into the act
phase occurs atrsl ­ 0d ­ rc , 0, and so is represente
by an inaccessible fixed point of ther recursion relation
with rp ­ 2`.

Thus for N ­ 1 we are led to the schematic pha
diagrams shown in Fig. 1. In constructing the diagram
d . 2, we have generalized the calculation of Ref. [2(b
of rc to dimensions larger than 2. That calculation
based on mapping the computation ofrc onto the quantum
mechanical problem of finding the lowest bound st
energy of a potential given by the spatial correlati
function of the noise. The analysis can easily be exten
to dimensionsd . 2, where it is well known that the
4377
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depth of a potential well has to exceed ad-dependent
critical value,Dc, in order for there to be a bound sta
The existence of a bound state forD . Dc implies that
the critical value ofr is shifted torc , 0, corresponding
to the strong-coupling fixed point. WhenD , Dc, there
is no bound state, sorc ­ 0, corresponding to the weak
coupling fixed point. These results, though obtained
a different way, are fully consistent with our earlier R
analysis, and are summarized in Fig. 1(b). The criti
exponents of the multicritical pointP in Fig. 1(b) are
readily found to bez ­ 2, n ­ 1y2, andb ­ f2 1 s1 1

2rdegy2s1 1 rd 1 Osre2d.
We now turn to the phase diagrams of theOsNd sym-

metric models withN $ 2 and r ­ 1. The continuous
symmetry of these models allows for two distinct a
tive phases: one which preserves this symmetry [11]
one which breaks it. The first of these has$M ; k $nl ­ 0
andQ ; kql ; ks $nd2yNl fi 0, while the second has bot
$M fi 0 andQ fi 0. Since ford # 2 it is extremely dif-

ficult to break a continuous symmetry in a noisy syst
[12], we anticipate that the only active state is the sy
metric one in this case. Ford . 2, both active phase
can occur in the phase diagram. The absorbing phas
ways occurs for sufficiently larger.

These features can be studied explicitly in the exa
solvable limit ofN ­ `, where all diagrams contributin
to the perturbation expansions for quantities of inter
can be easily summed, with the following results.

For d # 2 there is, as anticipated, no phase that bre
the OsNd symmetry, i.e., for which $M fi 0. There is,
however, a symmetric active phase withQ . 0. The
value ofQ is determined byDIdsr 1 uQd ­ 1 (whereId

was defined earlier). The phase boundaryrcsDd between
the absorbing and active phases is thus determined
DIdsrcd ­ 1, so thatrcsDd , D22ye as D ! 0. Note
that rc is positivehere. Hence the susceptibility at$k ­
v ­ 0 remains finite at the transition, reflecting the fa
that k $nl ­ 0 in the active phase. Critical exponents a
of course, also readily calculated. For example, the o
parameterQ vanishes likesrc 2 rdb with b ­ 1.
he
f on
FIG. 1. Schematic phase diagram for model (1) withN ­ 1
for (a) d # 2, (b) d . 2. Weak- (strong-) coupling transition
occurs below (above) the multicritical pointP in (b); transition
is always strong coupling in (a). Susceptibility diverges in t
absorbing phases whenr # 0, and possibly also in portions o
the active phases.
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For d . 2 the phase diagram is somewhat more co
plicated, containing a broken-symmetric phase for sm
D, a symmetric active phase for largerD [see Fig. 2(b)],
and a multicritical point where these active phases a
the absorbing phase meet. Again, all phase bounda
and critical exponents can be exactly computed. F
example, the transition from the absorbing phase to
broken-symmetry active phase is mean-field-like, and
curs at the unshifted critical valuerc ­ 0. The exponent
governing the decay ofQ at the symmetric-to-absorbing
transition continues to assume the valueb ­ 1, the phase
boundary being determined byDIdsrcd ­ 1, which has
a solution only forD . Dc, with Dc ­ 1yIds0d. The
second-order phase boundary between the two ac
phases occurs atD ­ Dc for all r , 0. The multicriti-
cal pointS occurs atr ­ 0, D ­ Dc [Fig. 2(b)].

While many details of these phase diagrams are dou
less special toN ­ `, certain qualitative features shoul
continue to apply to physically relevant values ofN
such asN ­ 2. The existence of both types of activ
phases ford . 2, but only the symmetric active phas
for d # 2, is, e.g., a general feature. Ford . 2, the
broken-symmetric active phase will continue to occur f
small D, where the exponents for the transition to the a
sorbing phase continue to assume mean-field values,
rc ­ 0. The exponents for the absorbing-to-symmet
active phase transition are presumably controlled by
strong-coupling fixed point, and so are difficult to calc
late. The transition between the two active phases belo
in the universality class of the equilibriumOsNd model.

We turn next to a scaling characterization of th
strong-coupling transition forN ­ 1. This is very simi-
lar to standard scaling theories of equilibrium critic
phenomena, but since one of the phases is absorb
an additional independent exponent is required for
complete description of the phase transition. To u
derstand this, consider the RG analysis of the stea
state two-point connected correlation functionCs $x, td ­
kns $x, tdns$0, 0dlc. The rescalings ofn, $x, and t given
above yield the familiar RG equation [9]Cs $x, t, drd ­
b2z Cs$xyb, tybz , drb1ynd, wheredr ­ rc 2 r. First con-
sider the equal-time case,t ­ 0. Here we obtainCs$xd ,
dr22z ncsxyjd, wherecsyd is a scaling function, and the
FIG. 2. Schematic phase diagram for model (1) withN ­ `
for (a) d # 2, (b) d . 2. Symmetric (broken-symmetric) to
absorbing transition is strong (weak) coupling in (b); transiti
is always strong coupling in (a).



VOLUME 76, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 1996

is

n-
it

nc
r

s

-

se
r-

ize

re

ed

pt

n
n
n)

s

ur
l

s
e

It

at

g
the

ly

tion

J.
bted
s-

ly.

a
am

e
the
re

ter.

nd

he

ky

n
ve

nn.
correlation lengthj diverges likej , dr2n . In typical
critical phenomena, one can go to the critical point,dr ­
0, assume thatCs$xd approaches a nonzero value in th
limit, and conclude thatCs$xd , x2z . Here, however, be-
causeC is identically zero in the absorbing phase, it va
ishes asdr ! 0 from the active phase. Hence in the lim
dr ! 0, Cs $xd takes the formdrDx2sd221hd, whereD is
a new, apparently independent, critical exponent, andh is
the standard correlation function exponent. Consiste
between this result and the previous scaling expression
quirescsyd , y2sd221hd for y ø 1, i.e., D ­ 2ns2z 1

d 2 2 1 hd. This scaling law can be written in term
of the order parameter exponentb, shown above to
satisfy b ­ 2nz , which yields b ­ fD 1 nsd 2 2 1

hdgy2. This is a generalization ofb ­ nsd 2 2 1 hdy2,
which holds for ordinary equilibrium critical phenom
ena, whereD ­ 0. In the directed percolation problem
[4], where the transition is also into an absorbing pha
a simple graphical argument (which fails for the cu
rent models), shows thatD ­ b, whereuponb ­ nsd 2

2 1 hd [13].
Similar considerations allow one to easily general

other scaling laws to account for the new exponentD.
For example, the autocorrelation functionCs $x ­ 0, td is
readily shown to decay likedrDt2sd221hdyz as dr ! 0.
The exponentg governing the critical singularity of the
equal-time correlation function (i.e., the static structu
factor), at$k ­ 0 is given byg ­ ns2 2 hd 2 D.

Finally, we verify some of the general results deriv
above in the solvable case ofd ­ 0, N ­ 1. Let us first
check the predicted divergence of the uniform susce
bility over the range0 , r , rc, by solving thed ­ 0
problem in the presence of a uniform field,h, where the
equation takes the formdnydt ­ 2rn 2 un21r 1 h 1

nhstd. As in the caseh ­ 0, the Fokker-Planck equatio
[5] for the steady-state probability distribution functio
Psnd can be solved explicitly, with the (Ito representatio
result Psnd ­

1
Z

R`

0 dn n22ryD22e22hyDne22unr11yDsr11d;
here Z is a constant chosen to normalize

R`

0 dn Psnd to
unity. Given this expression, one readily calculatesknl
as a function ofh, thereby deriving a formula for the
uniform susceptibilityxshd ; ≠knly≠h. In the limit of
small h one finds thatxshd approaches a finite limit a
h ! 0, providedj2ryD 1 1j . 1. In the band ofr val-
ues defined byj2ryD 1 1j , 1, however,xsh ­ 0d is
infinite, diverging likehj2ryD11j21 as h ! 0. Since the
transition from the absorbing to the active phase occ
[1,3] at rc ­ 2Dy2, this is consistent with our genera
argument thatxsh ­ 0d is infinite throughout the range
0 , r , rc wheneverrc , 0. The exact solution show
that for d ­ 0 the divergence actually extends into th
active phase as well. The explicit dependence onr of
the exponent governing this divergence ash ! 0 implies
that the intervalj2ryD 1 1j , 1 is controlled by a fixed
line of the RG, with a continuously varying exponent.
y
e-

,

i-

s

is easily shown thatxshd diverges logarithmically at the
ends of this interval, and has logarithmic corrections
the critical pointr ­ rc.

Next we use thed ­ 0 results to check the scalin
theory developed above. In Ref. [3] one finds that
autocorrelation functionCstd decays like drt21y2 for
t ø t, where the characteristic timet diverges like
dr22 for small dr. The order parameter decays likedr.
According to our earlier definitions, these results imp
exponent valuesD ­ 1, b ­ 1, nz ­ 2, and sd 2 2 1

hdyz ­ 1y2, respectively. It is a trivial matter to verify
that these values satisfy our proposed scaling rela
2b ­ D 1 nsd 2 2 1 hd.

We gratefully acknowledge conversations with
Cardy, C. Jayaprakash, and J. Parrondo. We are inde
to P. Grassberger and A. Pikovsky for helpful discu
sions, and for sharing unpublished results.

[1] A. Schenzle and H. Brand, Phys. Rev. A20, 1628
(1979), describe experimental realizations extensive
See also, W. Horsthemke and R. Lefever,Noise-Induced
Transitions(Springer, Berlin, 1984).

[2] (a) C. Van den Broecket al., Phys. Rev. E49, 2639
(1994); C. Van den Broecket al., Phys. Rev. Lett.73,
3395 (1994); (b) A. Becker and L. Kramer,ibid. 73, 955
(1994).

[3] An exception is the single-variable problem, for which
complete solution exists. See Ref. [1], and R. Grah
and A. Schenzle, Phys. Rev. A25, 1731 (1982).

[4] Directed percolation also has a type of multiplicativ
noise, which differs from that considered here in that
noise amplitude [Eq. (1)], is proportional to the squa
root, rather than the first power, of the order parame
For example, H. K. Janssen, Z. Phys. B42, 151 (1981).
See also, e.g., R. Landauer, Physica (Amsterdam)194A,
551 (1993).

[5] N. G. van Kampen,Stochastic Processes in Chemistry a
Physics(North-Holland, Amsterdam, 1981).

[6] L. Peliti, J. Phys. A19, L365 (1986).
[7] One must introduce an ultraviolet cutoff (e.g., put t

model on a lattice), in order that the integralIdsrd be well
defined at high momenta ford $ 2.

[8] This is reminiscent of the KPZ equation; see A. Pikovs
and J. Kurths, Phys. Rev. E49, 898 (1994).

[9] K. G. Wilson and J. Kogut, Phys. Rep.12C, 75 (1974).
[10] See, however, P. Grassberger (to be published).
[11] Like our N ­ 1 model, the two-component models i

Refs. [1] and [2(b)] do not actually have symmetric acti
phases.

[12] N. D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133
(1966); J. Toner and Y. Tu,ibid. 75, 4326 (1995); K. E.
Bassler and Z. Rácz, Phys. Rev. E52, R9 (1995). S.N.
Majumdar pointed out to us the possibility ind ­ 2 of a
distinct active phase with power-law decays.

[13] For example, P. Grassberger and A. de la Torre, A
Phys. (N.Y.)122, 373 (1979).
4379


