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The phase diagrams and transitions of nonequilibrium systems with multiplicative noise are studied
theoretically. We show the existence of both strong- and weak-coupling critical behavior, of two
distinct active phases, and of a nonzero range of parameter values over which the susceptibility is
infinite in any dimension. A scaling theory of the strong-coupling transition is constructed. [S0031-
9007(96)00273-6]
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Though they have been argued [1] to describe a diverserder parameters an@(N) symmetry withN = 2, we
and important set of physical systems out of equilibrium,argue for the existence of two distinct active phases
among them autocatalytic chemical processes and severfar d > 2, one which breaks th&@(N) symmetry and
different problems in quantum optics, dissipative partialone which does not. We illustrate this with an exact
differential equations (PDE’s) with multiplicative noise calculation forN = oo,
remain poorly understood. Such equations typically admit The models we study are defined by the equation
two types of phases: trivial or “absorbing” phases in uli|2nf
which the dynamical variable(s) or order parameter(s) 9,14 (¥,1) = uVng, — rng, —
vanish identically at all points in space, and remain zero N
in perpetuity; and nontrivial or “active” phases in which Here n = {n,...,ny} is an N-component, real vector
these variables have nonzero expectation values. To dafégld, » and u(> 0) are real parameters, ang is a
much of the theoretical effort [1,2] on systems of thisGaussian noise vector with correlations,(x,) X
type has been devoted to calculating the critical value ofyz(x’,1')) = Dé,36(x — x')é(t — ¢/)/N and noise
the control parameter at which the continuous transitiorstrengthD. We deal primarily with the cubic nonlin-
between these two phases occurs [3]. earity p = 1, though for the single-component theory,

In this paper we present a somewhat broader investigav = 1, we also discuss the quadratic nonlinearitys= 0,
tion of the multiplicative-noise problem, along the linesrelevant for, e.g., chemical reactions [1]. We work in the
of existing analyses of critical phenomena in the directedto [5] representation.
percolation problem [4], and in the many physically We first discuss mean-field theory [2], implemented
relevant stochastic PDE’'s with additive noise. Inby dropping the noise term in (1), and ignoring spatial
particular, we analyze the phase structure and criticalariations inn(x, t), which is replaced byi(z). ForN =
properties of multiplicative-noise problems with different 1, Eq. (1) then has two steady-state solutions, representing
symmetries. We show that above an upper criticathe absorbing and active phasesr) = 0, stable for
dimension,d. = 2, the transition can belong to one of r > 0, and n = (—r/u)"/!*?), stable forr < 0. For
two distinct universality classes described by differentthe continuous symmetry casé = 2 [where only the
fixed points: a weak coupling, mean-field fixed point, cubic nonlinearity,0 = 1, preserves th®(N) symmetry
accessible for noise strengih less than a (nonuniversal) and so need be considered] a result identical to that for
critical value D.; and a strong coupling fixed point N = 1, p = 1 holds, except that in the active phase the
with nontrivial exponents, accessible for > D.. The orientation ofz is unspecified, the magnitude being given
separatrix atD = D, is described by a third, unstable, by 7> = —r/u. In both cases the transition between the
nontrivial fixed point. Ford =2, only the strong phases occurs at = r. = 0, and the critical exponent
coupling critical behavior occurs. We analyze the mean8 characterizing the vanishing of as r — r. takes
field transition, compute the critical exponents on thethe value 8 = 1/(1 + p), independent of dimension,
separatrix in an expansion kn= d — 2, and formulate d. The correlation length and dynamical exponents
a scaling description of the strong coupling transition,assume their usual mean-field values= 1/2 andz =
which we check against previous exact resultsdor 0 2, respectively. (Alternatively, the mean-field results
(the single-variable problem). We also demonstrate thean be obtained [2] from a model with infinite-range
occurrence of a rather striking phenomenon: For discretmteractions, or, equivalently] = .)
symmetry and anyd, there is a region of the phase It is easy to determine the critical dimensign above
diagram in which the response of the system to an infinwhich this mean-field result is valid, by considering the
itesimal uniform field (i.e., the uniform susceptibility), absorbing phase whek@é(x,t)) = 0. In this phase, one
is everywhere infinite. For systems wifti-component can calculate certain correlation and response functions

+ lilna . (1)
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exactly, by summing perturbation expansions to all orders For d > 2 (e > 0), this equation has a stable “weak-
[6]. We first specialize t&v = 1, where the exact renor- coupling” fixed point atD* = 0, which supplements
malized noiseDg, and coupling constanig, are given the other fixed point valuest™ = 0 and u* = u(l =
by Dr = DA andug = uA, with A = 1/[1 — DI,(r)], 0). This fixed point gives rise to mean-field exponents
and I,(r) = [[d%/Q2m)?][1/2(uk*> + r)]. Note that (e.g.,z =2 and » = 1/2 follow immediately from the
1,(r) is finite for all » = 0, providedd > 2 [7]. Hence nonrenormalization of the response function), and is
for small enoughD the denominator ofA remains reached for initial values ab less thanD, = €/A,.
bounded below by a positive number, even whede- For D > D., however, the recursion relation fdp
creases to zero. Thu®g and uyp remain finite and runs off toD = «, rendering the critical behavior incal-
nonzero throughout the absorbing phase, right down to theulable by perturbative techniques. Presumably the tran-
critical point, which continues to occur preciselyrat= 0,  sition is controlled by a nonperturbative “strong-coupling”
providedD is small enough and > 2. In this regime, all fixed point in this regime. Fad = 2, however, the weak-
other quantities of interest likewise experience no singueoupling fixed point withD* = 0 is unstable forany
lar renormalization near = 0, so the mean-field critical positive D, and strong-coupling behavior always obtains.
point at »r = 0 and mean-field exponents remain exact. While the strong-coupling transition cannot yet be
[In fact, some quantities, such as the response functiodescribed in full detail [10], certain aspects of it have
g(lz,w) = (—iw + uk®> + r)~!, experience no diagram- been elucidated in previous work. In particular, Becker
matic renormalization in the absorbing phase [6].] and Kramer [2] have derived results for the amount,
Ford = 2, by contrast/,(r) diverges at = 0, so Dy by which the critical value ofr is shifted away from
andug both blow up for someositivevalue of -, even r = 0 at this transition. They find that. < 0 (in the
for infinitesimal D. This invalidates mean-field theory, Ito representation) for/ = 1 andd = 2. There is also
and suggests that the critical valyeis shifted away from a rather complete solution [1,3] of the single-variable
zero, and that the mean-field critical exponents can néd = 0) problem for N = 1, where r. is also shown
longer be trusted. The same is true for> 2, providedD  to be negative. These results allow one to make the
exceeds the special valug. for which Dy, first diverges  striking prediction that forNV = 1 the susceptibility of
at r = 0. These results strongly suggest that= 2, model (1) at zero frequencyw(= 0) and wave vector
but that even fod > d. there may be nontrivial critical (k = 0) diverges over some nonzero range of values
behavior at largeb [8]. of ». To understand this, first recall that, as discussed
This expectation is confirmed by straightforward above, the response functiog(k,?) in the absorbing
renormalization-group (RG) analysis [9] of models (1),phase does not undergo any diagrammatic correction
in the absorbing phase and at the critical point. Imaginglue to the nonlinearity, and so is given by the linear
rescaling space, time, and the field according te b%',  resultg(k,s) = (t)e~ 77 |t follows at once that the
t = b, and n(x,t) = bén'(x',t'), wherez and ¢ are  susceptibility ak = » = 0, defined agy = fz)c dtg(k =
as yet undetermined exponents. Writihg= ¢!, using  0,1), is infinite for all negative values of that lie in
standard methods and the results quoted above, oriee absorbing phase. The previous results that 0
readily derives the following recursion relations: for d = 2 (which we extend ta > 2 below), therefore
du/dl = (z — QDu, imply the divergence aof in the entire rangé = r = r..
For d = 0 we demonstrate explicitly below that this
dr/dl =2r, range is controlled by a fixed line with a continuously
du/dl = u[(1 + p)¢ + z + (1 + 2p)A,D] (2)  varying exponent. Note that the critical exponentand
+ 0(pd) v associated with the response function take their mean-
’ field values, 2 and /2, respectively, at the point = 0
dD/dl = D(z — 2 — € + A;D). where the susceptibility diverges. This is consistent with
Heree = d — 2, andA; = 1/47w + O(e) is a positive, the recursion relations for and x in (2). Keep in mind,
d-dependent constant. Owing to the aforementionedhowever, that the strong-coupling transition into the active
absence of any diagrammatic renormalization of thephase occurs at(/ = 0) = r. < 0, and so is represented
response function in the absorbing phase, thend r by an inaccessible fixed point of therecursion relation
equations are exact. Theand D equations contain no with r* = —oo,
further diagrammatic corrections in the cgse= 0. For Thus for N = 1 we are led to the schematic phase
p = 1, there are, as indicated in (2), corrections to #he diagrams shown in Fig. 1. In constructing the diagram for
equation ofO (u?). d > 2, we have generalized the calculation of Ref. [2(b)]
Finite fixed points of these recursion relations canof r. to dimensions larger than 2. That calculation is
only be reached by choosing =2 and tuning the based on mapping the computationrgfonto the quantum
initial value of r, to zero. Choosing’ = —[z + (1 + mechanical problem of finding the lowest bound state
2p)A,D]/(1 + p) maintains theu equation at a fixed energy of a potential given by the spatial correlation
point with #* = u(l = 0). Then one need only look for function of the noise. The analysis can easily be extended
stable fixed points of th® equation. to dimensionsd > 2, where it is well known that the
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depth of a potential well has to exceeddadependent For d > 2 the phase diagram is somewhat more com-
critical value,D., in order for there to be a bound state. plicated, containing a broken-symmetric phase for small
The existence of a bound state fbr > D, implies that D, a symmetric active phase for larger[see Fig. 2(b)],
the critical value ofr is shifted tor. < 0, corresponding and a multicritical point where these active phases and
to the strong-coupling fixed point. Whdn < D, there the absorbing phase meet. Again, all phase boundaries
is no bound state, sg. = 0, corresponding to the weak- and critical exponents can be exactly computed. For
coupling fixed point. These results, though obtained irexample, the transition from the absorbing phase to the
a different way, are fully consistent with our earlier RG broken-symmetry active phase is mean-field-like, and oc-
analysis, and are summarized in Fig. 1(b). The criticakurs at the unshifted critical valug = 0. The exponent
exponents of the multicritical poinP in Fig. 1(b) are governing the decay of at the symmetric-to-absorbing
readily foundto be = 2, v = 1/2,andB =[2 + (1 + transition continues to assume the vagie= 1, the phase
2p)e]/2(1 + p) + O(pe?). boundary being determined b®1,(r.) = 1, which has
We now turn to the phase diagrams of #éN) sym-  a solution only forD > D., with D, = 1/1,(0). The
metric models withV = 2 andp = 1. The continuous second-order phase boundary between the two active
symmetry of these models allows for two distinct ac-phases occurs & = D, for all » < 0. The multicriti-
tive phases: one which preserves this symmetry [11] andal pointS occurs at- = 0, D = D, [Fig. 2(b)].
one which breaks it. The first of these hes= (i) = 0 While many details of these phase diagrams are doubt-
andQ = {(g) = {(n)?>/N) # 0, while the second has both less special ta&V = =, certain qualitative features should
M # 0andQ # 0. Since ford < 2 itis extremely dif- continue to apply to physically relevant values &f
ficult to break a continuous symmetry in a noisy systenSuch asN = 2. The existence of both types of active
[12], we anticipate that the only active state is the symphases ford > 2, but only the symmetric active phase
metric one in this case. Faf > 2, both active phases for d =2, is, e.g., a general feature. Fadr> 2, the
can occur in the phase diagram. The absorbing phase diroken-symmetric active phase will continue to occur for
ways occurs for sufficiently large. small D, where the exponents for the transition to the ab-
These features can be studied explicitly in the exactlygorbing phase continue to assume mean-field values, and
solvable limit of N = %, where all diagrams contributing 7. = 0. The exponents for the absorbing-to-symmetric
to the perturbation expansions for quantities of interes@ctive phase transition are presumably controlled by a
can be easily summed, with the following results. strong-coupling fixed point, and so are difficult to calcu-
Ford = 2 there is, as anticipated, no phase that breakite. The transition between the two active phases belongs
the O(N) symmetry, i.e., for whichM # 0. There is, in the universality class of the equilibrium(N) model.
however, a symmetric active phase with> 0. The We turn next to a scaling characterization of the
value ofQ is determined byDI,(r + uQ) = 1 (wherel,  Strong-coupling transition foN = 1. This is very simi-
was defined earlier). The phase boundaD) between 1ar to standard scallng theories of equnlbrl_um crltlce_ll
the absorbing and active phases is thus determined H3henomena, but since one of the phases is absorbing,
DI,(r.) = 1, so thatr.(D) ~ D~%€ as D — 0. Note an additional ir)dgpendent exponent is (e_quired for a
that r, is positivehere. Hence the susceptibility at= ~ cOmplete description of the phase transition. To un-
» = 0 remains finite at the transition, reflecting the factdeérstand this, consider the RG analysis of the steady-
that (/i) = 0 in the active phase. Critical exponents are, State two-point connected correlation functioitx, 1) =
of course, also readily calculated. For example, the ordeyt(*: )n(0,0))..  The rescalings ofn, X, and ¢ given
parametelQ vanishes liker. — r)# with 8 = 1. above vyield the familiar RG equation [QI(x,{,Sr) =
b¥C(%/b,t/b%,8rb'"), wheredr = r. — r. First con-
sider the equal-time case= 0. Here we obtairC(x) ~
8r %7c(x/€), wherec(y) is a scaling function, and the

(a} Dt [b) ot
Abgorbin ia) ot b} D4
Absyrbing o & .
Phasp Active b-}rr.-mo:rlt
Avctive Phase Active
Phase Symmefric Phase
rY ; "
Autive !
- ! Phase ITru:-ken . A bsorbing
> - ki Symmeiric Phase
Fhlﬁ]‘ & Active
FIG. 1. Schematic phase diagram for model (1) with= 1 A Phase r

for (@) d = 2, (b) d > 2. Weak- (strong-) coupling transition
occurs below (above) the multicritical poiftin (b); transition  FIG. 2. Schematic phase diagram for model (1) with= o

is always strong coupling in (a). Susceptibility diverges in thefor (a) d = 2, (b) d > 2. Symmetric (broken-symmetric) to
absorbing phases when= 0, and possibly also in portions of absorbing transition is strong (weak) coupling in (b); transition
the active phases. is always strong coupling in (a).
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correlation lengthf diverges likeé ~ 6r~%. In typical is easily shown thaj (%) diverges logarithmically at the

critical phenomena, one can go to the critical poiht,=  ends of this interval, and has logarithmic corrections at
0, assume thatC(x) approaches a nonzero value in thisthe critical pointr = r..
limit, and conclude tha€(x¥) ~ x%*. Here, however, be- Next we use thed = 0 results to check the scaling

causeC is identically zero in the absorbing phase, it van-theory developed above. In Ref. [3] one finds that the
ishes a®r — 0 from the active phase. Hence in the limit autocorrelation functionC(r) decays like 8r1='/2 for

8r — 0, C(%) takes the formpr2x~@=2*7) whereA is t < 7, where the characteristic time diverges like

a new, apparently independent, critical exponent, qrisl 52 for small §r. The order parameter decays lige.

the standard correlation function exponent. Consistenciccording to our earlier definitions, these results imply
between this result and the previous scaling expression rexponent valued = 1, 8 =1, vz =2, and(d — 2 +
quiresc(y) ~ y @72t fory < 1,i.e.,,A = —v(2{ + m)/z = 1/2, respectively. It is a trivial matter to verify

d — 2 + 7). This scaling law can be written in terms that these values satisfy our proposed scaling relation
of the order parameter exponeg, shown above to 28 =A + v(d — 2 + 7).

satisfy 8 = —v/{, which yields8 =[A + v(d — 2 + We gratefully acknowledge conversations with J.
1)]/2. Thisis a generalizationg® = v(d — 2 + n)/2, Cardy, C. Jayaprakash, and J. Parrondo. We are indebted
which holds for ordinary equilibrium critical phenom- to P. Grassberger and A. Pikovsky for helpful discus-
ena, whereA = 0. In the directed percolation problem sions, and for sharing unpublished results.
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