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In a perturbative limit, we derive the diffusion properties of initially localized wave packets
the Fibonacci chain. We establish a new relation between generalized diffusion exponent
fractal dimensions of the energy spectrum. We give an argument extending in general to oth
dimensional quasiperiodic systems. An illustration is given taking the case of the Harper m
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Quite recently two families of models have greatly
newed the problem of quantum localization of a parti
moving in one dimension. Generically these models
neither periodic nor randomly disordered but quasip
odic (QP). Typical examples are, on one hand, kick
rotator and kicked Harper models from the field ofquan-
tum chaosand, on the other hand, Harper-like models a
tight-binding Hamiltonians associated to quasiperiodic
quences [1,2]. For these kinds of systems, dependin
the strength of the QP modulation, a correspondence
been established between the dynamics of wave pac
(WPs) and the energy spectrum properties. Qualitativ
if an initially localized WP exhibits a ballistic spreadin
then the spectrum isabsolutely continuous(AC). This
corresponds to a metallic regime as in periodic syste
In the strongly localized regime, WP spreading stops
ter a finite time and the spectrum ispure point (PP) as
in randomly disordered systems. Finally, there is a c
ical nonuniversal regime at the metal insulator transiti
where the WPs have an anomalous diffusive sprea
and the spectrum issingular continuous(SC) within gen-
eral multifractal properties.

For more quantitative relations many heuristic arg
ments based on the Thouless [3] picture of localizat
have been given. The spirit of these is the followin
Instead of the QP infinite chain, consider a seque
of periodic approximant Hamiltonians of increasing p
riod L. The idea is then that the typical variationDE
of the energy levels with a change of boundaries con
tions defines an energy scale that is the inverse of
time tp that a WP needs to spread over the entire ch
[i.e., x2stpd ­ L2 ­ tp2s wheres is the diffusion expo-
nent]. In cases of AC and PP spectra this argument g
the correct answer:DE , L21 ) s ­ 1, x2std , t2, and
DE , e2L ) s ­ ln LyL . 0, respectively [4–7].

In the case of a SC spectrum, there are many en
scales, typicallyDE , L21ya with a numberLgsad of ex-
ponentsa. Because of this, any simple relation betwe
spectral and diffusion exponents seems difficult. Nev
theless, numerical results obtained for Harper and kic
0031-9007y96y76(23)y4372(4)$10.00
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Harper models seem to support the relations ­ DF where
DF is the Hausdorff dimension of thelocal spectral mea-
sure (SM) [8] of the initial WP [4,5]. Recently, howeve
other mathematical and numerical results have contes
its generality and instead have stressed the following m
general properties: (i) A WP spreading exhibitsmultiscal-
ing andintermittencysuch that the momentsxqstd (q $ 0
and even) satisfyxqstd . tqsq . (ii) The q dependent dif-
fusion exponents satisfysq $ D1 [9,10] whereD1 is now
the information dimension of thelocal SM [7,9–11]. Al-
though these last results seem to exclude any simple r
tion between spectral and diffusion exponents, no defin
conclusion has been possible so far.

In this context the purpose of this paper is doub
First, for a QP model on the Fibonacci chain, w
characterize analytically the diffusion properties of WP
More precisely, in the spirit of [12], using the sam
perturbative renormalization group (RG) of Niu and No
[13], we derive the following: For a WP initially localized
on a sitei0, the exponentssq associated with the moment
xqsi0, td can be written assq ­ a, wherea, dependent
on i0, is one of the singularity exponents of theglobal
SM. In this perturbative limit, this diffusion is thus
quasinormalandinhomogeneous.These results complete
a pioneering study of Abe and Hiramoto [14,15]. Upo
averaging on the QP disorder (initial site), the diffusio
becomeshomogeneous,but it now exhibitsmultiscaling.
As a consequence, the exponentssq associated with
the average momentsxqstd now satisfy sq ­ D12q,
where theDq are the dimensions that characterize t
multifractality of the global SM. Second, we give a
semiquantitative argument for the validity of the la
relation in the case of other QP models with the S
spectrum. We then support it with numerical results f
the Harper model.

In the following, we only give the qualitative reasonin
and final relations, and defer certain analytical steps a
numerical details to a future publication [16].

As in [12], we consider a tight-binding HamiltonianHn,
defined on approximants of periodFn of the Fibonacci
© 1996 The American Physical Society
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chain by the following Schrödinger equation on a sitei:

El
nc l

i ­ ti,i11c l
i11 1 ti21,ic

l
i21 , (1)

where c
l
i denotes the wave-function component of t

energy levelEl
n, on sitei. The hopping amplitudeti,i11

from sitei to sitei 1 1 takes the valuetw (weak bond) or
ts (strong bond) according to the Fibonacci sequence.
the case we consider, the density ofstwd bonds isvn ­
Fn21yFn and tends to the golden meanv ­ s

p
5 2 1dy2

in the quasiperiodic limitsn ! `d. The density of bonds
stsd is v2

n ­ Fn22yFn and tends tov2 (Fn11 ­ Fn 1

Fn21 and Fn . v2n). The energy spectrumWnsts, twd
consists of theFn levels El

n (l ­ 1, . . . , Fn and El
n #

El11
n by convention). The variation of a levelEl

nskd, with
Bloch boundary conditions (c

l
i1Fn

­ eikc
l
i ), defines an

energy band of widthDl
n ­ jEl

nspd 2 El
ns0dj.

In the strong modulation regimestwyts ø 1d, using
the perturbative RG established by Niu and Nori [13],
was shown [12] that the spectrumWnsts, twd is composed
of three clusters of bands; the two edge clusters
the spectrumWn22sts, twd contracted by a factorz ­
twy2tssø 1d and translated by6ts. The central cluster
is Wn23sts, twd contracted bȳz ­ t2

wyt2
s sø 1d.

As is schematically depicted in Fig. 1(a), the cent
cluster zWn23sts, twd is the spectrum of the effectiv
sub-Hamiltonian Hn23szts, ztwd between the Fn23

sites of the chainFn, which form isolatedatoms in
the limit tw ­ 0. Similarly, the two edge cluster
f6ts 1 zWn22sts, twdg are the spectra of the effectiv
sub-HamiltonianHn22szts, ztwd between the sites which
constituted theFn22 isolated moleculesof energy 6ts

[see Fig. 1(b)]. From this we can derive thelocal
(on-site) properties of the RG that are necessary
calculate the diffusion properties of WPs. The first
these is a recurrence relation between wave-func
components. More precisely, for an energy lev
El1Fn22

n sl ­ 1, . . . , Fn23d in central cluster we have
jc

l1Fn22
i sEdj ­ j

p
v3

nc
l
i0sEyzdj, where i is the atom

site of Fn associated to sitei0 of Fn23 as shown in
Fig. 1(a). This relation is approximate. It ignores t
probability of being onmoleculesites, which is lower by
a factorz2 ø 1 for an energy in this cluster. Very simi
larly, for the levels El

n and El1Fn21
n sl ­ 1, . . . , Fn22d

of the two edges clusters, we get, respective
nd

e

of
n

FIG. 1. (a) Relation between an atom (i) ofFn and its
corresponding sitesi0d of Fn23. (b) Relation between a
moleculesi1, i2d of Fn and its corresponding sitesi0d of Fn22.
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2d sc l
i1 1 c

l
i2d sEd ­

p
v2

nc
l
i0sE 1 tsyzd and

s1y
p

2d sc l1Fn21
i1 2 c

l1Fn21
i2 d ­

p
v2

nc
l
i0sE 2 tsyzd. The

sitessi1, i2d of Fn are those linked by a bondts. They
are now associated toi0 on Fn22, as shown in Fig. 1.
The second and last property that is necessary is
following: As can be seen in Fig. 1, in terms of th
number of bonds, the distanceji 2 i0j between twoatom
sites i0 and i on Fn is nearly v23

n ­ FnyFn23 times
the distanceji0 2 i0

0j between the associated sites o
the chainFn23. As a result, we have

P
i ­ v23

n

P
i0 .

Similarly, for the distance betweenmoleculesites (see
Fig. 1), we getji1 2 i6

0 j . ji2 2 i6
0 j . v22

n ji0 2 i0
0j

and
P

i6 ­ v22
n

P
i0 .

Using these local properties of the RG, in the spi
of [12], we derivelocal recurrence relations between th
diffusion properties on the chainFn and those on chains
Fn22 andFn23. Before calculating the diffusion moment
of WPs, we first derive the probability distributions o
the diffusion front. Apart for a normalization factor
this distribution is defined bypnsi0, i, td ­ jAnsi0, i, tdj2
whereAnsi0, i, td represents the amplitude of probabilit
to go from an initial sitei0 of a chainFn to a final sitei in
a timet. In terms of the eigenfunctions and eigenenerg
of the HamiltonianHn, the amplitudeAnsi0, i, td can
be written Ansi0, i, td ­

PFn

l­1 eiEl
ntc

l
i0

c
l
i . Using this

definition and thelocal properties of the RG, dependin
on the nature of the initial site,atom sjatod or molecule
sjmold, we obtain

pnsi0, i, tdjato ­ v3
npn23si0

0, i0, ztd 1 O sz2d ,

pnsi6
0 , i, tdjmol ­ v2

npn22si0
0, i0, ztd 1 O sz2d .

(2)

For each line of Eq. (2), the distribution is normalize
to

P
i pnsi0, i, td ­ 1. To find the second line of (2)

we assume thati1 and i2 play a symmetrical role,
i.e., Ansi1

0 , i1, td ­ Ansi2
0 , i2, td and Ansi1

0 , i2, td ­
Ansi2

0 , i1, td. We also neglect interference terms b
tween probability amplitudes referring to left and righ
edge clusters [16]. Finally, the termsO sz2d in each line
signify that in our limit tw ø ts, we can neglect the
jump probability fromatom to moleculesites (molecule
to atom). The interpretation of the first line of Eq. (2
is then quite clear: The probability to go from an initia
atomsite i0 of Fn to a final sitei in a time t is w3

n times
smaller than the probability to go fromi0

0 to i0 (distance
smaller by a factorv3

n) in a smaller timezt.
We now examine the consequences of Eq. (2) a

calculate the diffusion moment of orderq (q even)
defined by x

q
n si0, td ­

PFn
i­1si 2 i0dqpnsi0, i, td. From

Eq. (2) and the last property of the RG we get th
following recurrence relations for each type of site:

xq
n si0, tdjato ­ v26q

n x
q
n23si0

0, ztd ,

xq
n si6

0 , tdjmol ­ v24q
n x

q
n22si0

0, ztd .
(3)

Equations (3) and (2) provide a quantitative illustration
the qualitative remark in [14,15] that the time evolutio
4373
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of a WP can be viewed as successive recursions o
RG. In fact, for an initial sitei0, which is renormalized
na times as anatom site andnm times as amolecule
site s3na 1 2nm ­ nd, the moments of a WP initially
localized on i0 verify x

q
n si0, td ­ v22nqx

q
0 sĩ0, z̄na znm td,

whereĩ0 is thenth iterated site corresponding toi0. Now,
by definition x

q
0 sĩ0, td represents the moments of a W

on the periodic chain of periodF0 ­ 1; the spreading
is thus ballistic, x

q
0 sĩ0, td , tq. From this we deduc

that x
q
n si0, td , sDndqtq, where the diffusion coefficien

Dn decreases with the lengthFn as Dn ­ F
121yasxd
n ,

and asxd ­ ln vysx ln zyz2y3 1 ln z1y3d # 1 appears to
be one of the singularity exponents of theglobal SM [12],
with x ­ nmyn varying continuously inf0, 1y2g in the
limit n ! `. Having this, we see that the timetp needed
for each momentx

q
n si0, td to be spread over the enti

chain Fn [i.e., x
q
n si0

0, td ­ F
q
n ] increases astp , F

1ya
n .

Assuming that the WP spreads now with a modifi
diffusive exponent instead of a size dependent diffus
coefficient [i.e.,x

q
n si0, td , tqsq ], then the last propert

gives sq ­ a. This generalizes the results in [14,1
More qualitatively, to conclude with this strictlocal point
of view, sincesq ­ a is independent ofq but not on
the initial site i0, we can call the diffusionquasinormal
but inhomogeneous. Note, however, that thequasinormal
diffusion is just the approximate dominant behavi
More generally, we expect a multifractal diffusion due
theO sz2d correction term in Eq. (2).

Instead of looking at the spreading of a WP initially l
calized on only one site, we now consider an average
defined by its momentsx

q
n std that are statistical average

over all thex
q
n si0, td: x

q
n std ­ s1yFnd

PFn
i0­1 x

q
n si0, td. This

procedure is equivalent to a quasiperiodic disorder a
aging that makes the systemhomogeneous. Moreover,
we believe that it also reincorporates in a self-consis
way the termsO sz2d that were neglected in the strict loc
point of view. From Eq. (3) we deduce

xq
n std ­ v3s12qd

n x
q
n23sztd 1 2v2s12qd

n x
q
n22sztd , (4)

where the factorsv3
n s2v2

nd correspond to the fraction o
atom (molecule) sites. In the limit of an infinite chain
sn ! `d, or equivalently of infinite time,x

q
n std will tend

to an invariantxqpstd which satisfies

xqpstd ­ v3s12qdxqpsztd 1 2v2s12qdxqpsztd , (5)

This self-consistent equation (5) has two major con
quences: (i) By definitionxqpstd is the moment of or-
der q of an effective probability distributionppsi, i0, td.
Since the diffusion is nowhomogenous, this distribution
ppsi, i0, td depends only on the distance between the
tial and final positions, i.e.,ppsi, i0, td ­ ppsr, td where
r ­ ji 2 i0j. Furthermore, we can take the continuu
limit and replace

P
i by

R
dr. Using this, the diffusion

momentsxqpstd are given by

xqpstd ­
Z

dr rqppsr , td . (6)
4374
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From Eqs. (6) and (5), we then deduce thatppsr, td has to
verify

ppsr, td ­ v6ppsv3r, ztd 1 2v4ppsv2r , ztd , (7)

A first property of Eq. (7) is that the probabilitypps0, td to
stay (or return) at the initial position, satisfies the relati
derived in [12] by using only the form of theglobal
SM. Thus we havepps0, td , t2D2 where D2 is one
of the dimensionDq that characterizes the multifracta
properties of the global SM. We now turn to a seco
property of Eq. (7). For aquasinormalandhomogeneous
diffusion, in one dimension and with a unique diffusio
exponent s, generically we would have obtained th
following properties for the diffusion momentsxqpsr , td
and the distributionppsr , td:

xpqstd ­ l2qsxpqsltd ) xpqstd ­ tqs ,

ppsr , td ­ lsppslsr , ltd ) ppsr , td ­ t2sfsrytsd ,
(8)

where fs?d is a scaling function of the scaling variabl
ryts . By comparison, Eqs. (5) and (7) show that for o
model on the Fibonacci chain there are two characte
tic length and time scales (multiscaling) [10]. More pre-
cisely, apart from the casez ­ z2y3 [17], we cannot put
ppsr , td in a simple form with only one characteristic ex
ponent and scaling variable. Another possible interp
tation of Eqs. (5) and (7) is the following: A fraction
v3 of the WP has a tendency to spread with an expon
s ­ ln v3y ln z, and the other fraction2v2 spreads with
an exponents ­ ln v2y ln z.

(ii) The second property of Eq. (5) is the following: I
we assume a power law behavior of the formxqpstd ,
tqsq , then the diffusion exponentssq verify

v3s12qdzqsq 1 2v2s12qdzqsq ­ 1 . (9)

This equation is similar to the self-consistent equati
found in [12] for the dimensionsDq of the global SM.
More precisely the exponentssq andDq are related by

sq ­ D12q . (10)

From this relation we deduce that the diffusion expone
depend explicitly onq; in addition, since theDq decrease
with increasingq, we havesq $ D1, which means that
the Guarneri inequalities [9,10] are verified for allq.

More generally, since Eq. (10) is independent of t
parameters of our Hamiltonian, we conjecture that it
valid for other one dimensional quasiperiodic models w
multifractalglobal SM. Our semiquantitative argument
the following: In the strictlylocal point of view, to each
site i0 we can associate a diffusion exponentssi0d ­ a

wherea is a singularity exponent of the global SM. A
a result, an averaging overi0 is equal to an appropriate
average overa, i.e., xqpstd ,

R
tqarsad da. Now, as

stated in [12], the bandwidthD associated to each energ
level decreases with the period asD , F

21ya
n , which

is exactly the inverse of the timet ­ tp. Furthermore,
each band has a measureF21

n ­ Da ­ t2a , and there
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FIG. 2. Average diffusion exponentssq (filled circles) and
spectral dimensionsD12q (lines) of irrationalv ­ f0, ng sn ­
1, . . . , 4d.

are Nsadda , D2fsadda bands with a givena. Using
all these properties, we haversadda ­ DaNsadda [18]
such that in the limit of large timet (i.e., D ! 0), we get

xqpstd ,
Z

da tfsad1sq21da ­ tqD12q . (11)

To check this conjecture, we consider the example of
Harper model in the critical regime. This is a Schröding
equation with hopping amplitudeti,i11 ­ 21 and on-site
potentialyi ­ 2 coss2pvi 1 fd wherev is an irrational
and f an arbitarty phase. For this model, the diffusi
exponentssq have been computed using WPs evolution
terms of exact eigenfunctions) between time 10 and 2
(in hopping term units), and for approximants610

987 , 408
985 ,

360
1189 , 305

1292 of irrational v ­ f0, ng sn ­ 1, . . . , 4d (Fig. 2,
filled circles). Initial WPs are delta functions on th
central site. The initial site averaging is replaced by
average over 200 random values off. For eachv, the
spectral dimensionsD12q (lines) are computed using th
energy bandwidths of four different approximants. Let
first examine the diffusion exponents2: For all rational
approximantsrys of v, independently ofv, the spectrum
Lebesgue measure decreases ass2d where d ­ 1 [19].
Now, by definition (see also [12]) we haveD2d ­ 1ys1 1

dd. We thus expects2 ­ D21 ­ 1y2, independent ofv,
which is in good accord with the numerical results (Fig.
[4]. For othersq, we expect distinct behavior for differen
v but still sq ­ D12q. Again, Fig. 2 confirms this.

In conclusion, in a perturbative limit we have describ
analytically the diffusion properties of WPs on the F
bonacci chain. After definition of an initial site or Q
disorder averaging, we have found a new relation betw
the diffusion exponents and the dimensions that cha
terize the multifractal properties of the energy spectru
We have conjectured this relation to hold for other one
mensional QP systems with singular continuous spectr
We back this with a semiquantitative argument and p
e
r

0

n

)

n
c-
.
-
.

-

vide support from numerical computations on the Har
model.
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