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Anomalous Diffusion Properties of Wave Packets on Quasiperiodic Chains
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In a perturbative limit, we derive the diffusion properties of initially localized wave packets on
the Fibonacci chain. We establish a new relation between generalized diffusion exponents and
fractal dimensions of the energy spectrum. We give an argument extending in general to other one
dimensional quasiperiodic systems. An illustration is given taking the case of the Harper model.
[S0031-9007(96)00305-5]
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Quite recently two families of models have greatly re-Harper models seem to support the relaor= Dy where
newed the problem of quantum localization of a particleDr is the Hausdorff dimension of thecal spectral mea-
moving in one dimension. Generically these models aresure (SM) [8] of the initial WP [4,5]. Recently, however,
neither periodic nor randomly disordered but quasiperi-other mathematical and numerical results have contested
odic (QP). Typical examples are, on one hand, kickedts generality and instead have stressed the following more
rotator and kicked Harper models from the fieldgefan-  general properties: (i) A WP spreading exhibitsltiscal-
tum chaosand, on the other hand, Harper-like models andng andintermittencysuch that the momentg(r) (¢ = 0
tight-binding Hamiltonians associated to quasiperiodic seand even) satisfy?(r) = t7%¢. (ii) The ¢ dependent dif-
quences [1,2]. For these kinds of systems, depending duision exponents satisky, = D; [9,10] whereD, is now
the strength of the QP modulation, a correspondence hdke information dimension of thiecal SM [7,9-11]. Al-
been established between the dynamics of wave packetisough these last results seem to exclude any simple rela-
(WPs) and the energy spectrum properties. Qualitativelytion between spectral and diffusion exponents, no definite
if an initially localized WP exhibits a ballistic spreading, conclusion has been possible so far.
then the spectrum isbsolutely continuougAC). This In this context the purpose of this paper is double.
corresponds to a metallic regime as in periodic systemg:irst, for a QP model on the Fibonacci chain, we
In the strongly localized regime, WP spreading stops afeharacterize analytically the diffusion properties of WPs.
ter a finite time and the spectrum fre point(PP) as More precisely, in the spirit of [12], using the same
in randomly disordered systems. Finally, there is a critperturbative renormalization group (RG) of Niu and Nori
ical nonuniversal regime at the metal insulator transition[13], we derive the following: For a WP initially localized
where the WPs have an anomalous diffusive spreadingn a siteiy, the exponents, associated with the moments
and the spectrum isingular continuougSC) within gen-  x%(io, ) can be written asr, = «a, wherea, dependent
eral multifractal properties. on iy, is one of the singularity exponents of tigéobal

For more quantitative relations many heuristic argu-SM. In this perturbative limit, this diffusion is thus
ments based on the Thouless [3] picture of localizatiomquasinormalandinhomogeneousThese results complete
have been given. The spirit of these is the following:a pioneering study of Abe and Hiramoto [14,15]. Upon
Instead of the QP infinite chain, consider a sequencaveraging on the QP disorder (initial site), the diffusion
of periodic approximant Hamiltonians of increasing pe-becomeshomogeneoudyut it now exhibitsmultiscaling.
riod L. The idea is then that the typical variatiat£Z  As a consequence, the exponenrtg associated with
of the energy levels with a change of boundaries condithe average moments?(r) now satisfy o, = D,
tions defines an energy scale that is the inverse of theshere theD, are the dimensions that characterize the
time +* that a WP needs to spread over the entire chaimultifractality of the global SM. Second, we give a
[i.e., x2(+*) = L?> = "> whereo is the diffusion expo- semiquantitative argument for the validity of the last
nent]. In cases of AC and PP spectra this argument give®lation in the case of other QP models with the SC
the correctanswedE ~ L™!' = o = 1,x%*(t) ~ t>,and  spectrum. We then support it with numerical results for
AE ~ ¢ F = o =InL/L = 0, respectively [4-7]. the Harper model.

In the case of a SC spectrum, there are many energy In the following, we only give the qualitative reasoning
scales, typicalyYAE ~ L™« with a numberL$® of ex-  and final relations, and defer certain analytical steps and
ponentsa. Because of this, any simple relation betweennumerical details to a future publication [16].
spectral and diffusion exponents seems difficult. Never- Asin[12], we consider a tight-binding Hamiltonid#,,
theless, numerical results obtained for Harper and kickedefined on approximants of periagl, of the Fibonacci
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chain by the following Schrédinger equation on a gite
EL\l = tipbley + i)y, 1)

where ! denotes the wave-function component of the

energy levelE!, on sitei. The hopping amplitude; ;
from sitei to sitei + 1 takes the value, (weak bond) or
ty (strong bond) according to the Fibonacci sequence.
the case we consider, the density(gf) bonds isw, =
F,-1/F, and tends to the golden mean= (/5 — 1)/2
in the quasiperiodic limitn — o). The density of bonds
(t;) is w? = F,_»/F, and tends tow? (F,+; = F, +
F,_1 andF, = w™"). The energy spectruri,(z,, t,,)
consists of theF, levels E! (I =1,...,F, and E! =
E!*! by convention). The variation of a level, (k), with
Bloch boundary conditionsy(,» = e’*y!), defines an
energy band of widtl\!, = |EL(7) — E.(0)].

In the strong modulation regimé,,/t; < 1), using
the perturbative RG established by Niu and Nori [13], it
was shown [12] that the spectruw, (s, 1,,) is composed
of three clusters of bands; the two edge clusters ar
the spectrumW, _»(t,,1,) contracted by a factor =
t,/2t(< 1) and translated by-z,. The central cluster
is W, _s(t,, t,,) contracted by = 2 /12(< 1).

As is schematically depicted in Fig. 1(a), the central
cluster zW, _s(t, t,,) is the spectrum of the effective
sub-Hamiltonian H,_3(zt;,7zt,) between the F,_;
sites of the chainF,, which form isolatedatoms in
the limit ¢z, = 0. Similarly, the two edge clusters
[*1, + zW,_»(15,1,,)] are the spectra of the effective
sub-HamiltonianH,,_,(zt,, zt,,) between the sites which
constituted theF,_, isolated moleculesof energy =1
[see Fig. 1(b)]. From this we can derive tHecal

(on-site) properties of the RG that are necessary téor each line of Eq.

calculate the diffusion properties of WPs. The first of
these is a recurrence relation between wave-functio
components. More precisely, for an energy level
E!fFi2(l =1,...,F,—3) in central cluster we have

ly 2 (B)| = lJw3yl(E/Z)|, where i is the atom
site of F, associated to site¢’ of F,_3 as shown in
Fig. 1(a). This relation is approximate. It ignores the
probability of being ormoleculesites, which is lower by
a factorz? < 1 for an energy in this cluster. Very simi-
larly, for the levels Ei and ELfF-1(1 =1,...,F,-2)

of the two edges clusters, we get, respectively

@ zt, ° Zty o s
i
twtw 1t~ F,
? ts
./
1
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FIG. 1. (a) Relation between an atom (i) &, and its
corresponding site(i’) of F,—;. (b) Relation between a
molecule(i*,i~) of F, and its corresponding sit¢’) of F,_,.

(/N2 (s + i) (E) = JoZyh(E + 1,/2) and
(/N2 Wi = 92" = JwRyh(E — 1,/2). The
sites(i*,i”) of F, are those linked by a bong. They
are now associated td on F,_,, as shown in Fig. 1.
The second and last property that is necessary is the
ﬂollowing: As can be seen in Fig. 1, in terms of the
number of bonds, the distantie— iy| between twoatom
sitesip andi on F, is nearly wn_3 = F,/F,_3 times
the distance|i’ — i}| between the associated sites on
the chainF,_;. As a result, we have; = w,3> ;.
Similarly, for the distance betweemoleculesites (see
Fig. 1), we getlit —ig| =i~ — ij | = w, i’ — i
and) ;- = 0,2y
Using these local properties of the RG, in the spirit
of [12], we derivelocal recurrence relations between the
diffusion properties on the chaif, and those on chains
F,—, andF,_;. Before calculating the diffusion moments
of WPs, we first derive the probability distributions of
the diffusion front. Apart for a normalization factor,
this distribution is defined by, (io, i, 1) = | A, (g, i,1)]?
where A, (iy, i, t) represents the amplitude of probability
to go from an initial site, of a chainF, to a final sitel in
atimet. Interms of the eigenfunctions and eigenenergies
of the HamiltonianH,, the amplitude A, (i, i,t) can
be written A, (ig,i,t) = Zf;leiEi’tpfozp,-l. Using this
definition and thdocal properties of the RG, depending
on the nature of the initial sitegtom (|,,) or molecule
(Imo1), We obtain

l'/.

= w,pa-3lig, i',71) + O(2%),

= wapa-alip, i’ 2t) + 0.

(2), the distribution is normalized
to >, palip,i,t) = 1. To find the second line of (2)
we assume thai™ and i~ play a symmetrical role,
ie., Ay, it 1) = A,(iy,i 1) and A,y ,i " ,t) =
A,y ,i*t,t). We also neglect interference terms be-
tween probability amplitudes referring to left and right
edge clusters [16]. Finally, the tern@®(z%) in each line
signify that in our limit 7, < t;, we can neglect the

n ""t ato
Palio, i, )l 2)

pﬂ(i{):» i’ t)lmol

jump probability fromatom to moleculesites (nolecule

to atom). The interpretation of the first line of Eq. (2)
is then quite clear: The probability to go from an initial
gtomsite ip of F,, to a final sitei in a timet is wg times
smaller than the probability to go frorg to i’ (distance
smaller by a factow?) in a smaller timegz.

We now examine the consequences of Eq. (2) and
calculate the diffusion moment of ordey (q even)
defined by xi (io, 1) = S21(i — io)?pnlio,i,t). From
Eq. (2) and the last property of the RG we get the
following recurrence relations for each type of site:

x4 (o, Dato = @, *xa-3(ig, 71, @)
x?,(i(-):»t)lmol = a)n_4qx2_2(i6, Zt) .
Equations (3) and (2) provide a quantitative illustration of
the qualitative remark in [14,15] that the time evolution
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of a WP can be viewed as successive recursions of theérom Egs. (6) and (5), we then deduce thatr, r) has to
RG. In fact, for an initial sitey, which is renormalized verify

n, times as anatom site andn,, times as amolecule - 6 % 3 = 4 %0 2

a " e 1) = ,zt) + 2 ,2t), 7
site (3n, + 2n, = n), the moments of a WP initially .p (r.1) = w’p (0’ Z ) w'p(@ r_?) @
localized on iy verify xi(ip,1) = w 29xd(iy, z%z™r),  Afirst property of Eq. (7) is that the probabiligy*(0, #) to
wherei, is thenth iterated site corresponding g Now,  stay (or return) at the initial position, satisfies the relation
by definition xj (io, ) represents the moments of a Wp derived in [12] by using only Ehl)e form of thelobal

on the periodic chain of perio#, = 1; the spreading SM. Thus we havep®(0,7) ~ 1~ where D, is one

is thus ballistic, x¢ (ip, t) ~ 9. From this we deduce Of the dimensionD, that characterizes the multifractal
that xn (i, 1) ~ (D,)?t4, where the diffusion coefficient Properties of the global SM. We now turn to a second

D, decreases with the length, as D, = pol/a) property of Eq. (7). For guasinormalandhomogeneous
g . . .~ diffusion, in one dimension and with a unique diffusion

and a(x) = Inw/(xInz/7%/* + Inz'/3) = 1 appears to : ,
be one of the singularity exponents of tjiebal SM [12], exponento, generically we would have obtained the
following properties for the diffusion momenis’*(r, 1)

with x = n,,/n varying continuously in0,1/2] in the PEPEINES
limit » — . Having this, we see that the timeneeded ~and the distribution”(r, 7):
for each momentxi (iy, t) to be spread over the 11;3ntire xM(t) = A717x"(A) = xM(t) = 117, 8)
chain F, [i.e., xi(i),1) = Fn] increases as* ~ Fa'“. . O %O « _ .- (J'S
Assuming that the WP spreads now with a modified” (r.1) /\ P r_’M)i _p (re) =t _f(r/t ’
diffusive exponent instead of a size dependent diffusionvhere f(-) is a scaling function of the scaling variable
coefficient [i.e.,x! (io, ) ~ 1994], then the last property r/t’. By comparison, Egs. (5) and (7) show that for our
gives o, = a. This generalizes the results in [14,15]. model on the FlbonaCC| chal_n thgre are two characteris-
More qualitatively, to conclude with this stritdcal point ~ tic length and time scalesnltiscaling [10]. More pre-
of view, sinceo, = « is independent ofj but not on  Cisely, apart from the case = 7?3 [17], we cannot put
the initial site iy, we can call the diffusiomuasinormal  P"(r,?) in a simple form with only one characteristic ex-
butinhomogeneousNote, however, that theuasinormal ~ Ponent and scaling variable. Another possible interpre-
diffusion is just the approximate dominant behavior.tation of Egs. (5) and (7) is the following: A fraction
More generally, we expect a multifractal diffusion due to«@’ of the WP has a tendency to spread with an exponent
the O (z2) correction term in Eq. (2). o = Inw?/InZ, and the other fractioBw? spreads with
Instead of looking at the spreading of a WP initially lo- @n exponentr = Inw?/Inz. . _
calized on only one site, we now consider an average WP (ii) The second property of Eqg. (5) is the following: If
defined by its moments:(z) that are statistical averages W€ assume a power law behavior of the fomti () ~
over all thex! (i, 1): x() = (l/Fn)Zg"zle(io, 7). This 1474, then the diffusion exponents, verify
procedure is equivalent to a quasiperiodic disorder aver- 3179799 4 22179707 = | (9)
aging that makes the systehomogeneous Moreover,
we believe that it also reincorporates in a self-consiste
way the termg0 (z2) that were neglected in the strict local
point of view. From Eq. (3) we deduce

X(1) = w2004z + 2020700 @), (4) Tg = Dig. (10)

n n

where the factorse? (2w2) correspond to the fraction of From this relation we deduce that the diffusion exponents

atom (moleculd sites. In the limit of an infinite chain deépend explicitly org; in addition, since th&, decrease
(n — o), or equivalently of infinite timex () will tend ~ With increasingg, we haves, = D,, which means that
to an invariantc?* () which satisfies the Guarneri inequalities [9,10] are verified for all
_ _ o) o More generally, since Eqg. (10) is independent of the
T (4) = 319 q* 2(1=q),.q% i : : o
o (r) @ * (Zf) + 20 * (Zt)’_ (5) parameters of our Hamiltonian, we conjecture that it is
This self-consistent equation (5) has two major consevalid for other one dimensional quasiperiodic models with
quences: (i) By definitionc?*(s) is the moment of or- multifractal global SM. Our semiquantitative argument is
der g of an effective probability distributiorp™(i, io,?).  the following: In the strictlylocal point of view, to each
Since the diffusion is novhomogenousthis distribution  site i, we can associate a diffusion exponertiy) = «
p*(i,io, 1) depends only on the distance between the iniwherea is a singularity exponent of the global SM. As
tial and final positions, i.e.p*(i,io,t) = p*(r,t) where  a result, an averaging ovés is equal to an appropriate
r =li — ip|. Furthermore, we can take the continuumaverage ovew, i.e., x4*(t) ~ [t9%p(a)da. Now, as
limit and replaced; by [dr. Using this, the diffusion stated in [12], the bandwidth associated to each energy

his equation is similar to the self-consistent equation
ound in [12] for the dimension®, of the global SM.
More precisely the exponents, andD,, are related by

momentsx?*(z) are given by level decreases with the period as~ Fn ' which
T g is exactly the inverse of the time= ¢*. Furthermore,
X)) = [ drripi(r.0). (6)  each band has a measufg! = A® = 12, and there
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FIG. 2. Average diffusion exponents, (filled circles) and

spectral dimension®,_, (lines) of irrationalw = [0,7] (n =

1L,...,4). *Present address.
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