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Theory of High-Mode Phenomena for Stellarators

K. C. Shaing
Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712
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It is shown that besides the ion orbit loss mechanism, which occurs in a regiona 2 ´trp , r , a,
the drift-orbit transport flux driven by the collisionless helically trapped particles can also drive
poloidal $E 3 $B velocity in a regionr , a 2 ´trp in stellarators. Here,rsad is the minor (plasma)
radius,´t is the toroidal amplitude of the magnetic field spectrum,$Es $Bd is the electric (magnetic) field
andrp is the poloidal ion gyroradius. The transport-flux-driven$E 3 $B velocity can be triggered mos
efficiently by an increase of the ion temperature gradient. The theory is applied to the high-
phenomenon observed in stellarators. [S0031-9007(96)00354-7]

PACS numbers: 52.55.Hc, 52.25.Fi
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The high-mode (H-mode) phenomenon has been o
served in both tokamaks and stellarators [1–6]. The g
eral behavior is similar in both of these devices. It c
be understood by a logical sequence proposed in Refs
and [8]. First, the poloidal$E 3 $B flow velocity driven by
the ion orbit loss bifurcates over the local maximum of
plasma viscosity located atMp ø 1. Here, $E is the elec-
tric field, $B is the magnetic field, andMp is the poloidal
$E 3 $B Mach number. Second, the turbulence fluctuat
is suppressed by the radial gradients of the$E 3 $B angu-
lar velocity and the diamagnetic angular velocity, and
plasma confinement is thus improved. The results of
theory and its extension are in agreement with manyH-
mode phenomena observed in tokamaks as demonst
in Refs. [9] and [10]. The absence of unquantifiable
rameters from the theory is what makes possible the c
parisons with experimental results.

This Letter is directed toward pursuing this quantitat
theory to explore the consequences of the differen
between tokamak and stellarator transport proper
It is shown that in stellarators the poloidal$E 3 $B
velocity can be driven to bifurcation not only by the io
orbit loss mechanism but also by the low collisional
drift-orbit transport flux. The collisionless drift-orb
transport flux is the radial particle flux driven by th
low collisionality helically trapped particles. The io
orbit loss mechanism is important only in the regi
wherea 2 ´trp , r , a, wherea is the plasma minor
radius, r is the local minor radius,́ t is the toroidal
amplitude of the model magnetic field spectrumB ­
B0f1 2 ´t cosu 2 ´h cossmu 2 nz dg, B0 is the magnetic
field strength on the axis,́ h is the helical amplitude
sm, nd is the poloidal and toroidal mode numbers
the helical magnetic field, andrp is the ion poloidal
gyroradius. In this region, the bifurcation of the$E 3 $B
velocity in stellarators is similar to that in tokama
and is not discussed in detail. However, in the reg
r , a 2 ´trp , the collisionless ion drift-orbit transpo
flux can also drive the poloidal$E 3 $B velocity to
bifurcation. This bifurcation mechanism does not ex
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in axisymmetric tokamaks. It can be triggered mo
efficiently by an increase in the ion temperature gradie
A similar mechanism was employed in Ref. [11] to sho
that the sign of the radial electric fieldEr can be positive
[12] in H mode in a rippled tokamak owing to the electro
drift-orbit transport flux.

The poloidal and toroidal components of the mome
tum equation in Hamada coordinates [13] in a toroid
plasma are

NM≠k $Bp ? $V ly≠t ­ 2 k $Bp ? = ? pl 2 neffNMk $Bp ? $V l

2
c 0x 0

c
k $J ? =V l , (1)

NM≠k $Bt ? $V ly≠t ­ 2 k $Bt ? = ? pl 2 neffNMk $Bt ? $V l

1
c 0x 0

c
k $J ? =V l , (2)

where the angular brackets denote the flux surface
erage,N is the plasma density,M is the ion mass,p
is the viscous tensor,$J is the current density,c is the
speed of light,$Bt ­ c 0=V 3 =u, $Bp ­ 2x 0=V 3 =z ,
c 0 ­ $B ? =z , x 0 ­ $B ? =u, V is the volume enclosed in
the flux surface, andu and z are poloidal and toroidal
angles, respectively. The radial current densityk $J ? =V l
in Eqs. (1) and (2) is related to≠k $E ? =V ly≠t through
Ampère’s lawk $J ? =V l ­ 2s1y4pd≠k $E ? =V ly≠t. The
effective collision frequency of the charge-exchange m
mentum loss is defined asneff ­ Nnksnlcx, whereNn is
the neutral density andksnlcx is the charge-exchange re
action cross section [14]. Equations (1) and (2) are to
solved for the radial electric field and the parallel plasm
flow speed. To accomplish this, we need to know the e
plicit expressions ofk $Bp ? = ? pl andk $Bt ? = ? pl.

The plasma viscous forcesk $Bp ? = ? pl and k $Bt ? = ?

pl contain information about the ion orbit loss, the co
lisionless drift-orbit transport flux, and the nonlinear co
lisional velocities. The contributions of electrons to th
viscous forces are neglected for being smaller than th
of ions in the collisionality regimes in which we are inter
ested. For a given Maxwellian ion distribution function
© 1996 The American Physical Society
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the cold ions are collisional and the hot ions are collisi
less. For our purpose, the critical energy that separ
these two classes of ions is determined by the existenc
the collisionless helically trapped particles. The nonlin
collisional viscosities are from particles in the plateau-fl
Pfirsch-Schlüter regime [15]. The particles in the co
sionless regime contribute to either the ion orbit loss
the drift-orbit transport flux, depending on how far th
are from the plasma boundary. The relevant collision
ity parameter here isnh

p for the helically trapped parti
cles, defined asnh

p ­ nRqy´
3y2
h yt jm 2 nqj, wheren is

the ion-ion collision frequency,R is the major radius,q is
the safety factor, andyt is the ion thermal speed. Whe
n

h
p , 1, the helically trapped particles become collisio

less. We assume thatnq ¿ m, which leads us to conclud
that the conventional ion collisionality of the toroidal
trapped particlesnp is larger thannh

p if ´t ø ´h. We are
interested in the parameter regime wheren

h
p is of the order

of unity. The orbit loss associated with the tokamakl
banana orbit is thus not important if the ion distribution
a simple Maxwellian. This indicates that the most relev
particle orbit topology for the stellaratorH mode is that of
the helically trapped particles. The radial drift-orbit si
Dr of the helically trapped particles in the presence of
poloidal $E 3 $B drift is of the order of

Dr ø ydrDt , (3)

whereydr is the bounce-averaged radial drift velocity a
Dt is the period of the drift orbit. Because the poloid
$E 3 $B velocity is larger than the= $B and curvature drifts if
eFyT ø 1, Dt is of the order ofryVE with VE ­ cEryB.
Here, F is the electrostatic potential,B ­ j $Bj, e is the
charge of the ions, andT is the ion temperature. Note th
ydr ø y2y2VR with y the particle speed, andV the ion
gyrofrequency, one concludes that

Dr ø ´trpyMp , (4)

whereMp is the poloidal$E 3 $B Mach number defined a
2VEByytBp. Because at theH-mode bifurcationMp is
of the order of unity, the helically trapped drift ion orbi
can intersect the plasma boundary if they are within
distancé trp away from the boundary, that is, if they a
in the regiona 2 ´trp , r , a. If they are in the region
r , a 2 ´trp , they cannot intersect the plasma bound
whenMp ø 1. In that case the physical consequence
their contribution to plasma viscosities is the collisionle
transport flux discussed extensively in Refs. [16] and [1
The relationship between the drift-orbit transport flux a
the plasma viscosities is shown to be [18]
2
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k $G ? =V lnon ­ 2
c

ex 0c 0
k $Bp ? = ? pl

­
c

ex 0c 0
k $Bt ? = ? pl , (5)

where k $G ? =V lnon is the radial component of the drift-
orbit transport flux. Note that Eq. (5) can also be prov
directly from the definitions of the particle flux and th
viscosity, and by the fact that the leading order perturb
particle distribution function does not vary along th
magnetic field line in the calculations of the drift-orb
transport flux. In general,k $G ? =V lnon consists of three
regimes as shown in Ref. [16]. Here, we employ only t
1yn regime flux to demonstrate the bifurcation ofMp for
H-mode application. Note that the electron flux in the1yn

regime is smaller than that of ions and can be neglecte
In the cylindrical coordinatessr , u, z d, Eq. (5) can be

expressed as

k $Bp ? = ? pl ­ 2k $Bt ? = ? pl ­ 2seycdBpBGr , (6)

whereBp ­ j $Bpj and Gr is the radial component of the
particle flux. The particle flux in the1yn regime is [17]

Gr ­ 2
64

9s2pd3y2
N´

3y2
h ´2

t

µ
cT
eBr

∂2 1
n

3

∑
I21

µ
P0

P
1

eF0

T

∂
1 I22

T 0

T

∏
, (7)

where P ­ NT is the ion pressure,P0 ­ dPydr, T 0 ­
dTydr, F0 ­ dFydr , and the integralsI21 and I22 are
defined as(

I21

I22

)
­

Z `

p
n

h
p

dy y4

(
1

y 2
5
2

)
e2y .

Note that the energy integration limits inI21 andI22 are
between

p
nh

p and`. This is because only those ions wit
normalized energyy2yy2

t .
p

nh
p contribute to the1yn

transport flux.
From Eqs. (6) and (7), we obtain the explicit expre

sions ofk $Bp ? = ? pl andk $Bt ? = ? pl for those particles
with normalized energyy2yy2

t .
p

nh
p. For collisional

particles with normalized energyy2yy2
t ,

p
nh

p the ex-
plicit expressions fork $Bp ? = ? pl and k $Bt ? = ? pl are
already calculated in Ref. [15]. Thus, we have all the ne
essary information of plasma viscosity, which is the su
of the contributions from these two classes of particles,
solve Eqs. (1) and (2). At the steady state, Eqs. (1) a
(2) in cylindrical coordinates become
32
9s2pd3y2

´2
t

jm 2 nqj

1

n
h
p

fI21sMp 2 Vp,pd 2 I22Vp,T g ­

p
p

4

X
mn

´2
mnmsm 2 nqd

3

Ω
Imn

∑
Vk

yt
1

m
m 2 nq

sMp 2 Vp,pd
∏

2 Lmn
m

m 2 nq
Vp,T

æ
1 ´2

t
neff

ytyRq

∑
Vk

yt
1

1 1 2q2

q2 sMp 2 Vp,pd
∏

, (8)
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where Vk is the parallel (to $B) flow speed, Vp,p ­
2cP0yNeytBp , Vp,T ­ 2cT 0yeytBp, and ´mn is the
Fourier amplitude of the magnetic field spectrumB ­
B0f1 1

P
mn ´mn cossmu 2 nz dg. The integralsImn and

Lmn in Eqs. (8) and (9) are defined asΩ
Imn

Lmn

æ
­

1
p

Z p
n

h
p

0
dx x2e2x

(
1

x 2
5
2

)

3
Z 1

21
dys1 2 3y2d2

µ
yx 0

B

∂
Rmn ,

whereRmn ­ nkyfsmvu 2 nvz d2 1 n
2
kg, yk is the paral-

lel particle speed,nk ­ 3nD 1 nE 1 neff, nD is the de-
flection frequency [19], andnE is the energy exchang
frequency [19]. Note that we have employed in Eqs.
and (9) the poloidal and toroidal viscosities calcula
in Hamada coordinates in Ref. [15] from the soluti
of the drift kinetic equation and the definitions given
Ref. [20] and converted the results approximately to
cylindrical coordinates based on the formula derived
Ref. [21]. Note also that the energy integralsImn andLmn

are truncated. This indicates that we are assuming tha
particle distribution function is a Maxwellian. The h
particles contribute to low collisonality drift-orbit trans
port flux, and the cold particles contribute to the nonl
ear collisional viscosities. We are interested in the c
wheren

h
p is of the order of unit [22]. There is a bifur

cated state in this parameter range which is relevan
H mode. For simplicity, we use the simple model fie
B ­ B0f1 2 ´t cosu 2 ´h cossmu 2 nz dg. We also as-
sume that the toroidal flow speedVt ø Vk is damped by
toroidal viscous force and charge-exchange momen
in

FIG. 1. The left sidesItd and the right sidesIhd of Eq. (8)
versusMp for np ­ 15, ´t ­ 0.053, ´h ­ 0.025, q ­ 1.92,
m ­ 2, n ­ 5, neff ­ 0.01, and Vp,p ­ Vp,T ­ 0.25. There
is only one solution ofMp .
4366
)
d

e
n

he

-
se

to

loss so thatVtyyt ø Vkyyt ø 0. However, we would
like to note that this assumption is not necessary. T
bifurcation solutions for the coupled nonlinear equatio
(8) and (9) will be presented in a separate article. W
this simplification Eq. (8) becomes a nonlinear equat
of Mp for the set of plasma parameters employed. T
equation is solved by plotting the left and right sid
of Eq. (8) as functions ofMp. The solution is the in-
tersection of these two curves. For the plasma para
ters, similar to those of Wendelstein 7-AS,´t ­ 0.053,
´h ­ 0.025, q ­ 1.92, m ­ 2, n ­ 5, and neff ­ 0.01,
the results are shown in Figs. 1–3.

In Fig. 1, the collisionality is high,np ­ 15, and
Vp,p ­ Vp,T ­ 0.25. The $E 3 $B Mach number is sub-
sonic. This is the low-mode (L-mode) solution. When
the collisionality decreases from the Pfirsch-Schlü
regime to the plateau regime, the neoclassical ion ene
confinement improves, which leads to higher values of
temperature and ion temperature gradientdTydr if ion
energy confinement is not dominated by the anomal
process. Thus, ifnp decreases,Vp,p ­ Vp,T increases.
(The exact relation betweennp and Vp,p ­ Vp,T can be
determined from the transport modeling which is beyo
the scope of this paper.) In that case, the value ofMp

increases. If the ion collisionality keeps decreasing, th
can be three solutions forMp, as shown in Fig. 2, where
Vp,p ­ Vp,T ­ 0.50 and np ­ 7.5. The one with the
smallest value is the continuation of theL-mode solution.
The one with the largest value is the newH-mode solution.
Both of these solutions are stable. The one in the mid
is unstable and is not relevant. If the ion collisionali
FIG. 2. It and Ih versusMp for the same parameters as
Fig. 1 exceptnp ­ 7.5 and Vp,p ­ Vp,T ­ 0.50. There are
three solutions ofMp. The one in the middle is unstable.
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FIG. 3. It and Ih versusMp for the same parameters as
Fig. 1 exceptnp ­ 7.0 andVp,p ­ Vp,T ­ 0.55. There is only
one solution ofMp .

decreases further tonp ­ 7.0, only theH-mode solution
exists, as shown in Fig. 3, whereVp,p ­ Vp,T ­ 0.55.
Note that theH-mode solution hasMp ø 1.5. This
value of Mp may be a factor of 2 larger than the earli
experimental results in Wendelstein 7-AS [5].

One can conclude that increasing the ion tempera
gradient is more efficient than increasing the density g
dient in drivingMp to theH-mode value. The reason i
that the magnitude ofI22 is about a factor of 2.5 large
thanI21. Thus, the increase indTydr needed to push the
zero of the left side of Eq. (8) to a higher value, to fac
itate bifurcation, is smaller than the necessary increas
dNydr. Furthermore, the ion energy confinement could
close to be neoclassical. In that case, lower ion collisi
ality can improve the ion energy confinement and incre
dTydr. However, particle confinement in the edge regi
is likely to be anomalous. Lower ion collisionality ma
not increasedNydr.

We emphasize that the process described here is
plicable in the regionr , a 2 ´trp . Becausé trp is
much less than 1 cm for typical edge parameters, thi
the region that is most likely to be measured with limit
spatial resolution. Also, because this mechanism is
restricted to the edge region, one could, in principle, h
a much broader bifurcated region to achieve better c
finement by tailoring the density and the temperature p
files. Only in the regiona 2 ´trp , r , a can the ion
orbit loss process be observed. As noted earlier, the d
orbit-transport-driven$E 3 $B flow only exists in nonax-
isymmetric toroidal plasmas such as stellarators and
in axisymmetric tokamaks.

We summarize theH-mode transition sequence in th
region r , a 2 ´trp in stellarators as follows: (a) Th
ion collisionality decreases due to plasma heating, wh
leads to higher values ofT and dTydr. (2) Lower
collisionality and largerdTydr drive the poloidal$E 3 $B
flow to bifurcation. (3) Plasma confinement is improv
r
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because of the increase of the gradients of the polo
$E 3 $B angular velocity and the diamagnetic angul
velocity which suppresses turbulence.
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