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Small Beam Nonparaxiality Arrests Self-Focusing of Optical Beams
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Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555
(Received 25 January 19P6

A new equation for self-focusing in the presence of small beam nonparaxiality is derived. Analysis
of this equation shows that nonparaxiality remains small as the beam propagates. Nevertheless, non-
paraxiality arrests self-focusing when the beam width becomes comparable to its wavelength. A series
of focusing-defocusing cycles of decreasing magnitude follows, ending with a final defocusing stage.
[S0031-9007(96)00384-5]

PACS numbers: 42.65.Jx

The model equation for propagation of a laser beam . — < A >2 @)
in a media with a Kerr nonlinearity is the nonlinear 47ry

Schradinger equation (NLS) where(x, y) andz were scaled by the initial beam radius
i + AL+ [Py =0, (1 ro and twice the diffraction !engthwr&/)h respectively.
Since the beam wavelengghis much smaller than,
where ¥ (x,y,z) is the electric field envelope; is the
distance in the direction of the beam propagation, and
A is the two dimensional Laplacian in the transverseTherefore, they,, term is usually neglected (thparaxial
(x,y) plane. Based on this equation Kelley predictedapproximation, in which case Eg. (2) reduces to (1).
the possibility of catastrophic self-focusing of optical However, from the expression far it is clear that as
beams whose power is above a threshold value [1]. Althe beam is self-focusing the nonparaxial term increases,
though this prediction was later confirmed in experimentsand it becomes comparable to the other terms when the
[2], the use of NLS as a model equation for the ad-beam width is of the order of a wavelength. In fact,
vanced stages of self-focusing has been often criticizedhe nonparaxial term has a large effect on self-focusing
The singularity formation in NLS is clearly nonphysi- even when it is still small, since as solutions of NLS self-
cal and it implies that a description of physical self-focus the Laplacian and the cubic nonlinearity balance
focusing near and beyond the singularity point should ineach other almost completely. As we will see, this key
clude an additional stabilizing mechanism which is ini- observation will allow us to treat nonparaxiality as a small
tially small but becomes important near the blowup pointperturbation.
much like the role of viscosity in shock waves forma- We now briefly review NLS self-focusing [5,6]. A self-
tion. Beginning with Feit and Fleck [3], it was argued focusing beam can be written @ = ¢, + i,r, where
that the paraxial approximation used in the derivation ofy,,; is the nonfocusing part of the beam which is “left
NLS from the Helmholtz equation is inconsistent with behind” as the focusing part of the beai approaches
the large focusing angles during the advanced stages tifie radially symmetric asymptotic lens profile,
NLS self-focusing and that no singularity will form if 1 L. 2
beam nonparaxiality is included. Indeed, in the numer- Ys(r,z) ~ ——=VI(&,0) ex%i{ + i == —>, 3
ical simulations of Feit and Fleck [3] self-focusing is L(z)

0<exl.

L 4

arrested before the beam diameter goes below the or- _r df_ 1 _ [ N

der of one wavelength, followed by several focusing- &= L) dz 1y "V Ty @)
defocu_smg .cycles. S|m|Iz‘;‘1r behawor was oPserved inr e resulting equation for is

numerical simulations of a “paraxially modified” NLS [4].

However, there was no analytical theory that explains this iVe + AV -V + VI’V + %szv =0, (5
behavior, nor was it clear how to reconcile the “nonparax-

ial” criticism with the ability of NLS theory to predict the B=-LL. (6)
existence and value of a critical power threshold, above\g the peam is focusing \, 0 and V approaches the

which §e|f—focusing is not compensated by diffraction. _Townes soliton, which is the positive solution of
In this Letter we show that NLS and beam nonparaxi-

ality can be combined into a single model. Our starting A\R-R+R =0, R'(0) =0,
point is the scalar Helmholtz equation for the propaga- ) 12 ¢ _
tion of a laser beam of the forl = (x,y, z) explikz) é'ﬂ,an(f)f et = Ag =3.52.

through a Kerr media, . "
oug The Townes soliton has exactly the critical power for self-

€. + i, + ALy + |YlPy =0, focusingN,. = [ R*(r)r dr = 1.86.
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Wheng is small, it is related to the excess power aboveWe are interested in the case where in the absence of non-
the critical power ofy,, paraxiality the solution will become singular. Therefore,
Bo > 0. Equation (16) shows thg® becomes negative

B~ u, N, = f [ |>r dr (7) onceL goes below/2eN./M By. To see that this is fol-
M lowed by the arrest of self-focusing we multiply (16) by

M = 1 [x rRX(r) dr = 0.55. L'L?, use (6), and integrate one more time to get
4 Jo
Similarly, the “energy” ofy, is given by y? = —% 1 O — G —ym), y=L% (A7)
M B
HY~—L27=M<L3——>, 8
s B = ML= - (RN ey ) B N RO
- 0 0
H, = f IV r dr — %] lip|*r dr, (18)
Vit = ). = gﬁo (1+vV1I-45)~- Aff“[l + 0(8)],
The rate of power loss af, (to ¢,¢) is given by Ho 0 (19)
d Mv(B)
— N, ~ — P (9)
&z P2 o= —UEE Hy = H0) - S, (@20
%, VB g >0, Bo 0
v(B) = 8 =0 (10)  and ife is sufficiently small so thats| < 1,
Returning to Eq. (2), if we multiply it byy* and Im s (21)
subtract the conjugate equation, we obtain an equation of Yum
power balance for nonparaxial NLS, If By > 0andH, < 0then0 < y,, < yy. Inthis case
ly|?r dr = _26] Im(* ) rdr. (11) the solution of (17) is periodic, oscillating betwegp and
dz yu- The period of the oscillations is (17)

We now make the assumption (that will be justified later)
that the nonparaxial term remains small compared with Az — |-M
the other terms in (2). Therefore, the left-hand side of Ho (ym — y) (y — ym)
(11) can still be approximated using (7) and (9),

d M or [substituting(y — ym)/(hm — ym) = cos u]

L[ prar~mp. + %up).  2)

dz L MyM Ym

AZ =2 —E<1 - —>, (22)

To approximate the right-hand side of (11) we use (3) and —H, M
(4) and the fact thgB is small to get

where E is the complete elliptic integral of the second
f'm(ll/*llfzz)rdr ~ Nc(%) , (13) kind. The first arrest of self-focusing occurs af =
L fLO lzy| dy. In the case of a collimated beam(0) = 0,
Combining (11)—(13), nonparaxial self-focusing is de- L3 = yu, andzg = AZ/2. Therefore, as \, 0, zo ap-

scribed by proaches the blowup point in the absence of nonparaxial-
_ 8) - 26N W Ze= L5/+/B(0) [6].
B:=—7v(B L2 (14) When B, > 0 andH, > 0 Eq. (17) can be rewritten as
together with (6). Equatlon (14) can be also derived from n_ 4H0 Vim
a solvability condition forV . y (Iym| + y)(l = 7>.

Since S8 is small, power losses af, to ¢, are small
compared with nonparaxial effects. Therefore, we beginf herefore, focusing is still arrested at= y,, but from

the analysis by considering the adiabatic version of (14), then on the solution will defocus. Note that in both cases
the minimal value of_ is

g = -2 ( : )l = (15)
- — —), =9,.
MoAL L = y3{* ~ \eN./MBo. (23)
Direct integration gives o _ _ _
2eN. 1 which in physical variables corresponds to a beam width
B = Bo — MC 2 (16) ~ 0.15//Bo wavelengths. Even at this stage the non-

paraxial term is onlyO(8) compared with the other terms
in (2), providing ana posteriorijustification for treating it
as a small perturbation.

2eN,. 1
—, Lo = L(0).
M L(z) 0 ( )

= p0) +
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In the analysis up to this point we have neglected
nonadiabatic effects. When these are included, after each

cycle there is an overall power drop of (14), Lm .
A := Bz + AZ) — B(z) N

_ _fZ+AZ Lﬁ)dz
z y .

Therefore, beam propagation is quasiperiodic if

— =0

- -e=107

-3 1 1 1 1 1 1 1
(24) 10 0 0.5 1 15 2 25 3 35 4
z

FIG. 1. L(z) for various values of beam nonparaxiality.
The parameters used ag$0) = 0.1, L(0) = 1, andL'(0) = 0.

|AB]
SR < B = BOw. (25)
In order to estimaté B8 we first use (6) and (17) to get
1, 1, yu/y — 1 these two cases is seen in Figs. 3 and 4efer 0.01 and
B=7y — 5w = ,3M<1 - 2y/u/y——1> 0.0001, respectively. In both cases, with each focusing-
" (26)  defocusing cycle the maximum @8 is decreasing, the

The integral in (24) can be approximated using th
Laplace method [7] and (10) and (26), showing that mos

power radiation occurs when ~ y,, and that

AB ~ - 1)1/2 exr(—\/%)

m 27)

The overall “energy” increase per cycle is given by (27)

and

gminimum of # is increasing, and the extreme values.of

are higher. In the case of stronger nonparaxiality (Fig. 3)
the focusing-defocusing cycles are almost periodic and
less intense. Overall changes g and H between it-
erations are small, resulting in a large number of cycles
before the final defocusing stage. However, only two
focusing cycles are observed in the case of very weak
nonparaxiality (Fig. 4) after which the beam will defo-
cus without focusing again. Although at this point beam

power is still above critical, it is not strong enough to

AH := Hy(z + AZ) — Hs(z) ~ —MAB, overcome both beam divergence and diffraction (.,
which follows from (8) and the fact that’ = 0 when remains positive).
Y = yum. The results _in this Let_ter are _in qualitative agree-

The analysis up to this point suggests that beam powdpent with previous numerlcql gtudles: Self—focusmg_ ar-
will eventually go below critical, at which point the fi- rest due to beam nonparaxiality followed by focusing-
nal defocusing stage will begin. In fact, the last defocusdefocusing cycles with decreasing intensity were observed
ing stage will begin much earlier when the power is stillby Feit and Flec'k in numerical simulations of the scalar
above critical, sinceV, > N, is only the necessary con- Helmholtz equation [3] and by Soto-Crespo and Akhme-
dition for blowup whose physical interpretation is that for diev in simulations of a paraxially modified NLS [4].
blowup to occur the Kerr nonlinearity should be strongerSimulation results in [3] also show abrupt power loss
than radial dispersion. However, for a defocusing beam t@t the self-foci and more gradual power loss in between
refocus, the focusing nonlinearity should overcome botihat eventually lead to cessation of self-focusing. While
radial dispersion and beam divergence, which will onlythe gradual power loss agrees with the first term on the
occur whenH, < 0. right-hand side of (14) (which peaks when~ y,,), the

To solve Egs. (6) and (14) numerically we define@brupt power loss in [3] has to do with the way that
A = 1/L and use Runge-Kutta methods to integrate an
equivalent system of equations,

2€eN,.

B = —v(B) — 7(142)4, Agr = AB,
In the following simulations the parameters used are »
B(0) = 0.1, L(0) = 1, andL’(0) = 0. Self-focusing ar- I
rest due to small nonparaxiality is seen in Fig. 1. As ex- 1
pected, as \, 0 the minimal value ofL. decreases (23)

= A2 3

e=10"2

and the location of the first arrest approaches The dif- 0 : : ]
ference between adiabatic (15) and nonadiabatic (14) non- 0 10 20 0 10 20
paraxial self-focusing increases as\, 0 (Fig. 2): Beam z zZ

propagation is quasiperiodic when= 0.01 but not when
e = 0.0001, in agreement with (25) andg ~ e~ !/2
(20), (21), and (27). The evolution df, 8, and H for

FIG. 2. Adiabatic [Eq. (15), dotted line] and nonadiabatic
[Eq. (14), solid line] nonparaxial self-focusing. The parameters
are as in Fig. 1.
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FIG. 3. Nonparaxial self-focusing [Eq. (14)] foe = 0.01.  FIG. 4. Nonparaxial self-focusing [Eq. (14)] fer = 0.0001.
The other parameters are as in Fig. 1. The other parameters are as in Fig. 1.

backscattering is incorporated into the numerical model

which “simply removes power that cannot propagate in e have seen that small nonparaxiality has a large
the forward direction without accounting explicitly for effect on self-focusing. However, there is very little
where it goes” [3]. In our model we have implicitly gifference between self-focusing in NLS and in Helmholtz
assumed that backscattering is negligible when we repyyring the first focusing cycle until the arrest At=
resented the solution using only its forwar(_j propagating, = For that reason, NLS may still serve as the model
component (3). Our model also does not include powepquation for self-focusing in the prefocal region even
loss due to the vectorial nature of Helmholtz's equationghough nonparaxiality is neglected.

in physical self-focusing. Lax, Louisell, and McKnight  The author would like to thank G.C. Papanicolaou for
have shown that NLS is only the leading order equatiofyitful discussions. This study has been supported by the

for the transverse component of Helmholtz's equationss\RpA under URI Grant No. NO0014092-1-1890.
and that the solution also has @ne*/L?) axial com-

ponent [8]. Therefore, self-focusing is accompanied by

power transfer fromy; to the axial component. Indeed,

recent numerical simulations suggest that self-focusing is[1] P. Kelley, Phys. Rev. Lettl5, 1005 (1965).

arrested in the vectorial case [9]. [2] For a review of self-focusing experiments see Y. Shen,
Although more accurate models should include vecto- Prog. Quantum Electron4, 1 (1975), and references

rial effects and backscattering, our analysis shows that therein.

both effects will remain small@(3)] even whenL as- [3] M. Feit and J. Fleck, J. Opt. SOC.. Am. B 633 (1988).

sumes its smallest value and that self-focusing would still [4] J- Soto-Crespo and N. Akhmediev, Opt. Commael,

be arrested wheih ~ L,,. Since both effects will lead 223 (1993).

i : [5] V. Malkin, Physica (Amsterdam$4D, 251 (1993).
to additional power losses (peaking wheén~ L,,), the [6] G. Fibich and G. Papanicolaou (to be published).

number of focusing-defocusing cycles will be smaller. In [7] For example, J. MurrayAsymptotic AnalysigSpringer-
our model the exponentially small power loss term plays ™ * vgrlag, New York, 1984).

an important role, providing the only mechanism for the [g] M. Lax, W. Louisell, and W. McKnight, Phys. Rev. A1,
decay of the oscillations. However, its effect will be prob- 1365 (1975).

ably negligible once these additional effects are included. [9] S. Chi and Q. Guo, Opt. Let20, 1598 (1995).
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