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Strange Nonattracting Chaotic Sets, Crises, and Fluctuating Lyapunov Exponents
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Chaotic attractors containing periodic orbits with different numbers of unstable directions display
fluctuating Lyapunov exponents. We show that the existence of certain nonattracting chaotic sets inside
the attractor guarantees the occurrence of this behavior in a persistent manner. These nonattracting sets
can be brought inside the attractor via a new type of crisis and may be created, as a parameter is varied,
via a sequence of bifurcations out of unstable periodic orbits. [S0031-9007(96)00376-6]
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The study of chaos in dynamical systems has attracteglicated behaviors. In particular, they affect the “accu-
the interest of a growing number of scientists during theracy” of numerically computed chaotic orbits dramatically
past decades. In the case of dissipative systems, many [afl. This effect is particularly acute when at least one ex-
these studies mainly focused on the observable evolutioponent fluctuates about zero, in which case the validity
i.e., the evolution on a chaotiattractor. However of the numerical simulations is highly unreliable. Since
important, attractors are not the only invariant sets thamany studies of chaotic dynamics rely on computer gen-
are present in chaotic dynamical systems [1]. Moreovererated data, the validity of the simulations is an extremely
invariant sets that are not attracting also play a majommportant issue. Fluctuating Lyapunov exponents are also
role in determining the observable dynamics, in suchassociated to other dramatic behaviors, such as the oc-
a way that their structure can even be obtained fronturrence of riddled basins, blowout bifurcations, and on-
real experiments (see, e.g., [2]). In particular, chaotioff intermittency [8]. It is of interest then to understand
attractors contain an infinite number of unstable (i.e.the mechanisms by which fluctuating Lyapunov exponents
not attracting) periodic orbits, which constitute a mainmay arise.
ingredient for the occurrence of chaos. In fact, they are We show in this Letter under which circumstances
related to thesensitivity to initial conditionglisplayed by  periodic orbits with different numbers of expanding (i.e.,
the attractor, a property that is at the heart of the definitiorunstable) directions and trajectories that repeatedly come
of chaos. close to both of them may coexist inside the same

One way of characterizing a chaotic evolution is byattractor in arobust way. Typical trajectories in this
means of the.yapunov exponentsThese numbers quan- attractor will display fluctuating Lyapunov exponents.
tify the average rate of expansion and contraction alonghis behavior, which persists under perturbations of the
the different directions in phase space as the systemystem, is guaranteed by the existence of a nonattracting
evolves. A positive Lyapunov exponent means that therehaotic set that has some of the properties of strange
is an expanding direction, and, therefore, sensitivity to ini-attractors. Typical examples of nonattracting chaotic sets
tial conditions and chaos. The periodic orbits inside an maps includerepellers[9] (p. 269) andsaddles,such
chaotic set can also be used to calculate Lyapunov exas those that appear in connection with chaotic transients
ponents [3] and the number of their expanding directionsand fractal basin boundaries [10]. The invariant sets that
typically determines the number of positive ones. Mostwe present in this Letter are saddles that, unlike the latter
attractors studied in the past contained periodic orbits wittones, are smooth along some unstable directions. They
equal numbers of expanding directions. However, it hasnay exist for maps of more than two dimensions (2D)
been observed that there can be chaotic attractors wheasd we expect them to appear as frequently as strange
periodic orbits with different numbers of expanding di- attractors.
rections coexist. [4,5]. But what happens to a typical We now address the question of how a strange attractor
trajectory on such an attractor that visits the vicinity ofcan contain periodic orbits with different numbers of ex-
all these orbits? One way of characterizing its behaviopanding directions and typical trajectories that repeatedly
is by means of théinite-timeLyapunov exponents which come close to all of them. In order to understand this,
quantify the rate of expansion and contraction during a fiwe first consider the simplest case of an invertible 3D
nite time sparf” [6]. In this case, as the trajectory visits map for which a trajectory visits the neighborhood of two
regions with different numbers of expanding directions,fixed points,p; and p,. Let us assume that; has two
the finite-time Lyapunov exponents experience fluctuaexpanding and one contracting direction while the situa-
tions on which they change sign. Recent studies havgon is reversed fop,. Associated with these directions,
shown that these fluctuations are associated to very comvhich determine the local behavior near the fixed points,
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there are global stable and unstable manifold$(p) and  be rather unusual. We then ask whether it is possible to
W"(p), which are the set of points that tend to the fixedhave a robust situation where periodic orbits with differ-
point p under forward and backward iterations of the map,ent numbers of expanding directions belong to the same
respectively. Therefore, we may have a trajectory thaattractor and there are trajectories that repeatedly come
visits the neighborhoods of both fixed points if the stableclose to all of them.

manifold of p;, W*(p,), intersects the unstable manifold In order to give a hint on how to go around this
of p», W“(p,), and vice versa, as shown schematicallyproblem, let us recall how the structure is of a typical
in Fig. 1(a). We now ask how robust is the situation;strange attractor,/A, of a 2D dissipative map. The
that is to say, what happens if we slightly perturb theattractor contains a dense set of unstable periodic orbits,
map? SinceW*(p,) and W*(p,) are 2D manifolds in a each of which has a 1D stable and a 1D unstable manifold.
3D phase space, they typically interséxnsverselyat  The attractor is smooth along the unstable directions and
curves such af’. A small perturbation will simply de- has a 2D stable set, thasin of attractionwhich is the set
form C but will not destroy it. Think, for example, of of points that tend to the attractor by forward iteration of
two planes inR? intersecting along a line: they will still the map. Thus, strange attractors have stable sets of larger
intersect if we slightly change their positions. However,dimension than the stable manifolds of its periodic points,
the intersection betweeW?*(p,) and W¥(p;) is not ro-  p, and such that the difference betweeiiA) andn*( p)
bust: it can be destroyed by an arbitrarily small perturis an integer. This has the important consequence that,
bation. Think, for example, of two lines intersecting atin order to approach the vicinity of any of the periodic
a point inR?; a slight change in their positions will typ- points contained in the attractor, a trajectory just needs
ically split them apart. So, we see in this example thato intersect a 2D object, the basin, which is “easier” than
although we may have an orbit that visits the vicinity of intersecting the 1D stable manifold itself.

two fixed points with different numbers of expanding di- Typical chaotic saddles of 2D dissipative maps also
rections, the situation is not robust and will occur only forcontain a dense set of periodic orbits with 1D stable and
very particular cases. We may think that going to higherlD unstable manifolds, but have a Cantor set structure
dimensions will solve the problem. Unfortunately, the along the unstable direction [10]. Consider, for example,
same situation arises in all dimensions. In order to shova 2D map with a chaotic set on which periodic orbits are
this, let us consider the case of Al map with two fixed dense. If it is smooth along the unstable manifolds and
points, p; and p,. Let us assume that the stable mani-in general transverse to the stable ones, then it will have
folds are of dimension*(p;) andn’®(p,) and the unstable a 2D stable set and will therefore be attracting. On the
ones of dimensiom*(p;) = n — n*(p1) andn*(p;) =  other hand, if it is not smooth along the unstable manifold,
n — n*(p2). Thus,Wi(p;) N W¥(p,) will typically be it will be a saddle. The same argument extends to the
of dimensionn®(p;) + n*(p2) — n = n*(p;) — n*(p2)  case ofnD maps with 1D unstable manifolds. However,
and W¥%(p;) N W*(p,) of dimensionn*(p,) — n*(p;). in these higher-dimensional cases, nonattracting chaotic
Each intersection will be transverse (and thus, “robust”sets with more than one expanding direction can have
only if it does not have a negative dimension. Howevera different structure. In particular, they can be smooth
this cannot be true for both intersections simultaneously iklong some of the expanding directions [see Fig. 1(b)].
n*(p1) # n*(p2). Replacingp; andp, by a larger but fi-  Consider, for example, the following 3D map:

nite number of periodic orbits does not solve the problem, sech(z/d)(1 — 2)(a — xrzz + by,) + zcx,

either. Thus, the situation depicted in Fig. 1(a) seems to el
Yn+1 = Xn, (1)
@ Wsen Zn+1 = _Z,% — 2202n»

wherea, b, c, d and% < zo < 1 are parameters. This
map is not invertible but it is simple enough so that
we can analyze it rather easily: (i) The evolution 3n
/- is independent ofc and y and is given by a quadratic
map with an unstable fixed point at= 0 and attractors
Y with —3 <z <1 forall + <z < 1. (i) The z =0
plane is invariant under forward iteration of (1), all of
its points are unstable along the direction, and the
FIG. 1. (a)p; and p, are fixed points with different numbers €volution on it is given by the Hénon map. Thus, if
of expanding directions and intersecting stable, and unsta- a = 1.4 and b = 0.3, there is a chaotic saddle in this
E:)en’ ‘;Vt:’\ n(]l?)ngc:lsdz'nQnsali?rgtcﬁﬁrt%%b;(git?cnsiisvf/ri?gz tgsnigée;f%- lane that has the same structure as the chaotic attractor
2D unstable periodic orbits, ”kg]. W( py) intersectsv*(S) of the Hénon map Wlth_ one extra unstable direction along
and W*( p,) intersectsW*(p,). The intersections are not de- - All th.e unstable periodic o_rb|ts on the saddle have one
stroyed by any small perturbation. Note that only a piece ofcontracting and two expanding directions. The saddle,
the manifolds is shown in (a) and (b). like the Hénon attractor, is smooth along the unstable
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directions contained in the = 0 plane and is typically
transverse to the stable ones. Thus, there is a 2D set
of initial conditions withz = 0 (the basin of attraction

of the Hénon attractor) that go to the strange saddle
asymptotically in time. This is an example of a strange
chaotic saddle on which periodic orbits are dense, whose
stable dimension is higher than that of the periodic points
it contains and differs from it in at least an integer. If we

=

Lyapunov exponents
o
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replace the evolution equation ferin (1) by the pair of |

equationsz,+; = —z,% — 2202, + ew,, Wy+1 = Z,, W€ -1

get an invertible 4D map that has exactly the same strange 6.4 6.6 6.8 7
saddle as (1). P

Consider now a 3D map that has a strange saddle of this 5
type, S, with a dense set of 1D stable periodic orbits and

a periodic pointp,, outside, with a 2D stable manifold, as 4

3

2

shown in Fig. 1(b). The unstable set $for of any of its
periodic points can easily intersect the stable manifold of
p2 since they are all at least 2D. On the other hand, the 1D
unstable manifold op, can easily intersect the stable set
of S, which is at least 2D. Furthermore, both intersections

X1+X2

-

can be transverse (i.e., robust) simultaneously. Therefore, 1 =S

if they occur for a certain parameter value they will 0"

still occur for parameter values nearby. On the other 6.4 6.6 6.8 7
hand, if this happens, we may have a trajectory that ) ) )
repeatedly comes close j» and toS. Thus, due to the P

existence of a strange saddle that is smooth along som@G. 2. Two views of the crisis that occurs for the double-
of its unstable directions, we have a robust situation irrotor map (Ref. [5]) atp = 6.86. (a) Distribution of the first
which a trajectory visits the vicinity of periodic points two finite-time Lyapunov exponents as a function @f (b)
with different numbers of expanding directions. Given a?g“rcat'on diagram of the attractors (solid line) and of some
. . . unstable periodic orbits (dashed line) that bifurcate by
strange Sa‘?'d'_e liké, acrisis [11] Can occur at which its period doubling and become 2D unstable (dash-dotted line).
stable set is intersected by a chaotic attractor. Suppose
that before the crisis, most of the periodic points in the
attractor and in the saddle have different numbers ofor noninvertible 1D maps [9] (p. 122) we can also show
unstable directions, and that after the crisis there still is @&hat the mechanism of Fig. 1(b) occurs in this case with
chaotic attractor that contains the saddle. Then, the finitethe stable and unstable manifolds replaced by stable and
time Lyapunov exponents should experience fluctuationsnstable sets.
after the crisis due to the coexistence of periodic points We now address the question of how often a situation
with different numbers of expanding directions in thelike the one depicted in Fig. 1(b) may be encountered.
attractor. Moreover, since crises are associated to theor this purpose, we first look at the mechanisms by
creation of new intersections between stable and unstablghich one such strange saddle can arise in a typical
manifolds or sets, the occurrence of such a crisis woulehD dissipative map. To get some insight, we recall
also imply that of the mechanism depicted in Fig. 1(b).how a strange attractor with one positive Lyapunov
In fact, the map (1) provides an example. If we takeexponent may appear. A possible scenario involves a
a=185 b= -025 ¢c=03, andd = 0.1, a crisis sequence of bifurcations as a parameter is varied. At
of this type occurs at, = z; = 0.839, at which the each bifurcation, a stable periodic orbit (i.e., with =D
strange saddle at = 0 is incorporated into the attractor. stable manifold) becomes 1D unstable and gives birth to
In this case all periodic orbits in the saddle have twoa new stable orbit which becomes 1D unstable at the
expanding directions while most of the orbits in the next bifurcation and so on, as in Fig. 2(b). When the
precrisis attractor have only one [12]. After the crisis, thestrange attractor appears, it contains some of these 1D
second Lyapunov exponent starts to fluctuate (see Fig. @nstable manifolds and is smooth along them. Moreover,
for another example). Using well known properties ofthe attractor “inherits” thenD stable set of the periodic
the quadratic map, it can be proved that, if (1) has arorbit that was its seed: it3D basin of attraction contains
attractor atzy = z;, it must contain points wit = 0  a smooth deformation of what was the stable manifold
(see, e.g., [9], p. 51). For the chosen parameter valuesf the periodic orbit from which the bifurcations started.
these points belong to the stable set of the strange saddi@onsider a completely similar situation, but where we
It then follows that there is an attractor that contains thisstart off a 1D unstable (i.e., not attracting) orbit with
saddle. Using the definitions of stable and unstable setn (n — 1)D stable set. At each bifurcation point, a 1D
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unstable orbit will become 2D unstable and give birththat they are 2D stable while the attractor's dimension
to a 1D unstable one, as in Fig. 2(b). At the end ofis slightly less than 1.7 support the idea that a whole
this process we expect to have a nonattracting chaotimvariant set containing these orbits is incorporated into
set, which contains some of these 2D unstable periodithe attractor at the crisis.
orbits, that is smooth along the unstable direction that was It was suggested in [7] that chaotic attractors contain-
stable before the bifurcations and that has(an— 1)D  ing periodic orbits with unstable manifolds of different di-
stable set inherited from the “primordial” 1D unstable mensions should be encountered very frequently in high-
orbit. For example, this is what happens to the invariantdimensional systems. In this Letter we provide an ex-
set atz = 0 of (1) as we varyp. Furthermore, we have planation of how this may arise and why we may expect
found these bifurcations in the double-rotor map [5] [sedt to occur so often. The situation of a trajectory, not
Fig. 2(b)]. This 4D map is the return map of a systemnecessarily in an attractor, that came close to periodic or-
describing the evolution of two connected rods movingbits with different numbers of expanding directions was
on a plane under the effect éfkicks and damping. For also analyzed in [4]. The construction involved invariant
certain parameter values, this map has periodic orbits witsmooth manifolds instead of strange sets as in this case.
different numbers of expanding directions and fluctuatingVe believe our situation should be more common than
Lyapunov exponents. We have thoroughly analyzed théhis one in typical dissipative maps. In particular, our two
validity of its numerically computed chaotic trajectories examples suggest that the strange chaotic saddles that we
and found that they are highly unreliable when oneneed can be created in the same way as strange attractors.
Lyapunov exponent fluctuates about zero [7]. Thus, we think they should appear as frequently as strange
Is it possible that the mechanism of Fig. 1(b) occurs inattractors in maps of more than two dimensions.
this map? In order to answer this, we have studied what | acknowledge useful conversations with J. A. Yorke,
happens as the strength of the forcing, is increased T. Sauer, C. Grebogi, and E. Ott. This work was
while the moments of inertia, damping coefficients, andsupported by the University of Buenos Aires, CONICET,
time between kicks are kept fixed at the same valueand Fundacion Antorchas.
as in [5]. We have found a crisis at = 6.86, after
which the Lyapunov exponents start to fluctuate wildly
[see Fig. 2(a)]. We have also estimated how far there is a
true orbit from the numerically computed ones before and
after the Chsis, finding that the average of thi&:‘tdowmg [1] In this Letter we describe the evolution with maps, which
d'Stan,C? [7] Increases by_an order of magmtude aftgr can be obtained from the corresponding flows via a
the crisis. As shown in Fig. 2(a) the fluctuations persist  poincaré surface of section. A subset of phase space is

for a whole interval of parameter values, implying the invariant if it is mapped onto itself as the system evolves
occurrence of a robust mechanism. Before the crisis  forward or backwards in time.
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