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Strange Nonattracting Chaotic Sets, Crises, and Fluctuating Lyapunov Exponents
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Chaotic attractors containing periodic orbits with different numbers of unstable directions display
fluctuating Lyapunov exponents. We show that the existence of certain nonattracting chaotic sets inside
the attractor guarantees the occurrence of this behavior in a persistent manner. These nonattracting sets
can be brought inside the attractor via a new type of crisis and may be created, as a parameter is varied,
via a sequence of bifurcations out of unstable periodic orbits. [S0031-9007(96)00376-6]
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The study of chaos in dynamical systems has attra
the interest of a growing number of scientists during
past decades. In the case of dissipative systems, ma
these studies mainly focused on the observable evolu
i.e., the evolution on a chaoticattractor. However
important, attractors are not the only invariant sets t
are present in chaotic dynamical systems [1]. Moreo
invariant sets that are not attracting also play a ma
role in determining the observable dynamics, in su
a way that their structure can even be obtained fr
real experiments (see, e.g., [2]). In particular, chao
attractors contain an infinite number of unstable (i
not attracting) periodic orbits, which constitute a ma
ingredient for the occurrence of chaos. In fact, they
related to thesensitivity to initial conditionsdisplayed by
the attractor, a property that is at the heart of the defini
of chaos.

One way of characterizing a chaotic evolution is
means of theLyapunov exponents. These numbers quan
tify the average rate of expansion and contraction al
the different directions in phase space as the sys
evolves. A positive Lyapunov exponent means that th
is an expanding direction, and, therefore, sensitivity to
tial conditions and chaos. The periodic orbits inside
chaotic set can also be used to calculate Lyapunov
ponents [3] and the number of their expanding directi
typically determines the number of positive ones. M
attractors studied in the past contained periodic orbits w
equal numbers of expanding directions. However, it
been observed that there can be chaotic attractors w
periodic orbits with different numbers of expanding d
rections coexist. [4,5]. But what happens to a typi
trajectory on such an attractor that visits the vicinity
all these orbits? One way of characterizing its behav
is by means of thefinite-timeLyapunov exponents whic
quantify the rate of expansion and contraction during a
nite time spanT [6]. In this case, as the trajectory visi
regions with different numbers of expanding directio
the finite-time Lyapunov exponents experience fluct
tions on which they change sign. Recent studies h
shown that these fluctuations are associated to very c
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plicated behaviors. In particular, they affect the “ac
racy” of numerically computed chaotic orbits dramatica
[7]. This effect is particularly acute when at least one
ponent fluctuates about zero, in which case the val
of the numerical simulations is highly unreliable. Sin
many studies of chaotic dynamics rely on computer g
erated data, the validity of the simulations is an extrem
important issue. Fluctuating Lyapunov exponents are
associated to other dramatic behaviors, such as the
currence of riddled basins, blowout bifurcations, and
off intermittency [8]. It is of interest then to understa
the mechanisms by which fluctuating Lyapunov expon
may arise.

We show in this Letter under which circumstanc
periodic orbits with different numbers of expanding (i
unstable) directions and trajectories that repeatedly c
close to both of them may coexist inside the sa
attractor in arobust way. Typical trajectories in thi
attractor will display fluctuating Lyapunov exponen
This behavior, which persists under perturbations of
system, is guaranteed by the existence of a nonattra
chaotic set that has some of the properties of stra
attractors. Typical examples of nonattracting chaotic
in maps includerepellers [9] (p. 269) andsaddles,such
as those that appear in connection with chaotic trans
and fractal basin boundaries [10]. The invariant sets
we present in this Letter are saddles that, unlike the l
ones, are smooth along some unstable directions.
may exist for maps of more than two dimensions (2
and we expect them to appear as frequently as str
attractors.

We now address the question of how a strange attra
can contain periodic orbits with different numbers of
panding directions and typical trajectories that repeat
come close to all of them. In order to understand t
we first consider the simplest case of an invertible
map for which a trajectory visits the neighborhood of t
fixed points,p1 and p2. Let us assume thatp1 has two
expanding and one contracting direction while the si
tion is reversed forp2. Associated with these direction
which determine the local behavior near the fixed poi
© 1996 The American Physical Society
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there are global stable and unstable manifolds,Wsspd and
Wuspd, which are the set of points that tend to the fix
point p under forward and backward iterations of the m
respectively. Therefore, we may have a trajectory t
visits the neighborhoods of both fixed points if the sta
manifold of p1, Wssp1d, intersects the unstable manifo
of p2, Wusp2d, and vice versa, as shown schematica
in Fig. 1(a). We now ask how robust is the situatio
that is to say, what happens if we slightly perturb t
map? SinceWssp2d and Wusp1d are 2D manifolds in a
3D phase space, they typically intersecttransverselyat
curves such asC . A small perturbation will simply de-
form C but will not destroy it. Think, for example, o
two planes inR3 intersecting along a line: they will stil
intersect if we slightly change their positions. Howev
the intersection betweenWssp2d and Wusp1d is not ro-
bust: it can be destroyed by an arbitrarily small pert
bation. Think, for example, of two lines intersecting
a point inR3; a slight change in their positions will typ
ically split them apart. So, we see in this example t
although we may have an orbit that visits the vicinity
two fixed points with different numbers of expanding d
rections, the situation is not robust and will occur only
very particular cases. We may think that going to hig
dimensions will solve the problem. Unfortunately, t
same situation arises in all dimensions. In order to sh
this, let us consider the case of annD map with two fixed
points, p1 and p2. Let us assume that the stable ma
folds are of dimensionnssp1d andnssp2d and the unstable
ones of dimensionnusp1d ­ n 2 nssp1d and nusp2d ­
n 2 nssp2d. Thus,Wssp1d > Wusp2d will typically be
of dimensionnssp1d 1 nusp2d 2 n ­ nssp1d 2 nssp2d
and Wusp1d > Wssp2d of dimensionnssp2d 2 nssp1d.
Each intersection will be transverse (and thus, “robu
only if it does not have a negative dimension. Howev
this cannot be true for both intersections simultaneous
nssp1d fi nssp2d. Replacingp1 andp2 by a larger but fi-
nite number of periodic orbits does not solve the proble
either. Thus, the situation depicted in Fig. 1(a) seem
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FIG. 1. (a)p1 andp2 are fixed points with different number
of expanding directions and intersecting stable,Ws, and unsta-
ble, Wu, manifolds. A slight perturbation destroys the interse
tion atA. (b) S is a nonattracting chaotic set with a dense se
2D unstable periodic orbits, likep1. Wusp2d intersectsW ssS d
and W usp1d intersectsWssp2d. The intersections are not de
stroyed by any small perturbation. Note that only a piece
the manifolds is shown in (a) and (b).
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be rather unusual. We then ask whether it is possible
have a robust situation where periodic orbits with diffe
ent numbers of expanding directions belong to the sa
attractor and there are trajectories that repeatedly c
close to all of them.

In order to give a hint on how to go around th
problem, let us recall how the structure is of a typic
strange attractor,A, of a 2D dissipative map. The
attractor contains a dense set of unstable periodic or
each of which has a 1D stable and a 1D unstable manif
The attractor is smooth along the unstable directions
has a 2D stable set, thebasin of attraction,which is the set
of points that tend to the attractor by forward iteration
the map. Thus, strange attractors have stable sets of la
dimension than the stable manifolds of its periodic poin
p, and such that the difference betweennssAd andnsspd
is an integer. This has the important consequence t
in order to approach the vicinity of any of the period
points contained in the attractor, a trajectory just ne
to intersect a 2D object, the basin, which is “easier” th
intersecting the 1D stable manifold itself.

Typical chaotic saddles of 2D dissipative maps a
contain a dense set of periodic orbits with 1D stable a
1D unstable manifolds, but have a Cantor set struc
along the unstable direction [10]. Consider, for examp
a 2D map with a chaotic set on which periodic orbits a
dense. If it is smooth along the unstable manifolds a
in general transverse to the stable ones, then it will h
a 2D stable set and will therefore be attracting. On
other hand, if it is not smooth along the unstable manifo
it will be a saddle. The same argument extends to
case ofnD maps with 1D unstable manifolds. Howeve
in these higher-dimensional cases, nonattracting cha
sets with more than one expanding direction can h
a different structure. In particular, they can be smo
along some of the expanding directions [see Fig. 1(
Consider, for example, the following 3D map:

xn11 ­ sechszydd s1 2 zd sa 2 x2
n 1 bynd 1 zcx ,

yn11 ­ xn ,

zn11 ­ 2z2
n 2 2z0zn ,

(1)

wherea, b, c, d and 1
2 , z0 , 1 are parameters. Thi

map is not invertible but it is simple enough so th
we can analyze it rather easily: (i) The evolution inz
is independent ofx and y and is given by a quadrati
map with an unstable fixed point atz ­ 0 and attractors
with 23 , z , 1 for all 1

2 , z0 , 1. (ii) The z ­ 0
plane is invariant under forward iteration of (1), all
its points are unstable along thez direction, and the
evolution on it is given by the Hénon map. Thus,
a ­ 1.4 and b ­ 0.3, there is a chaotic saddle in th
plane that has the same structure as the chaotic attra
of the Hénon map with one extra unstable direction alo
z. All the unstable periodic orbits on the saddle have o
contracting and two expanding directions. The sadd
like the Hénon attractor, is smooth along the unsta
4349
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directions contained in thez ­ 0 plane and is typically
transverse to the stable ones. Thus, there is a 2D
of initial conditions with z ­ 0 (the basin of attraction
of the Hénon attractor) that go to the strange sad
asymptotically in time. This is an example of a stran
chaotic saddle on which periodic orbits are dense, wh
stable dimension is higher than that of the periodic po
it contains and differs from it in at least an integer. If w
replace the evolution equation forz in (1) by the pair of
equationszn11 ­ 2z2

n 2 2z0zn 1 ewn, wn11 ­ zn, we
get an invertible 4D map that has exactly the same stra
saddle as (1).

Consider now a 3D map that has a strange saddle of
type,S , with a dense set of 1D stable periodic orbits a
a periodic point,p2, outside, with a 2D stable manifold, a
shown in Fig. 1(b). The unstable set ofS or of any of its
periodic points can easily intersect the stable manifold
p2 since they are all at least 2D. On the other hand, the
unstable manifold ofp2 can easily intersect the stable s
of S , which is at least 2D. Furthermore, both intersectio
can be transverse (i.e., robust) simultaneously. There
if they occur for a certain parameter value they w
still occur for parameter values nearby. On the ot
hand, if this happens, we may have a trajectory t
repeatedly comes close top2 and toS . Thus, due to the
existence of a strange saddle that is smooth along s
of its unstable directions, we have a robust situation
which a trajectory visits the vicinity of periodic poin
with different numbers of expanding directions. Given
strange saddle likeS , a crisis [11] can occur at which its
stable set is intersected by a chaotic attractor. Supp
that before the crisis, most of the periodic points in
attractor and in the saddle have different numbers
unstable directions, and that after the crisis there still
chaotic attractor that contains the saddle. Then, the fin
time Lyapunov exponents should experience fluctuati
after the crisis due to the coexistence of periodic po
with different numbers of expanding directions in t
attractor. Moreover, since crises are associated to
creation of new intersections between stable and unst
manifolds or sets, the occurrence of such a crisis wo
also imply that of the mechanism depicted in Fig. 1(
In fact, the map (1) provides an example. If we ta
a ­ 1.85, b ­ 20.25, c ­ 0.3, and d ­ 0.1, a crisis
of this type occurs atz0 ­ zp

0 ø 0.839, at which the
strange saddle atz ­ 0 is incorporated into the attracto
In this case all periodic orbits in the saddle have t
expanding directions while most of the orbits in t
precrisis attractor have only one [12]. After the crisis,
second Lyapunov exponent starts to fluctuate (see F
for another example). Using well known properties
the quadratic map, it can be proved that, if (1) has
attractor atz0 ­ zp

0 , it must contain points withz ­ 0
(see, e.g., [9], p. 51). For the chosen parameter val
these points belong to the stable set of the strange sa
It then follows that there is an attractor that contains t
saddle. Using the definitions of stable and unstable
4350
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FIG. 2. Two views of the crisis that occurs for the doub
rotor map (Ref. [5]) atr ø 6.86. (a) Distribution of the first
two finite-time Lyapunov exponents as a function ofr. (b)
Bifurcation diagram of the attractors (solid line) and of so
1D unstable periodic orbits (dashed line) that bifurcate
period doubling and become 2D unstable (dash-dotted line)

for noninvertible 1D maps [9] (p. 122) we can also sh
that the mechanism of Fig. 1(b) occurs in this case w
the stable and unstable manifolds replaced by stable
unstable sets.

We now address the question of how often a situa
like the one depicted in Fig. 1(b) may be encounter
For this purpose, we first look at the mechanisms
which one such strange saddle can arise in a typ
nD dissipative map. To get some insight, we rec
how a strange attractor with one positive Lyapun
exponent may appear. A possible scenario involve
sequence of bifurcations as a parameter is varied.
each bifurcation, a stable periodic orbit (i.e., with annD
stable manifold) becomes 1D unstable and gives birth
a new stable orbit which becomes 1D unstable at
next bifurcation and so on, as in Fig. 2(b). When t
strange attractor appears, it contains some of these
unstable manifolds and is smooth along them. Moreo
the attractor “inherits” thenD stable set of the periodi
orbit that was its seed: itsnD basin of attraction contain
a smooth deformation of what was the stable manif
of the periodic orbit from which the bifurcations starte
Consider a completely similar situation, but where
start off a 1D unstable (i.e., not attracting) orbit wi
an sn 2 1dD stable set. At each bifurcation point, a 1
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unstable orbit will become 2D unstable and give bi
to a 1D unstable one, as in Fig. 2(b). At the end
this process we expect to have a nonattracting cha
set, which contains some of these 2D unstable perio
orbits, that is smooth along the unstable direction that w
stable before the bifurcations and that has ansn 2 1dD
stable set inherited from the “primordial” 1D unstab
orbit. For example, this is what happens to the invari
set atz ­ 0 of (1) as we varyr. Furthermore, we have
found these bifurcations in the double-rotor map [5] [s
Fig. 2(b)]. This 4D map is the return map of a syste
describing the evolution of two connected rods movi
on a plane under the effect ofd kicks and damping. For
certain parameter values, this map has periodic orbits w
different numbers of expanding directions and fluctuat
Lyapunov exponents. We have thoroughly analyzed
validity of its numerically computed chaotic trajectorie
and found that they are highly unreliable when o
Lyapunov exponent fluctuates about zero [7].

Is it possible that the mechanism of Fig. 1(b) occurs
this map? In order to answer this, we have studied w
happens as the strength of the forcing,r, is increased
while the moments of inertia, damping coefficients, a
time between kicks are kept fixed at the same val
as in [5]. We have found a crisis atr ø 6.86, after
which the Lyapunov exponents start to fluctuate wild
[see Fig. 2(a)]. We have also estimated how far there
true orbit from the numerically computed ones before a
after the crisis, finding that the average of thisshadowing
distance [7] increases by an order of magnitude aft
the crisis. As shown in Fig. 2(a) the fluctuations pers
for a whole interval of parameter values, implying th
occurrence of a robust mechanism. Before the cr
there are strange attractors with one positive Lyapu
exponent. Simultaneously, there is a 1D unstable perio
orbit in the boundary of the basin of attraction th
becomes 2D unstable via a period-doubling bifurcati
As r is increased, it gives rise to a cascade of peri
doubling bifurcations at which 1D unstable orbits beco
2D unstable [see Fig. 2(b)]. Searching for periodic orb
we could follow only a finite number of their bifurcation
However, using a different technique, we have recen
found that, after the bifurcations, there is a stran
saddle containing some of these orbits, with a dense
of 2D unstable periodic orbits, two positive Lyapuno
exponents, and a 3D stable set [13]. Now, if the unsta
manifold of some of the periodic orbits in the precris
attractor intersects this stable set, the strange saddle
be incorporated into the attractor. In fact, we believe t
this is what occurs at the crisis, as shown in Fig. 2(
where we have plotted the bifurcation diagram of t
attractor and of some of the unstable periodic orbits
mentioned before. We have verified that all these or
belong to the attractor after the crisis. The persistenc
the situation together with the facts that all the perio
orbits are brought into the attractor simultaneously a
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that they are 2D stable while the attractor’s dimensi
is slightly less than 1.7 support the idea that a who
invariant set containing these orbits is incorporated in
the attractor at the crisis.

It was suggested in [7] that chaotic attractors conta
ing periodic orbits with unstable manifolds of different d
mensions should be encountered very frequently in hi
dimensional systems. In this Letter we provide an e
planation of how this may arise and why we may expe
it to occur so often. The situation of a trajectory, n
necessarily in an attractor, that came close to periodic
bits with different numbers of expanding directions w
also analyzed in [4]. The construction involved invaria
smooth manifolds instead of strange sets as in this ca
We believe our situation should be more common th
this one in typical dissipative maps. In particular, our tw
examples suggest that the strange chaotic saddles tha
need can be created in the same way as strange attrac
Thus, we think they should appear as frequently as stra
attractors in maps of more than two dimensions.
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