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Direct Probing of Quantum Phase Space by Photon Counting
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We propose a very simple experimental setup to measure, via photon counting, the overlap of the
Wigner functions characterizing two single mode light beams. We show that this scheme can be applied
to determine directly the phase space quasiprobability distribution of the single mode field and in a
certain limit the Wigner function can be measured without use of tomographic reconstruction algorithms.
The deleterious effects of nonunit photodetector efficiency are analyzed. [S0031-9007(96)00351-1]

PACS numbers: 42.50.Dv, 03.65.Bz

The concept of phase space, fundamental in classica¥(«) = W(a;0). These distributions can be written as
mechanics, remains useful when passing to quanturexpectation values of the following normally ordered
theory. It is well known that quantum states can beoperator:
fully characterized by the Wigner function defined in the _ 2
phase space and that the quantum expectation values clifa;s) = ————

L m(l = s)
be represented as statistical averages of the phase space
variables [1]. In quantum optics this formalism provides % - ex;{—
a convenient framework for discussion of many topics [2]. '

An exciting problem explored recently is the experi-
mental determination of the Wigner function of a single
light mode. It was first shown theoretically by Vogel and
Risken [3] that quadrature amplitude distributions mea
sured in homodyne detection provide enough data to pe
form a complete reconstruction of the Wigner function.

This method, called quantum tomography, was SUCCeS$ Haed fora = 0 and s — 0 the operator (1) can be

fully reallz_ed in a series of experiments [4]. _The quantity, en in the following equivalent forms:
recorded in the quantum tomography experiments was the

2 — i — o)
1_S(a a") (a a))., @

where at and a are the single mode photon creation
and annihilation operators. In the proposed measurement
scheme we utilize the simple fact that the single mode
‘Wigner function at the origin of the complex phase space
rW(O) can be directly computed from the distribution of
counts measured by a photodetector facing this mode.

statistics of the count difference of photodetectors facing 0(0;0) = 2 exp(—2ata) :

the signal field superimposed on a strong coherent field. T

The Wigner function was reconstructed from these data 7 2 L _ara(ata)

using numerical algorithms of the inverse Radon trans- - Z(—l) ie Y

form. There are also other known methods for the com- n=0 '

plete experimental characterization of the single mode 7 &

state: heterodyne [5] and double homodyne [6—8] detec- = D> (= 1)"In)nl, (2)
tion, where the so-calle@ function of the signal field, n=0

which is a smoothed Wigner function, is measured. where we have used the normally ordered operator rep-

In this Letter we propose an alternative scheme foresentation of the: photon number projection operator.
the phase space measurement. Given two single modéhe quantum expectation value of this operator gives
light beams we present an extremely simple experimental R &
setup to measure the overlap of the Wigner functions W(0) = (0(0;0) = = D (=1)"pa. 3)
characterizing these fields. Moreover, we show that the 7 n=0
Wigner functions can be relatively rescaled by an arbitrarywhere the valuep,, appearing in this expansion is just
positive factor. The measurement is performed by opticathe probability of counting: photons by an ideal pho-
means and only a trivial arithmetic operation has to beodetector. Thus the photoncount statistics allows us to
done on the data recorded from the photodetector. calculate the Wigner function at the origin of the phase

Before we discuss the proposed measurement, we rgpace. It has been pointed out by Royer [10] that the
view briefly, using a Heisenberg-picture type of approachability to measureW (0) allows us to scan the complete
the properties of the phase space distributions used iwWigner function by shifting the system or equivalently the
this Letter. The Wigner function or th@ function are frame of reference in the phase space. Although in prin-
examples of more generalparametrized quasiprobabil- ciple this shifting of the reference frame might be realized
ity distributions W(a;s) in the complexa phase space in quantum optics, its experimental realization would en-
[9], with s = 0 corresponding to the Wigner function counter difficulties. Therefore we will utilize the results
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of the measurement d¥(0) in an alternative way, pro-
viding a much more feasible experimental scheme. The .
proposed scheme is very general and we believe that as ” “'0"; D
it may find many various applications and generaliza-

tions. In the present Letter we will discuss in detail one
specific example motivated by the quantum tomography

FD

experiments. BS
The proposed setup is presented in Fig. 1. We will
take the detected field to be a superposition of two single ap

mode fields, which we will call the signal and the probe,

and denote their annihilation operators by and a,, FIG. 1. Experimental setup discussed in the Letter. BS
respectively. Such a combination can be easily realizeg€notes the beam splitter, PD is the photodetector, and the
by means of a beam splitter. As it is well known [2], annihilation operators of the modes are indicated.

the action of the beam splitter is described by an SU(2)

transformation between the annihilation operators of the . . .
incoming and outgoing modes. Since the phase shift@perators. Taking the expectation value over the signal

appearing in this transformation can be eliminated b)ﬁnd using the definition .(1) we ob¥aln that t_he Wigner
an appropriate redefinition of the modes, the annihilatiofunction (3) for the outgomlg.mc.)de'ls propo.rtlonal to an
operator of the outgoing mode falling onto the detector facd — 1 — 1/7 ordered quasidistribution function of tte
4o Can be assumed to be a combination mode:
aout=ﬁ&g—v1—T&p, 4) Wout(o)z%WS< 1 TTa;_l TT>- (6)
whereT is the beam splitter power transmissivity. The Thys our setup delivers directly the value of the signal
Wigner function of the outgoing mode at the phase spacgyasidistribution function at the phase space point depen-
origin is given in terms of the incoming modes by the gent on the amplitude and the phase of the probe coher-
expectation value of ent state. Since both these parameters can be controlled
R 2 + experimentally without difficulties, we may simply scan
Uout(0;0) = — : exp(—2doutdout) the phase space by changing the amplitude and the phase
of the probe field and thus determine the complete qua-

aw

2 A1 [ A1 sidistribution function. Equation (6) shows that its order-
= — exp—2T — (1 =T)/T ) ' . o

T A Las ( )/Tar] ing depends on the beam splitter transmissivity andifor

s (1 — AT near one approaches zero, which means that the scanned

* las (1= T)/Tapl: . ®) quasidistribution is close to the Wigner function of the
This simple relation provides an interesting link betweensignal field.
the detected quantity and tlfemode. Letus, for example, = We shall now generalize Eq. (6) for arbitrary state of
consider a simple case when the probe field is a coherettte probe mode by considering the disentanglement of
statedpla) = ala) uncorrelated with the signal mode. the S and P modes. In order to achieve this we use the
Performing the quantum average over tRemode in  following Gaussian integration of normally ordered oper-
Eq. (5) is straightforward due to the normal ordering of t|heators of theS and P modes:

Oun0:0) = % [ @8 exd-2(T B* = ah) VT B — ap)]
X:ex—21-TB* —a)) N1 —=TB — ag)] : . (7)

Under the assumption that th& and P modes are! This formula establishes the connection between the pho-
uncorrelated this disentanglement yields the followington statistics of the outgoing mode and the Wigner func-

expression for the quantity detected by our setup: tions of theS and P modes. It reflects the fundamen-
tal advantages of our setup in the direct probing of the
_ 2 — phase space of the light field. In the case when the beam
Wou (0) = f d*BWs(V1 =T BWp(NT B) splitter splits the light equally, we hawéT /(1 — T) = 1

1 and W,,(0) is simply a doubled overlap of the signal
= — ]d2,8WS(,8)WP( T/(1 -T)pB). and probe Wigner functions. In the general case the
=T phase space parametrization of the probe Wigner func-

(8) tion is rescaled by the factoyT/(1 — T), which can
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take an arbitrary positive value depending on the beamin particular, wherw > 1 grows linearly with the probe
splitter transmissivity. This rescaling causes an effectivéntensity |«|?, the excess noise imposes a restriction
decrease of the probe width by the fac{Gf/(1 — T)in  on the highest ordering of the signal quasidistribution
all the quadratures simultaneously. This contrast with théunction measured at a given point.

unbalanced double homodyne detection scheme [7,11], The proposed setup is an optical realization of a model
where the resolution of the phase space probing along orseheme of quantum measurement [12,13], where in addi-
quadrature can be improved along the perpendicular diredion to the system a filter device—a “quantum ruler”—is
tion. For the coherent probe field) the P mode Wigner introduced and the measured phase space probability dis-

function is of the form tribution is the convolution of the system and filter Wigner
2 ) functions. Our scheme is more general, since the Wigner
We(B) = . exp(—2|B — al). (9  function of the filter can be rescaled by an arbitrary fac-

An easy computation shows that in this case Eq. (8jor- Consequently, the rescaled probe Wigner function
indeed reduces to Eq. (6). The rescaling of the prob&loes not have to obey the Heisenberg uncertainty princi-
Wigner function in the convolution (8) has anotherPle and may even approach the shape of a delta function,
consequence. Whehtends to one, the factor multiplying Which leads to the direct measurement of the Wigner func-
the probe amplitude becomes very small and to scan thetion. In contrast to quantum tomography no sophisticated
interesting region of the signal phase space one has to us@mputer processing of the experimental data is neces-
a probe field of large intensity. sary. The quantity measured in the experiment is pro-

One of the advantages of balanced homodyne detectid?Prtional to the quasiprobability distribution at the phase
used in quantum tomography experiments is the cancefpace point depending only on the amplitude and phase of
lation of the excess noise of the reference field. In outhe probe state.
scheme this noise deteriorates the resolution with which In the remaining discussion we will introduce two gen-
the signal phase space can be probed. This can becorfigalizations. First we will make our considerations more
important in the limitT — 1, where strong probe fields realistic by taking into account the imperfectness of the
have to be used. The influence of the excess noise cdtotodetector. When the detector efficiencysjs the
be simply estimated assuming a Gaussian thermal noiggobability of countingn photons is given by the expec-
described by the following Wigner function: tation value of: ex;J(—n&Iutaom) (naimaom)"/n! ;. The

2 2 5 second extension is the substitution of the fa¢tet)” in

WelB) = o v D exp(— B al ) (10)  Eq. (3) by—(s + 1)*/(s — 1)"*!, wheres is a real pa-

where7 is the mean number of thermal photons in thef@Meter. The origin and role of the parametgrsand s

beam. An easy calculation shows that for such a noisy® different: n describes experimental limitations, while

probe field Is an artificial number introduced in the numerical pro-
1 1 —T | =T cessing of the measured data. With these two param-
Wout(0) = — WS( a;—2n + 1)—) eters we obtain the following simple generalization of
T T r the formula (5), when expressed in terms of thend
(11) P modes:
|
~ (1) B 2 o (s + 1\ ,,]&I“lanul(T]flgut&out)n i
Uout (0,5) = m(1 — ) HZ:O<S - 1> H¢ n! '

2 2 R
= m : eXF<— % agutaout> :

— 77(12— 5 <_ lzquS. [ad —+Ja - 1)1 abas - W&PD . 12)

The third line of this equation suggests that the param(l.-tebecomes crucial in the processing of the measured prob-
s can be used to compensate the imperfectness of the phability distribution, which is influenced by experimental
todetector. Indeed if we selected= 1 — 5, we would  errors and statistical fluctuations, and hence need not tend
determine the expectation value obxp(—zaimaout) . to zero sufficiently quickly to assure the convergence of
regardless of the detector efficiency. But in this case théhe complete series. This reasoning might be opposed
factor multiplying the probability of counting photons since the experimental sample of the photodetector counts
is (1 — 2/7m)" and its magnitude diverges to infinity with is finite and thus the counts distribution is zero above a
n — oo, This is not important from a theoretical point of certain photon number. Nevertheless, the problem still
view, since we have shown that the series converges to thexists, since the increasing factor in the generalization of
expectation value of a well-behaved operator. However, ithe sum (3) causes an important contribution to come from
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the “tail” of the experimental counts distribution, which Note added—After this Letter was submitted,
usually has very poor statistics, and consequently th&ef. [17] was brought to the authors’ attention. It dis-
final result has a huge statistical error [14]. The simplestusses an analogous measurement scheme with a coherent
way to avoid all these problems is to assume the factorstate used as a probe.

multiplying the counts statistics to be bounded, which is

equivalent to the condition = 0.

An easy computation shows that if the coherent state «ajso at the Center of Advanced Studies and Department
(9) is employed as a probe, the expectation value of  of Physics, University of New Mexico, Albuquerque, NM

the generalized operatd?‘égt)(O,s) is again given by the 87131. _
quasidistribution function of the signal mode [1] E.P. Wigner, Phys. Rew0, 749 (1932). For a review,
see M. Hillery, R.F. O’Connell, M. O. Scully, and E.P.
- () 1 1 —-T 1—s—nT Wigner, Phys. Repl06, 121 (1984).
(Uout (0, 5)) = ﬁ Ws T & 0T . [2] See, for example, W. Vogel and D.-G. Welsdrectures

on Quantum Optic§Akademie Verlag, Berlin, 1994).
(13) [3] K. Vogel and H. Risken, Phys. Rev. 40, R2847 (1989).
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