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Direct Probing of Quantum Phase Space by Photon Counting
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We propose a very simple experimental setup to measure, via photon counting, the overlap
Wigner functions characterizing two single mode light beams. We show that this scheme can be a
to determine directly the phase space quasiprobability distribution of the single mode field and
certain limit the Wigner function can be measured without use of tomographic reconstruction algori
The deleterious effects of nonunit photodetector efficiency are analyzed. [S0031-9007(96)00351

PACS numbers: 42.50.Dv, 03.65.Bz
ic
tu
be
he
s c
sp
es
2]
ri-
le

nd
ea
pe
n.

es
ity
th

in
eld
at
ns
m

od
tec

fo
o

nt
on
th
ar
ica
be

r
ch
d

l-

n

s
d

n
ent
de
ce
f
de.

ep-
r.

t
-

to
se
the
e
e

rin-
ed
n-

ts
The concept of phase space, fundamental in class
mechanics, remains useful when passing to quan
theory. It is well known that quantum states can
fully characterized by the Wigner function defined in t
phase space and that the quantum expectation value
be represented as statistical averages of the phase
variables [1]. In quantum optics this formalism provid
a convenient framework for discussion of many topics [

An exciting problem explored recently is the expe
mental determination of the Wigner function of a sing
light mode. It was first shown theoretically by Vogel a
Risken [3] that quadrature amplitude distributions m
sured in homodyne detection provide enough data to
form a complete reconstruction of the Wigner functio
This method, called quantum tomography, was succ
fully realized in a series of experiments [4]. The quant
recorded in the quantum tomography experiments was
statistics of the count difference of photodetectors fac
the signal field superimposed on a strong coherent fi
The Wigner function was reconstructed from these d
using numerical algorithms of the inverse Radon tra
form. There are also other known methods for the co
plete experimental characterization of the single m
state: heterodyne [5] and double homodyne [6–8] de
tion, where the so-calledQ function of the signal field,
which is a smoothed Wigner function, is measured.

In this Letter we propose an alternative scheme
the phase space measurement. Given two single m
light beams we present an extremely simple experime
setup to measure the overlap of the Wigner functi
characterizing these fields. Moreover, we show that
Wigner functions can be relatively rescaled by an arbitr
positive factor. The measurement is performed by opt
means and only a trivial arithmetic operation has to
done on the data recorded from the photodetector.

Before we discuss the proposed measurement, we
view briefly, using a Heisenberg-picture type of approa
the properties of the phase space distributions use
this Letter. The Wigner function or theQ function are
examples of more generals-parametrized quasiprobabi
ity distributions Wsa; sd in the complexa phase space
[9], with s ­ 0 corresponding to the Wigner functio
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W sad ­ W sa; 0d. These distributions can be written a
expectation values of the following normally ordere
operator:

Ûsa; sd ­
2

ps1 2 sd

3 : exp

µ
2

2
1 2 s

sap 2 âyd sa 2 âd
∂

: , (1)

where ây and â are the single mode photon creatio
and annihilation operators. In the proposed measurem
scheme we utilize the simple fact that the single mo
Wigner function at the origin of the complex phase spa
W s0d can be directly computed from the distribution o
counts measured by a photodetector facing this mo
Indeed for a ­ 0 and s ­ 0 the operator (1) can be
written in the following equivalent forms:

Ûs0; 0d ­
2
p

: exps22âyâd :

­
2
p

X̀
n­0

s21dn : e2âyâ sâyâdn

n!
:

­
2
p

X̀
n­0

s21dnjnl knj , (2)

where we have used the normally ordered operator r
resentation of then photon number projection operato
The quantum expectation value of this operator gives

W s0d ­ kÛs0; 0dl ­
2
p

X̀
n­0

s21dnpn , (3)

where the valuepn appearing in this expansion is jus
the probability of countingn photons by an ideal pho
todetector. Thus the photoncount statistics allows us
calculate the Wigner function at the origin of the pha
space. It has been pointed out by Royer [10] that
ability to measureW s0d allows us to scan the complet
Wigner function by shifting the system or equivalently th
frame of reference in the phase space. Although in p
ciple this shifting of the reference frame might be realiz
in quantum optics, its experimental realization would e
counter difficulties. Therefore we will utilize the resul
© 1996 The American Physical Society
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of the measurement ofWs0d in an alternative way, pro
viding a much more feasible experimental scheme.
proposed scheme is very general and we believe
it may find many various applications and generali
tions. In the present Letter we will discuss in detail o
specific example motivated by the quantum tomogra
experiments.

The proposed setup is presented in Fig. 1. We
take the detected field to be a superposition of two sin
mode fields, which we will call the signal and the prob
and denote their annihilation operators byâs and âp,
respectively. Such a combination can be easily reali
by means of a beam splitter. As it is well known [2
the action of the beam splitter is described by an SU
transformation between the annihilation operators of
incoming and outgoing modes. Since the phase sh
appearing in this transformation can be eliminated
an appropriate redefinition of the modes, the annihilat
operator of the outgoing mode falling onto the detector f
âout can be assumed to be a combination

âout ­
p

T âS 2
p

1 2 TâP , (4)

whereT is the beam splitter power transmissivity. T
Wigner function of the outgoing mode at the phase sp
origin is given in terms of the incoming modes by t
expectation value of

Ûouts0; 0d ­
2
p

: exps22â
y
outâoutd :

­
2
p

: exph22T fây
S 2

q
s1 2 T dyT â

y
Pg

3 fâS 2

q
s1 2 T dyT âPgj : . (5)

This simple relation provides an interesting link betwe
the detected quantity and theS mode. Let us, for example
consider a simple case when the probe field is a cohe
state âP jal ­ ajal uncorrelated with the signal mod
Performing the quantum average over theP mode in
Eq. (5) is straightforward due to the normal ordering of
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FIG. 1. Experimental setup discussed in the Letter.
denotes the beam splitter, PD is the photodetector, and
annihilation operators of the modes are indicated.

operators. Taking the expectation value over the sig
and using the definition (1) we obtain that the Wign
function (3) for the outgoing mode is proportional to a
s ­ 1 2 1yT ordered quasidistribution function of theS
mode:

Wouts0d ­
1
T

WS

√s
1 2 T

T
a; 2

1 2 T
T

!
. (6)

Thus our setup delivers directly the value of the sign
quasidistribution function at the phase space point dep
dent on the amplitude and the phase of the probe co
ent state. Since both these parameters can be contr
experimentally without difficulties, we may simply sca
the phase space by changing the amplitude and the p
of the probe field and thus determine the complete q
sidistribution function. Equation (6) shows that its orde
ing depends on the beam splitter transmissivity and foT
near one approaches zero, which means that the sca
quasidistribution is close to the Wigner function of th
signal field.

We shall now generalize Eq. (6) for arbitrary state
the probe mode by considering the disentanglemen
the S and P modes. In order to achieve this we use t
following Gaussian integration of normally ordered ope
ators of theS andP modes:
Ûouts0; 0d ­
4

p2

Z
d2b : expf22s

p
T bp 2 â

y
Pd s

p
T b 2 âPdg :

3 : expf22s
p

1 2 T bp 2 â
y
S d s

p
1 2 T b 2 âSdg : . (7)
ho-
nc-
-

the
eam
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nc-
Under the assumption that theS and P modes are
uncorrelated this disentanglement yields the follow
expression for the quantity detected by our setup:

Wouts0d ­
Z

d2bWSs
p

1 2 T bdWPs
p

T bd

­
1

1 2 T

Z
d2bWSsbdWPsss

q
Tys1 2 Td bddd .

(8)
This formula establishes the connection between the p
ton statistics of the outgoing mode and the Wigner fu
tions of theS and P modes. It reflects the fundamen
tal advantages of our setup in the direct probing of
phase space of the light field. In the case when the b
splitter splits the light equally, we have

p
Tys1 2 Td ­ 1

and Wouts0d is simply a doubled overlap of the sign
and probe Wigner functions. In the general case
phase space parametrization of the probe Wigner fu
tion is rescaled by the factor

p
Tys1 2 Td, which can
4345
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take an arbitrary positive value depending on the bea
splitter transmissivity. This rescaling causes an effect
decrease of the probe width by the factor

p
Tys1 2 T d in

all the quadratures simultaneously. This contrast with
unbalanced double homodyne detection scheme [7,
where the resolution of the phase space probing along
quadrature can be improved along the perpendicular di
tion. For the coherent probe fieldjal theP mode Wigner
function is of the form

WPsbd ­
2
p

exps22jb 2 aj2d . (9)

An easy computation shows that in this case Eq.
indeed reduces to Eq. (6). The rescaling of the pro
Wigner function in the convolution (8) has anoth
consequence. WhenT tends to one, the factor multiplying
the probe amplitudea becomes very small and to scan t
interesting region of the signal phase space one has to
a probe field of large intensity.

One of the advantages of balanced homodyne detec
used in quantum tomography experiments is the can
lation of the excess noise of the reference field. In
scheme this noise deteriorates the resolution with wh
the signal phase space can be probed. This can bec
important in the limitT ! 1, where strong probe field
have to be used. The influence of the excess noise
be simply estimated assuming a Gaussian thermal n
described by the following Wigner function:

WPsbd ­
2

ps2n 1 1d
exp

µ
2

2
2n 1 1

jb 2 aj2
∂

, (10)

where n is the mean number of thermal photons in t
beam. An easy calculation shows that for such a no
probe field

Wouts0d ­
1
T

WS

√s
1 2 T

T
a; 2s2n 1 1d

1 2 T
T

!
.

(11)
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In particular, whenn ¿ 1 grows linearly with the probe
intensity jaj2, the excess noise imposes a restrict
on the highest ordering of the signal quasidistribut
function measured at a given point.

The proposed setup is an optical realization of a mo
scheme of quantum measurement [12,13], where in a
tion to the system a filter device—a “quantum ruler”—
introduced and the measured phase space probability
tribution is the convolution of the system and filter Wign
functions. Our scheme is more general, since the Wig
function of the filter can be rescaled by an arbitrary f
tor. Consequently, the rescaled probe Wigner func
does not have to obey the Heisenberg uncertainty pri
ple and may even approach the shape of a delta func
which leads to the direct measurement of the Wigner fu
tion. In contrast to quantum tomography no sophistica
computer processing of the experimental data is ne
sary. The quantity measured in the experiment is p
portional to the quasiprobability distribution at the pha
space point depending only on the amplitude and phas
the probe state.

In the remaining discussion we will introduce two ge
eralizations. First we will make our considerations mo
realistic by taking into account the imperfectness of
photodetector. When the detector efficiency ish, the
probability of countingn photons is given by the expec
tation value of: exps2hâ

y
outâoutd shâ

y
outâoutdnyn! :. The

second extension is the substitution of the factors21dn in
Eq. (3) by2ss 1 1dnyss 2 1dn11, wheres is a real pa-
rameter. The origin and role of the parametersh and s
is different: h describes experimental limitations, whiles
is an artificial number introduced in the numerical p
cessing of the measured data. With these two par
eters we obtain the following simple generalization
the formula (5), when expressed in terms of theS and
P modes:
Û
shd
out s0, sd ­

2
ps1 2 sd

X̀
n­0

µ
s 1 1
s 2 1

∂n

: e2hâ
y
outâout

shâ
y
outâoutdn

n!
:

­
2

ps1 2 sd
: exp

µ
2

2h

1 2 s
â

y
outâout

∂
:

­
2

ps1 2 sd
:

µ
2

2hT
1 2 s

fây
S 2

q
s1 2 TdyT â

y
Pg fâS 2

q
s1 2 T dyT âPg

∂
: . (12)
t
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The third line of this equation suggests that the param
s can be used to compensate the imperfectness of the
todetector. Indeed if we selecteds ­ 1 2 h, we would
determine the expectation value of: exps22â

y
outâoutd :

regardless of the detector efficiency. But in this case
factor multiplying the probability of countingn photons
is s1 2 2yhdn and its magnitude diverges to infinity wit
n ! `. This is not important from a theoretical point
view, since we have shown that the series converges to
expectation value of a well-behaved operator. Howeve
er
o-

e

he
it

becomes crucial in the processing of the measured p
ability distribution, which is influenced by experiment
errors and statistical fluctuations, and hence need not
to zero sufficiently quickly to assure the convergence
the complete series. This reasoning might be oppo
since the experimental sample of the photodetector co
is finite and thus the counts distribution is zero abov
certain photon number. Nevertheless, the problem
exists, since the increasing factor in the generalization
the sum (3) causes an important contribution to come f
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the “tail” of the experimental counts distribution, whi
usually has very poor statistics, and consequently
final result has a huge statistical error [14]. The simp
way to avoid all these problems is to assume the fac
multiplying the counts statistics to be bounded, which
equivalent to the conditions # 0.

An easy computation shows that if the coherent s
(9) is employed as a probe, the expectation value
the generalized operator̂U

shd
out s0, sd is again given by the

quasidistribution function of the signal mode

kÛshd
out s0, sdl ­

1
hT

WS

√s
1 2 T

T
a; 2

1 2 s 2 hT
hT

!
.

(13)
Let us now analyze the ordering of this function. It h
been pointed out by Leonhardt and Paul [15] that,
though from a theoretical point of view an arbitrarily o
dered distribution contains the complete characteriza
of the quantum state, experimental errors make it d
cult to compute higher ordered distributions from the m
sured one. Thus what is interesting is the highest orde
achievable in our scheme. Analysis of the role of the
rameters is the simplest, since the greater its value,
higher is the ordering obtained. Because it is restricte
its range to nonpositive values, it should be conseque
set to zero. Thus we are left with two parameters:h and
T . It is easy to check that for fixedh the highest order
ing is still achieved whenT ! 1, but its limit value is
now 2s1 2 hdyh. Under the assumption thath and T
are close to one, the ordering of the measured distribu
is effectively equal to this limiting value if the differenc
1 2 T is much smaller than1 2 h. For currently used
photodetectors, this condition can be realized experim
tally. Thus the highest ordering achievable in our sch
is effectively determined by the photodetector efficie
and is equal to2s1 2 hdyh. It is noteworthy that this
is exactly equal to the ordering of the distribution rec
structed tomographically from data measured in the
modyne detection with imperfect detectors [16].

The measurement of the quasiprobability distribut
does not exhaust possible applications of the prop
setup. Since the probe field may in an arbitrary st
the variety of information on the quantum state which
be retrieved using this scheme is potentially very la
Another interesting extension of the presented work i
generalization to the multimode case.
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Note added.—After this Letter was submitted
Ref. [17] was brought to the authors’ attention. It d
cusses an analogous measurement scheme with a coh
state used as a probe.

*Also at the Center of Advanced Studies and Departm
of Physics, University of New Mexico, Albuquerque, NM
87131.
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[13] V. Bužek, C. H. Keitel, and P. L. Knight, Phys. Rev. A51,
2575 (1995);51, 2594 (1995).

[14] It has been recently noted [T. Kiss, U. Herzog, a
U. Leonhardt, Phys. Rev. A52, 2433 (1995)] that the
true photon statistics can be recovered from data meas
by an imperfect detector, provided that its efficiency
greater than 50%. However, application of this meth
in calculating Wouts0d turns out to be equivalent to
setting s ­ 1 2 h in Eq. (12), which leads to problem
discussed in the text.

[15] U. Leonhardt and H. Paul, Phys. Rev. Lett.72, 4086
(1994); J. Mod. Opt.41, 1427 (1994).

[16] U. Leonhardt and H. Paul, Phys. Rev. A48, 4598 (1993).
[17] S. Wallentowitz and W. Vogel, Phys. Rev. A (to b

published).
4347


