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CollectiveT- and P-Odd Electromagnetic Moments in Nuclei with Octupole Deformations
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Parity and time invariance violating forces produce collectiveP- andT-odd moments in nuclei with
static octupole deformation. Collective Schiff moment, electric octupole and dipole, and also magnetic
quadrupole appear due to the mixing of rotational levels of opposite parity and can exceed single-
particle moments by more than a factor of 100. This enhancement is due to two factors, the collective
nature of the intrinsic moments and the small energy separation between members of parity doublets.
The above moments induceT- and P-odd effects in atoms and molecules. Experiments with such
systems may improve substantially the limits on time reversal violation. [S0031-9007(96)00352-3]

PACS numbers: 21.10.Ky, 21.60.Ev, 24.80.+y, 32.80.Ys
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Parity and time invariance nonconserving nuclear
ments induced byP-, T-odd nuclear forces were discuss
e.g., in Refs. [1–6]. These moments can be enhanc
nuclei which have close to the ground state (g.s.) le
of the same spin as the g.s. but opposite parity [3,4].
interesting possibility to enhance the effect is to cons
mechanisms producing collectiveT-, P-odd moments. In
Ref. [7] it was shown that the “spin hedgehog” mechan
produces a collective magnetic quadrupole. In the pre
paper we want to consider a different mechanism: mix
of opposite parity rotational levels (parity doublets) byT-,
P-odd interaction in the nuclei with octupole deformati
This deformation was demonstrated to exist in nuclei fr
the Ra-Th and Ba-Sm region and produces such effec
parity doublets, large dipole and octupole moments in
intrinsic frame of reference, and enhancedE1 andE3 tran-
sitions (see review [8]).

Let us start our consideration from the expression
the electrostatic potential of a nucleus screened by
electrons of the atom. If we consider only the dipoleT-
, P-odd part of screening (Purcell-Ramsey-Schiff theo
[9]) one finds [4]

wsRd ­
Z ersrd

jR 2 rj
d3r 1

1
Z

sd===d
Z rssrd

jR 2 rj
d3r .

(1)

Here rsrd is the nuclear charge density
R

rsrdd3r ­ Z,
rssrd is spherically symmetric part ofrsrd, and d ­R

errsrd d3r is the electric dipole moment (EDM) of th
nucleus. The multipole expansion ofwsRd contains both
T-, P-even andT-, P-odd terms. The dipole part in Eq. (
is canceled out by the second term in this equation,
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1
R

Z
rssrd d3r ­ 0 .

(2)

The next term is the electric quadrupole which isT-, P-
even thus the first nonzeroT-, P-odd term is

ws3d ­ 2
1
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Hererarbrg is a reducible tensor. After separation of th
trace there will be terms which will contain a vectorS
(Schiff) and a rank 3,Qabg (electric octupole) moments
[4],

ws3d ­ w
s3d
Schiff 1 w

s3d
octupole ,

w
s3d
Schiff ­ 2S===D

1
R

­ 4pS===dsRd, (4)

w
s3d
octupole ­ 2
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,

where
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µZ
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∂
(5)

is the Schiff moment (SM) and

abg ­
Z

ersrd

3 frarbrg 2
1
5 sdabrg 1 dbgra 1 dagrbdg d3r ,

Qzzz ;
2
5

Q3 ­
2
5

s
4p

7

Z
ersrdr3Y30 d3r (6)

is a tensor octupole moment.
Here we will consider the collective SM, collective oc

tupole, and also collective dipole as well as the colle
tive magnetic quadrupole resulting from the rotation
the dipole. The mechanism for collective SM, dipole, a
octupole is the following: collective moments in the bod
fixed system of the deformed nucleus are assumed to e
without anyT, P violation. However, withoutT, P vio-
lation the average value of these moments for a rotatio
state in the laboratory system is zero.T-, P-odd mixing
© 1996 The American Physical Society
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of rotational doublet states produces an average orie
tion of the nuclear axisn along nuclear spinI. In the
case of a nearly degenerate rotational doublet

C6 ­
1

p
2

sjIMKl 6 jIM 2 Kld, (7)

whereK ­ In. If the T, P interaction mixes the membe
of the doublet with the coefficienta, the total wave
function isC ­ C1 1 aC2 or

C ­
1

p
2

fs1 1 ad jIMKl 1 s1 2 ad jIM 2 Klg, (8)

one obtains

kCjnz jCl ­ 2a
KM

sI 1 1dI
. (9)

The intrinsic electric dipole and Schiff moments a
directed alongn, d ­ dn and S ­ Sn, and therefore
have nonzero average values in the g.s.M ­ K ­ I.

To elucidate the origin of collectiveT-, P-odd moments
consider a simple classical “molecular” model, sho
in Fig. 1: two chargesZq and q with massesZ0m
and m have coordinatesx1 ­ 2a and x2 ­ Z0a so the
center of mass is atx ­ 0. This “molecule” has dipole
quadrupole, octupole, and Schiff moments. The ele
dipole in this case isd ­ sZ 2 Z0daq. ConsiderZ0 ­ Z,
in this cased ­ 0, but the SM and octupole moment a
not zero. The octupole momentQ3 is proportional to
Z 2 1 (for Z ­ 1 there is only quadrupole deformation
SM in the body-fixed frame is

S ­
1

10
qa3ZsZ2 2 1d. (10)

For I ­
1
2 the SM is not equal to zerosS fi 0d as

opposed to the octupole moment which vanishes bec
one cannot satisfy angular momentum coupling. Thus
octupole deformation is hidden. It is possible to h
a situation in whichd ­ 0, Q3 ­ 0 in the laboratory
system but the SM in the laboratory isS fi 0. This
result applies to any system, for example, to an elemen
particle (neutron, electron). Indeed, for spins ­

1
2 there

is only one T-, P-odd form factor [10,11]. Howeve
we have shown that the two moments, EDM and S
are not necessarily related to each other. There i
contradiction here. The relativistic expression for theT-
, P-odd electromagnetic current fors ­

1
2 in momentum

representation is

jm ­ fsq2dc̄g5smn iqnc , (11)

whereq is the momentum transfer,g5 andsmn are Dirac
matrices. The form factor can be expanded

FIG. 1. A “molecular” model of octupole deformation: tw
chargesZq and q with massesZ 0m and m placed at2a and
Z 0a with respect to the center of mass.
a-
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fsq2d ­ d 1 f 0s0dq2 1 · · · , (12)

where d ­ fs0d is the electric dipole moment of th
particle [6]. In the nonrelativistic limit

j0 ­ 2fsq2dicysqc . (13)

The electric potential produced by this current is

wsq2d ; j0D0n ­ 24pi
sq
q2

fd 1 f 0s0dq2 1 · · ·g,
(14)

whereDmn ­ 4pgmnyq2 is the photon propagator. In th
coordinate representation

wsrd ­ ds===
1
r

1 4pf 0s0ds===dsrd 1 · · · . (15)

The first term inwsrd gives the long-range dipole fiel
while the second term is the contact field of the S
i.e., S , f 0s0ds [see Eq. (4)]. Thus, the SM emerge
from the same form factor as the electric dipole. O
can therefore havea priori a situation in whichT, P is
violated, the Schiff moment is not zero, but the dipo
moment of the particle is zero.

The mechanism of rotational level mixing can al
produce a magnetic quadrupole. Indeed, in the intrin
frame of reference a deformed nucleus can have bo
magnetic dipole and magnetic quadrupole withoutT, P
violation. ThenT-, P-odd interaction mixes rotationa
parity doublets and can produce magnetic quadrupol
the mixed state. It is also worth noting that higherT-, P-
odd moments can appear due to rotation of lower mome
For example, rotating electric dipole produces magn
quadrupole. However, all these contributions to high
moments will be proportional toLzyMAc whereMA is a
large mass of the nucleus and consequently very smal

The intrinsic moments of heavy deformed nuclei a
well described using the two-fluid liquid drop model [12
14]. We consider here even-odd nuclei, so electric m
ments, except the dipole, are determined by the mom
of the evenZ core. The surface of a deformed nucleus

R ­ R0

µ
1 1

X
l­1

blYl0

∂
. (16)

The b1 deformation is determined from the requireme
that the center of mass fixed atz ­ 0, i.e.,

R
zd3r ­ 0,

b1 ­ 23

s
3

4p

X
l­2

sl 1 1dblbl11p
s2l 1 1d s2l 1 3d

. (17)

The proton density in case of deformed nucleus is [12]

r ­
r0

2
2

r0

8
e2Z
CR0

3

∑
3
2

2
1
2

µ
r

R0

∂2

1
X
l­1

3
2l 1 1

µ
r

R0

∂l

blYl0

∏
,

(18)

where r0 ­ 3Ay4pR3
0 and C is the volume symmetry-

energy coefficient. The dipole moment generated by
4317
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proton distribution is in the lowest order of deformatio
[12–14]

dintr ­ eAZ
e2

C
3

40p

X
l­2

sl2 2 1d s8l 1 9d
fs2l 1 1d s2l 1 3dg3y2

blbl11 .

(19)

The inclusion of the neutron skin effect as well as the sh
correction reduces somewhatdintr , nevertheless Eq. (19
with the C . 20 30 MeV fits experimental values quite
well [12,14]. This moment appears only because
Coulomb force produces a relative shift of protons vers
neutrons. The constant part of the density in Eq. (1
does not contribute todintr . The intrinsic Schiff moment
turns out to be

Sintr ­ eAR3
0

3
40p

µ
1 2

e2Z
R0C

19
70

∂
3

X
l­2

sl 1 1dblbl11p
s2l 1 1d s2l 1 3d

. (20)

(Note that in the liquid drop modelAy2 times the
expression in the parentheses is aboutZ.) Here the
constant part ofr in Eq. (18) gives the main contribution
(about 90% in nuclei withZ , 90). The expression for
the intrinsic octupole moment is [15]

Q3intr ­ eZR3
0

3

2
p

7p

µ
b3 1

2
3

s
5
p

b2b3 1 · · ·

∂
. (21)

TheP- andT-odd potential has the form [4,16]

V PT ­
G
p

2

h

2m
r0

X
i

sif===ifsridg, (22)

whereG ­ 1025ym2 is the Fermi constant andrtsrd ­
r0fsrd is the nuclear density.

We use here the particle-core model for a reflectio
asymmetric nucleus [17,18]. TheT-, P-odd as well as
P-odd, T-even mixing was studied in this model recent
[19]. The wave functions in the model are [17,19]

C
Ip
MK ­

∑
2I 1 1
16p2

∏1y2

f1 1 R̂2spdgDI
MKF

p
K , (23)

where R̂2spd denotes rotation through an anglep about
the intrinsic 2 axis. TheFp ; F6 are particle-core
intrinsic states of good parityp. Denoting the good parity
core statesxp and particle statesfp we write

F1 ­ a1x1f1 1 b1x2f2,

F2 ­ a2x2f1 1 b2x1f2. (24)

The statesxp are projections of the reflection-asymmetr
statesxA [17]

xp ­
1

p
2

s1 1 pP̂dxA . (25)

The matrix elements ofV PT are [19]

kCI1
MK jV PT jCI2

MK l ­ a1b2kf1
K jV PT jf2

K l

1 a2b1kf1
K jV PT jf2

K l. (26)
4318
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Note that the pseudoscalar operatorV PT cannot connec
states of an even-even axially symmetric corexp [19].
The expectation value of aT-, P-odd operatorÔ in a T-,
P-admixed statẽF1

i is

kF̃1
i jÔjF̃1

i l ­ 2aiikF1
i jÔjF2

i l

1 2
X
jfii

aijkF1
i jÔjF2

j l. (27)

The matrix elements between core states are

kx1jÔjx2l ­ kxAjÔjxAl. (28)

Writing the one-body operator̂O as the sum of core an
particle partsÔ ­ Ôcore 1 Ôp one obtains

kF1
i jÔjF2

j l ­kxAjÔcorejxAl sa1ia2j 1 b1ib2jd

1 kf1
i jÔp jf2

j l sa1ib2j 1 a2ib1jd.
(29)

The contribution of the single neutron is small for the S
operator and is absent for the octupole moment. In
case of closely spaced doubletsa1i ø a2i , b1i ø b2i ,
and a1ia2j 1 b1ib2j ø dij. The expressions for th
expectation values of aT-, P-odd operator of rankl in
the body-fixed and laboratory systems become

kF̃1
i jÔjF̃1

i l ø 2aiikxAjÔcorejxAl,

kC̃I1
MK jÔjC̃I1

MKl ­ kIIl0jIIl2kF̃1
i jÔjF̃1

i l. (30)

Currently, the best limits on Schiff moments and t
coupling constants ofT-, P-violating nucleon-nucleon in
teractions are obtained from the measurements of the
tric dipole moments in199Hg, 129Xe [20] atoms and TlF
molecule [21,22]. Nuclei of these atoms do not have
tupole deformation. However, similar experiments c
be done with heavy atoms (Ra, Rn) which are electro
structure analogs of these atoms but their nuclei have
tupole deformation.

Our calculations were performed for relatively lon
lived even-odd isotopes223,225Ra and223Rn. Variants of
the model used here are shown to describe quite
the g.s. parity doublets in the Ra-Th region [8,17,2
We used here the same version as in Ref. [19],
deformation and core parity splitting parameters w
taken from Ref. [17,23]. The calculations of the mixin
coefficients were performed using Nilsson potential. T
223,225Ra and223Rn have the g.s.3

2 1, 1
2 1, and 7

2 . The
octupole deformation for all these isotopes isb3 ø 0.1.
Our results are shown in Table I. The mixing coefficie
in our calculations are in the ranges0.6 7d 3 1027h.
The Schiff moments of the reflection-asymmetric nuc
in the intrinsic system are in the range22 29 e fm3.
Correspondingly theT-, P-odd Schiff moments [Eq. (30)
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TABLE I. Admixture coefficientsa (absolute values), experimental energy splitting betw
the g.s. doublet levelsDE ­ E2 2 E1, intrinsic Schiff moments, and Schiff moments
well as induced atomic dipole moments. The values for199Hg and 129Xe from Refs. [5,24]
are given for comparison.

223Ra 225Ra 223Rn 229Pa 199Hg 129Xe

a s107 hd 2 6 2 60
DE skeV d 50.2 55.2 130.a 0.22
Sintr fe fm3g 22 29 22 28
S s108 h e fm3d 500 1100 700 3 3 105 21.4 1.75
dsatd s1025 h e cmd 3500 7900 1500 3 3 105 5.6 0.47

aCalculated.
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are in the ranges2 20d 3 1026h e fm3. This is about 2
orders of magnitude larger than the largest single-par
estimate of4 3 1028h e fm3 given in Ref. [4] for237Np.

Since the electronic structure of Ra is similar to that
Hg and Rn is similar to Xe, we can use results of atom
calculations for Hg, Xe [5,24] and write

datsRad ­ datsHgd
sSZ2R1y2dRa

sSZ2R1y2dHg
,

datsRnd ­ datsXed
sSZ2R1y2dRn

sSZ2R1y2dXe
, (31)

where we have taken into account theZ dependence of th
Schiff moment contribution to the atomic EDMdat due to
the increase of electronic wave functions near the nuc
[4] dat , SZ2R1y2. The relativistic factor is given by

R1y2 ­
4g1y2

fGs2g1y2 1 1dg2

µ
2ZR0

aB

∂2g1y222

, (32)

whereg1y2 ­ f1 2 sZad2g1y2, aB is the Bohr radius, and
R0 is the nuclear radius.

We made an estimate also for229Pa which has the
smallest energy splitting between members of g.s. pa
doublet among the known octupole deformed nuclei
We assumed the same atomic physics parameters a
Ra, Rn. As seen in Table I the EDM of Ra and R
are 102 –103 times larger than the EDM of Hg and Xe
We should stress that the phenomenon described in
work occurs probably in many other nuclei that poss
octupole deformation (for example, in the Ba-Sm regio
and which might be more suitable choice for experimen
studies. Experiments with atoms or molecules contain
these nuclei may improve substantially the limits on ti
reversal violation.
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