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Cauchy-Characteristic Matching: A New Approach to Radiation Boundary Conditions

Nigel T. Bishop,1,2 Roberto Gomez,2 Paulo R. Holvorcem,3,5 Richard A. Matzner,3

Philippos Papadopoulos,2,4 and Jeffrey Winicour2
1Department of Mathematics, Applied Mathematics and Astronomy, University of South Africa, P.O. Box 39

Pretoria 0001, South Africa
2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

3Center for Relativity, University of Texas at Austin, Austin, Texas 78712-1081
4Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, Pennsylvania 1

5Departamento de Matemática, Instituto de Matemática, Estatı´stica e Ciência da Computa¸cão,
Universidade Estadual de Campinas, Campinas, SP 13081-970, Brazil

(Received 2 February 1996)

We investigate a new methodology for computing wave generation, using Cauchy evolution in
a bounded interior region and characteristic evolution in the exterior. Matching the two schemes
eliminates usual difficulties such as backreflection from the outer computational boundary. Mapping
radiative infinity into a finite grid domain allows a global solution. The matching interface can be
close to the sources, the wave fronts can have arbitrary geometry, and strong nonlinearity can be
present. The matching algorithm dramatically outperforms traditional radiation boundary conditions.
[S0031-9007(96)00365-1]
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We present a new computational approach to radia
boundary conditions, based on discretizing an exact tr
ment of the radiation from source to infinity. The n
merical solution therefore converges to the exact ana
solution of the radiating system, as we show. This
in contrast to usual radiation boundary conditions [1–
which involve an approximation that does not converge
the exact solution.Our algorithm converges to second o
der so that any desired accuracy can be achieved by re
ing the grid; no amount of grid refinement can lower t
error of the traditional approach beyond a certain leve
This is manifest even at moderate resolutions, where
method has an error 2 orders of magnitude below
of traditional schemes. Here we treat scalar waves
the method is being used in the binary black hole gr
challenge to calculate gravitational radiation. It has
plicability to a wide range of hyperbolic systems, e.
acoustic wave generation in nonlinear hydrodynamics
light emission in a nonlinear medium.

Traditional Cauchy methods impose artificial con
tions at the computational boundary [1–4], typified
the well known Sommerfeld outgoing radiation conditi
which is strictly valid only at an infinite distance from th
sources. This introduces an error of analytic origin, wh
persists even in high resolution simulations. Improvem
by moving the boundary to a larger radius is computati
ally very expensive in three-dimensional simulations.
exact treatment of the boundary is possible if the retar
Green’s function is known [5] but in a nonlinear pro
lem this approach can be carried out only by a pertur
tion approximation.

In contrast, a characteristic formulation [6] can be co
pactified [7], mapping radiative infinity (the asymptot
limit of ougoing characteristics) to a finite coordinate
0031-9007y96y76(23)y4303(4)$10.00
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dius. This provides a finite grid boundary, with no loss
accuracy because of the very simple asymptotic beha
of outgoing waves along characteristics. Only in a ch
acteristic approach is there no need of an artificial ou
boundary condition, because we can discretize the wh
physical domain, with the outer boundary where the t
radiation zone wave form can be identified.

A global characteristic approach must deal with ca
tics where the characteristics focus [8]. In hydrodyna
ics or general relativity, the caustic structure is dynam
and would have to be computed along with the evoluti
These problems make it difficult to use the characte
tic formulation in the near-field region but it proves to b
both accurate and computationally efficient in the tre
ment of an exterior, caustic-free region [9].

Our procedure is a matched Cauchy-characteristic e
lution [10–14]. A Cauchy formulation evolves a 3-
space of field values step by step forward in timet; a
characteristicformulation [6,9] evolves three-dimension
characteristic “cones” forward inretarded time u; see
Fig. 1. The characteristic algorithm then provides
outer boundary condition for the interior Cauchy evol
tion, with infinity rigorously included in a compactifie
grid. The Cauchy algorithm supplies theinner bound-
ary condition for the characteristic evolution. For nonli
ear systems, such Cauchy-characteristic matching is m
more computationally efficient than alternative metho
of obtaining highly accurate wave forms [15]. Our wo
is the first systematic study of the stability and accura
of this method.

Consider the scalar wave equation forfsx, y, z, td,

≠ttf ­ =2f 1 Fsfd 1 Ssx, y, z, td , (1)

with nonlinear self-couplingFsfd and external sourceS.
© 1996 The American Physical Society 4303
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FIG. 1. Initial Cauchy data are evolved fromt0 to time t1
throughout the regionD12. Characteristic data induced onC12,
combined with the initial characteristic data onC01, are used to
evolve the regionD11. This produces Cauchy data at timet1 in
the regionr # Rm. Similarly, Cauchy evolution is used in th
region D22, bounded on the right byC22. The characteristic
data induced onC22 , together with those onC11, are sufficient
to evolve through the regionD21. The process can be iterate
to obtain the entire future evolution.

In principle,Fsfd need only derive from a stable potent
but for our approach to be computationally efficientf

must fall off as 1yr along the outgoing characteristic
[9]. This rules out fields with nonzero rest mass,F , f,
which decay exponentially along the characteristics.
a characteristic formulation (1) is expressed in stand
spherical coordinatessr , u, wd and retarded timeu ­ t 2

r :

2≠urg ­ ≠rr g 2
L2g
r2

1 rsF 1 Sd , (2)

whereg ­ rf andL2 is the angular momentum operato
The initial data are nowgsr , u, w, u0d, on an initial
outgoing characteristic coneu ­ u0. [Since (2) is first
order inu, ≠ug is not part of the initial data.]

In our matching scheme, the boundaryr ­ Rm of the
interior domain may typically be placed just outside t
radiating sources, and not necessarily many wavelen
away as in traditional approaches. We solve the inte
Cauchy problem for (1) by standard second-order fin
differencing on a Cartesian grid. We solve (2) in t
exterior using a compactified radial coordinatejsrd,
such thatj , C 1 Dyr as r ! `, and a uniform grid
j0, j1, . . . , jM extending fromj ­ jsRmd to j ­ C. The
basic radial step along a characteristic cone is obtaine
discretizing the identity which results from integrating (
over a parallelogram bounded by ingoing and outgo
4304
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characteristics [9]. This numerical scheme is seco
order accurate, and incorporates nonlinear and sou
terms in a consistent way. Rather than using spher
harmonics, we introduce a discretized representation
the angular momentum operator on the sphere, so tha
termL2g in (2) couples the various radial integrations.

The essential features of matching can be illustrated
spherical symmetry (L2g ­ 0). Let Gsr , td ­ gsr , t 2

rd. Consider initial Cauchy dataGsr , t0d and ≠tGsr , t0d
in the region 0 # r # Rm. These data determine
unique solution in the domain of dependenceD12, whose
outer boundary is the ingoing radial characteristicC12

described byt 1 r ­ t0 1 Rm (see Fig. 1). Although
the sourceS is known for all times in the regionr #

Rm, the complete solution in the interior regionr #

Rm requires additional information. In the case that
ingoing waves crossr ­ Rm, this information is thatg
vanish on the outgoing characteristicC01 described by
u ­ t 2 r ­ t0 2 Rm (Fig. 1), i.e.,

gsr , t0 2 Rmd ­ 0, r $ Rm . (3)

A unique solution of (1) over the exterior domainD11

is determined by characteristic initial data consisting
(3) on C01 and of the value ofg on the characteristic
C12. (The choice of physically appropriate initial da
for general nonlinear problems is difficult and beyond t
scope of the present work.)

The matching scheme proceeds as shown in Fig
First, initial Cauchy data are evolved fromt0 to t1 through-
out the regionD12, which is in its domain of dependence
D12 is bounded on the right by the incoming characte
istic segmentC12. Next, the characteristic data induce
on C12 are combined with the initial characteristic data o
C01 to carry out a characteristic evolution throughout t
regionD11, bounded from the future by the characteris
C11. The solution determined from this initial stage in
duces Cauchy data at timet1 in the regionr # Rm, inside
the matching boundary. This process can then be itera
to carry out the entire future evolution of the system.

Our matching algorithms are based upon a discreti
version of this scheme in which the crisscross pattern
characteristics inside the radiusRm is at the scale of a
grid spacing. Here we discuss two implementations fr
several possibilities which we have investigated.

In algorithm I, the boundary values for both th
interior and exterior evolutions (i.e., the values of t
field nearr ­ Rm) are updated through one-dimension
cubic interpolations at constant timet, using previously
computed field values from both the Cauchy and t
characteristic grids. In a spherically symmetric cod
this interpolation is naturally carried out along the rad
direction, with two data points on the interior regio
and two data points in the exterior region. In thr
dimensions, we carry out the cubic interpolations alo
the Cartesian direction which is closest to the local rad
direction at each boundary point.
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In the second implementation, the continuity of the fie
and its normal derivative atr ­ Rm are imposed more
explicitly. At each time step, the boundary values for t
characteristic evolution are supplied by interpolation
the interior grid; this ensures the continuity of the field
the continuum limit. The boundary values for the Cauc
evolution scheme are computed using a discrete versio
the continuity condition for certain derivatives of the sca
field. In spherical symmetry, we impose the continu
of the radial derivative at constant retarded timeu, which
yields the condition

s≠t 1 ≠r dGsr, td ­ ≠rgsr , ud . (4)

Neglecting the right-hand side of (4) yields the stand
Sommerfeld condition, so we refer to the continuity co
dition (4) as ageneralized Sommerfeld condition. The
left-hand side of (4) is discretized using backward fin
differences on the interior grid (as is usually done w
artificial radiation conditions), and the right-hand side
evaluated by finite differencing on the exterior grid. It
also possible to impose the continuity of the second der
tive, which yields a second-order generalized Sommer
condition. In three dimensions, we impose the contin
ity of the derivatives along the Cartesian direction whi
is closest to the local radial direction (at constantu). We
denote the first- and second-order generalized Somme
matching algorithms byC1 andC2, respectively. We will
compare their performance to the Sommerfeld-like con
tionsS1 andS2 which are obtained by neglecting the righ
hand sides of the generalized Sommerfeld conditions u
in algorithmsC1 andC2.

We carried out numerical experiments on the followi
aspects of the Cauchy-characteristic algorithms.

(a) Stability.—Long-term integrations of high fre
quency initial data indicate substantial regions of stabi
in the space of grid parametersr ­ Dtyh, a ­ hangyh,
and b ­ hradyh, where Dt is the time step,h is the
Cauchy grid spacing, andhang, hrad are, respectively, the
angular and radial grid spacings of the exterior grid
r ­ Rm. AlgorithmsCi were generally stable fora . 1,
b ­ Os1d, andr , rCFL, where the boundrCFL is im-
posed by the Courant-Friedrichs-Lewy condition for t
interior and exterior evolution algorithms. Algorithm
was stable fora , 1.2, b ­ Os1d, andr ,

1
2 rCFL. Sta-

bility is robust with respect to reasonable changes in
parameters which were held fixed in the stability study

(b) Convergence.—The experiments involve linear an
nonlinear situations with grids of several resolutions. T
Richardson extrapolation technique was used to accele
the convergence of the numerical solutions.

(c) Comparison with traditional radiation condi
tions.—The matching schemes were compared to p
Cauchy schemes using the Sommerfeld-like conditionsS1

andS2.
(d) Sensitivity of the numerical solutions to the positi

of the matching interface.—For each fixed value ofRm, a
d

e
n

y
of
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y

matched numerical solution should converge to the ex
solution of the global initial-value problem. In genera
a solution obtained using artificial radiation condition
converges to a limit which depends onRm. (This limit
should approach the exact solution whenRm ! `.)

The performance of our algorithms is summarized
Figs. 2 and 3 which show the error for a matchin
code [Fig. 2(b)], 2 orders of magnitude better than th
performance of a Sommerfeld-like condition [Fig. 2(a)
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FIG. 2. Comparison between two algorithms for solving
forced linear wave equation:S2 (a) andC1 (b). The system
consists of four nonspherical sources positioned nonsymm
rically in the interior. Relative errors over the interior gri
are shown for selected times using four progressively fi
discretizations in the proportion 8 (open triangles) : 6 (op
squares) : 4 (solid triangles) : 3 (solid squares). The err
resulting from applying Richardson extrapolation to the resu
for the finest grids are indicated by stars. It can be seen
the matching solution (b) is about 2 orders of magnitude m
accurate than the solution using the Sommerfeld-like con
tion (a).
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FIG. 3. Sensitivity of the numerical solutions of the strong
nonlinear forced wave equation≠ttf ­ =2f 2 4f3 1 S to
changes inRm. The source has support on two ellipsoi
positioned nonsymmetrically in the interior. The data
the figure correspond to algorithmsS1 (open triangles),S2
(open squares),C1 (solid triangles),C2 (solid squares), and
(solid circles). For each algorithm, we show the differen
between the Richardson-extrapolated interior solutions obta
for Rm ­ 182y17 andRm ­ 234y17, as measured by the rati
e2 defined in the text. Note the substantial insensitivity of
three matching algorithms (solid symbols).

and which show the expected insensitivity of the match
algorithms to the position of the Cauchy-characteris
interface (Fig. 3), again about 2 orders of magnitu
better than Sommerfeld-like conditionsS1 andS2.

We estimate the accuracy of the algorithms by comp
ing numerical solutions at different resolutions, and th
Richardson extrapolates, to an exact solution. Figu
displays the numerical error in the Cauchy region fo
nonspherical forced linear problem (with known solutio
The error obtained with the Sommerfeld-like conditionS2

[Fig. 2(a)], initially decreases with grid spacing, but a
proaches a limiting value of about 0.6% in thel` norm,
jjfjj` ­ maxgridjfj. (S1 exhibits similar behavior, bu
with a limit of about 2.0%.) In contrast, the error fo
matching algorithms such asC1 steadily decreases wit
resolution [Fig. 2(b)]; a dramatic reduction in error
obtained by second-order Richardson extrapolation [
symbols in Fig. 2(b)], with error as small as 0.002%
the l` norm. These results confirm the expected seco
order convergence of the matching algorithms.

Figure 3 compares matching and Sommerfeld-like
gorithms in a strongly nonlinear, nonspherical proble
For arbitrarily fine discretizations, increasing the rad
Rm of the Cauchy region by the factor 1.29 affects t
solutions usingS1 and S2 by 15% and 3%, respectivel
(as measured bye2 ; jjfN 2 fFjj2yjjfFjj2, wherefN
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and fF are the numerical solutions corresponding toRm

and 1.29Rm, and jjfjj2 ; kf2l1y2 averaged over grid
points inside0.93Rm). As expected, all three matchin
codes are essentially insensitive toRm. (The Richardson
extrapolates for differentRm typically differ by only
0.06%.) Furthermore, numerical experimentation in
cates that even this small sensitivity decreases with fi
discretizations. This is strong evidence that the match
codes converge to the true solution of the nonlinear pr
lem. Further details will be reported elsewhere [16].
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