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We investigate a new methodology for computing wave generation, using Cauchy evolution in
a bounded interior region and characteristic evolution in the exterior. Matching the two schemes
eliminates usual difficulties such as backreflection from the outer computational boundary. Mapping
radiative infinity into a finite grid domain allows a global solution. The matching interface can be
close to the sources, the wave fronts can have arbitrary geometry, and strong nonlinearity can be
present. The matching algorithm dramatically outperforms traditional radiation boundary conditions.
[S0031-9007(96)00365-1]

PACS numbers: 04.25.Dm, 04.30.Db

We present a new computational approach to radiatiodius. This provides a finite grid boundary, with no loss of
boundary conditions, based on discretizing an exact treatccuracy because of the very simple asymptotic behavior
ment of the radiation from source to infinity. The nu- of outgoing waves along characteristics. Only in a char-
merical solution therefore converges to the exact analytiacteristic approach is there no need of an artificial outer
solution of the radiating system, as we show. This isboundary condition, because we can discretize the whole
in contrast to usual radiation boundary conditions [1—4]physical domain, with the outer boundary where the true
which involve an approximation that does not converge taadiation zone wave form can be identified.
the exact solutionOur algorithm converges to second or- A global characteristic approach must deal with caus-
der so that any desired accuracy can be achieved by refirtics where the characteristics focus [8]. In hydrodynam-
ing the grid; no amount of grid refinement can lower theics or general relativity, the caustic structure is dynamic
error of the traditional approach beyond a certain level. and would have to be computed along with the evolution.
This is manifest even at moderate resolutions, where ourhese problems make it difficult to use the characteris-
method has an error 2 orders of magnitude below thatic formulation in the near-field region but it proves to be
of traditional schemes. Here we treat scalar waves butoth accurate and computationally efficient in the treat-
the method is being used in the binary black hole grandnent of an exterior, caustic-free region [9].
challenge to calculate gravitational radiation. It has ap- Our procedure is a matched Cauchy-characteristic evo-
plicability to a wide range of hyperbolic systems, e.g.,lution [10—14]. A Cauchy formulation evolves a 3-
acoustic wave generation in nonlinear hydrodynamics andpace of field values step by step forward in timea
light emission in a nonlinear medium. characteristicformulation [6,9] evolves three-dimensional

Traditional Cauchy methods impose artificial condi-characteristic “cones” forward imetarded time u; see
tions at the computational boundary [1-4], typified byFig. 1. The characteristic algorithm then provides an
the well known Sommerfeld outgoing radiation condition outer boundary condition for the interior Cauchy evolu-
which is strictly valid only at an infinite distance from the tion, with infinity rigorously included in a compactified
sources. This introduces an error of analytic origin, whichgrid. The Cauchy algorithm supplies tlener bound-
persists even in high resolution simulations. Improvemenary condition for the characteristic evolution. For nonlin-
by moving the boundary to a larger radius is computationear systems, such Cauchy-characteristic matching is much
ally very expensive in three-dimensional simulations. Anmore computationally efficient than alternative methods
exact treatment of the boundary is possible if the retardedf obtaining highly accurate wave forms [15]. Our work
Green'’s function is known [5] but in a nonlinear prob- is the first systematic study of the stability and accuracy
lem this approach can be carried out only by a perturbaef this method.
tion approximation. Consider the scalar wave equation &#fx, y, z, 1),

In contrast, a characteristic formulation [6] can be com- w2
pactified [7], mapping radiative infinity (the asymptotic dudp =Vp + F(§) + S(x.y.2.1), (1)
limit of ougoing characteristics) to a finite coordinate ra-with nonlinear self-coupling”(¢) and external sourcs.
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characteristics [9]. This numerical scheme is second-
order accurate, and incorporates nonlinear and source
terms in a consistent way. Rather than using spherical
harmonics, we introduce a discretized representation of
the angular momentum operator on the sphere, so that the
term L?g in (2) couples the various radial integrations.

The essential features of matching can be illustrated in
spherical symmetryIg = 0). Let G(r,t) = g(r,t —
r). Consider initial Cauchy dat&(r, 7)) and d,G(r, o)
in the region0 = r =< R,,. These data determine a
unique solution in the domain of dependerize, whose
outer boundary is the ingoing radial characterisfic
described byt + r = 1y + R,, (see Fig. 1). Although
the sourceS is known for all times in the regiom =
R,., the complete solution in the interior region=
R, requires additional information. In the case that no
ingoing waves cross = R,,, this information is thatg
vanish on the outgoing characteristit; described by
u=t—r=t — R, (Fig. 1), i.e.,

g(r,t()_Rm):O, r=R,. (3)

R r

FIG. 1. Initial Cauchy data are evolved from to time 7, . . .
throughout the regio®,_. Characteristic data induced 4, A unique solution of (1) over the exterior domaid +
combined with the initial characteristic data 6@, are used to is determined by characteristic initial data consisting of

ﬁ:/olve the rtigigrﬂwé T.rllislpr%duceﬁ Cautlihty data at ti(;n'dnth (3) on Co+ and of the value ofg on the characteristic

e regionr = K,,. >imiarly, Laucny evolution Is used in the ~ _ (The choice of physically appropriate initial data
(rj%%g) ?ngagég %%f%%gthh; \r,:,?tlp]t tﬁgéé'ogf g?eag%%gﬂf for general nonlinear problems is difficult and beyond the
to evolve through the regioP,,. The process can be iterated Scope of the present work.)
to obtain the entire future evolution. The matching scheme proceeds as shown in Fig. 1.

First, initial Cauchy data are evolved fragto ¢, through-

In principle, F(¢) need only derive from a stable potential out the regionD,—, which is in its domain of dependence.
but for our approach to be computationally efficiept D;- is bounded on the right by the incoming character-
must fall off as1/r along the outgoing characteristics istic segmeniC;—. Next, the characteristic data induced
[9]. This rules out fields with nonzero rest mags~ ¢, onC;- are combined with the initial characteristic data on
which decay exponentially along the characteristics. InCo+ to carry out a characteristic evolution throughout the
a characteristic formulation (1) is expressed in standargegionD; ., bounded from the future by the characteristic

spherical coordinate@, 6, ¢) and retarded tima = ¢t — Ci+. The solution determined from this initial stage in-
r duces Cauchy data at timgin the regionr =< R,,, inside
12 the matching boundary. This process can then be iterated
20,8 = 0,pg — — +r(F +5), (2) to carry out the entire future evolution of the system.

Our matching algorithms are based upon a discretized
whereg = r¢ andL? is the angular momentum operator. version of this scheme in which the crisscross pattern of
The initial data are nowg(r,#, ¢,up), on an initial characteristics inside the radius, is at the scale of a
outgoing characteristic cone = uy. [Since (2) is first grid spacing. Here we discuss two implementations from
order inu, d,g is not part of the initial data.] several possibilities which we have investigated.

In our matching scheme, the boundary= R,, of the In algorithm 1, the boundary values for both the
interior domain may typically be placed just outside theinterior and exterior evolutions (i.e., the values of the
radiating sources, and not necessarily many wavelengtteld nearr = R,,) are updated through one-dimensional
away as in traditional approaches. We solve the interiocubic interpolations at constant tinte using previously
Cauchy problem for (1) by standard second-order finitecomputed field values from both the Cauchy and the
differencing on a Cartesian grid. We solve (2) in thecharacteristic grids. In a spherically symmetric code,
exterior using a compactified radial coordinagd€r), this interpolation is naturally carried out along the radial
such that¢ ~ C + D/r asr — «, and a uniform grid direction, with two data points on the interior region
&0, &1,. .., €y extending fromé = £(R,)toé = C. The and two data points in the exterior region. In three
basic radial step along a characteristic cone is obtained hyimensions, we carry out the cubic interpolations along
discretizing the identity which results from integrating (2) the Cartesian direction which is closest to the local radial
over a parallelogram bounded by ingoing and outgoinglirection at each boundary point.
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In the second implementation, the continuity of the fieldmatched numerical solution should converge to the exact
and its normal derivative at = R,, are imposed more solution of the global initial-value problem. In general,
explicitly. At each time step, the boundary values for thea solution obtained using artificial radiation conditions
characteristic evolution are supplied by interpolation onconverges to a limit which depends @&j),. (This limit
the interior grid; this ensures the continuity of the field inshould approach the exact solution whgp — .)
the continuum limit. The boundary values for the Cauchy The performance of our algorithms is summarized in
evolution scheme are computed using a discrete version #igs. 2 and 3 which show the error for a matching
the continuity condition for certain derivatives of the scalarcode [Fig. 2(b)], 2 orders of magnitude better than the
field. In spherical symmetry, we impose the continuityperformance of a Sommerfeld-like condition [Fig. 2(a)];
of the radial derivative at constant retarded timevhich
yields the condition

(0 + 9.)G(r,1) = 9,8(r,u). (4)

Neglecting the right-hand side of (4) yields the standard
Sommerfeld condition, so we refer to the continuity con-
dition (4) as ageneralized Sommerfeld conditionThe
left-hand side of (4) is discretized using backward finite
differences on the interior grid (as is usually done with
artificial radiation conditions), and the right-hand side is
evaluated by finite differencing on the exterior grid. It is
also possible to impose the continuity of the second deriva-
tive, which yields a second-order generalized Sommerfeld
condition. In three dimensions, we impose the continu-
ity of the derivatives along the Cartesian direction which
is closest to the local radial direction (at constapt We
denote the first- and second-order generalized Sommerfeld
matching algorithms by’; andC,, respectively. We will 10-° 0 20 60
compare their performance to the Sommerfeld-like condi- ¢

tionsS; andS; which are obtained by neglecting the right- 10-1
hand sides of the generalized Sommerfeld conditions used
in algorithmsC, andC,.

We carried out numerical experiments on the following
aspects of the Cauchy-characteristic algorithms.

(a) Stability—Long-term integrations of high fre-
quency initial data indicate substantial regions of stability
in the space of grid parameteps= At/h, a = hayg/h,
and B = h;,q/h, where At is the time step, is the
Cauchy grid spacing, ank,,, .4 are, respectively, the
angular and radial grid spacings of the exterior grid at
r = R,,. AlgorithmsC; were generally stable far > 1,

B = 0(1), andp < pcgL, where the boungcg is im-
posed by the Courant-Friedrichs-Lewy condition for the
interior and exterior evolution algorithms. Algorithm |
was stable for < 1.2, 8 = 0(1), andp < 1pcrL. Sta- o b L L L
bility is robust with respect to reasonable changes in the
parameters which were held fixed in the stability study.

(b) Convergence—The experiments involve linear and FIG. 2. Comparison between two algorithms for solving a

nonlinear situations with grids of several resolutions. The©rced linear wave equatiors, (a) andC; (b). The system

Richard ¢ lation techni dt | aﬁ%nsists of four nonspherical sources positioned nonsymmet-
Ichardson exirapolauon technique was used (o acceler ally in the interior. Relative errors over the interior grid

the convergence of th? numeripgl 30|Uti0n_5-_ ~are shown for selected times using four progressively finer
(c) Comparison with traditional radiation condi- discretizations in the proportion 8 (open triangles) : 6 (open
tions—The matching schemes were compared to puréquares) : 4 (solid triangles) : 3 (solid squares). The errors

; _i i resulting from applying Richardson extrapolation to the results
gr?dughy schemes using the Sommerfeld-like conditins for the finest grids are indicated by stars. It can be seen that
2.

o . . .. the matching solution (b) is about 2 orders of magnitude more
(d) Sensitivity of the numerical solutions to the positionaccurate than the solution using the Sommerfeld-like condi-
of the matching interface-For each fixed value ak,,, a  tion (a).
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and ¢y are the numerical solutions correspondingktp
and 1.29R,,, and ||¢|l, = (¢2)!/2 averaged over grid
points inside0.93R,,). As expected, all three matching
codes are essentially insensitiveRg. (The Richardson
extrapolates for differentR,, typically differ by only
0.06%.) Furthermore, numerical experimentation indi-
cates that even this small sensitivity decreases with finer
discretizations. This is strong evidence that the matching
codes converge to the true solution of the nonlinear prob-
lem. Further details will be reported elsewhere [16].
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for R, = 182/17 andR,, = 234/17, as measured by the ratio

€, defined in the text. Note the substantial insensitivity of the

three matching algorithms (solid symbols).
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