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We calculate dynamical entropies from experimental data produced by a Schmitt trigger sub
to noise and a periodic forcing. Both input and output signals are converted to binary sequ
Conditional and Kullback entropies exhibit extrema for certain values of noise intensity. These ex
can be interpreted and will be related to the synchronization effect of switching events induc
external periodic bias. [S0031-9007(96)00380-8]
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Small periodic signals forcing nonlinear systems c
sometimes be amplified by addition of a stochastic fo
to the signal. This effect, calledstochastic resonanc
(SR) [1,2], in the past has attracted much attention in
field of nonlinear stochastic dynamics. Besides a g
deal of theoretical studies, of numerical simulations,
of analog simulations, SR has been discussed for a va
of applications. The investigations of this phenomeno
biological systems focusing on sensory neuron activity
of great interest [1–3].

Usually SR is characterized by the existence o
maximum in the signal-to-noise ratio (SNR) vs no
intensity relation. Another measure for the SR, the a
plification, was introduced in [4] as a ratio of the mag
tudes of ensemble averaged response and the input s
An alternative is the residence-time probability distrib
tion introduced in [5] yielding a bona fide resonance
the forced system [6]. In nonlinear regimes, where
amplitude of the signal is sufficiently strong, synchroni
tionlike phenomena can be observed [7]. In such regi
the SNR possesses two maxima [8]: the first maxim
corresponds to the strong synchronization between
ping events and periodic force while the second one re
to a decrease of the noise background.

As was pointed out by Moss [9] already in 1989 o
may associate the switching events in a stochastic bis
and threshold system with an information flow throu
the system [10]. Indeed, one of the major motivations
SR research is the intuitive idea of gaining informat
when passing a small (noise affected) signal through
optimally noise tuned bistable or threshold system,
signal detection and transformation [11,12].

In the present work we apply the concepts of dynam
entropies [13] and of the Kullback entropy [14]. Gen
ally, their values give the average amount of informat
gained after observing (or needed to predict) the outc
of an experiment or measurement process, e.g., a si
possibly with respect to some preknowledge or some
assumptions, e.g., the unbiased guess.
0031-9007y96y76(23)y4299(4)$10.00
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We will show that SR is accompanied by an extrem
behavior of these quantities when sweeping noise int
sity over the resonance region. We will prove that
increase of applied noise at first leads to an incre
of temporal order in the output sequence. Simulta
ously, the predictability of the output sequence will im
prove in the resonance region. From the Kullback-entro
analysis we will learn that for a certain value of nois
intensity the input and output distributions of binary su
sequences maximally match. Moreover, input and out
subsequences registered at equal times exhibit maxim
correlation. Finally, we relate these results to the sy
chronization mechanism occurring in the system.

The experimental system under investigation is an el
tronic two-state device: the Schmitt trigger [9,15]. Th
Schmitt trigger was subjected to a periodic signal and
noise with a cutoff frequencyfc ­ 100 kHz. The sys-
tem was driven with a sinusoidal force with frequen
f0 ­ 100 Hz. In all experiments the amplitudeA of the
periodic signal was sufficiently small to prevent switc
ings of the trigger in the absence of noise:A , DU,
where DU ­ 150 mV was the threshold of the Schmi
trigger. The noise intensityD was varied in the range
between 25 and 115 mV. However, in order to get sy
chronization effects more pronounced the amplitude
periodic bias was strong enough to induce the existe
of a synchronization region in which the mean switchi
frequency coincides with the frequency of periodic sign
(see, e.g., Fig. 1 in [7]). For the value of amplitude of p
riodic biasA ­ 100 mV the onset of the synchronizatio
region corresponds to the noise intensityD ­ 40 mV and
the SNR takes its first maximum atD ø 60 mV. In the
region 40 # D # 80 mV the mean switching frequenc
practically (within the limits of experimental accuracy
equals the frequency of periodic excitationf0 ­ 100 Hz.
The second maximum of the SNR occurs atD ø 120 mV
which is, however, out of the synchronization region a
as shown in [8] has nothing to do with the effect of st
chastic resonance itself.
© 1996 The American Physical Society 4299
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In our discussion we always regard as the input sig
the periodic signal plus noise. The continuous input
output signals were transformed to discrete data serie
stroboscopic observation; the time windowt was chosen
to be approximately a twelfth of the period. Final
all these time series were mapped onto binary sym
sequences accounting for the bistability. Both th
binary input and output sequences were the fundam
data for our information theoretical analysis.

For each of the selected noise intensities and for
input and output we collected an ensemble of 20 bin
sequences each of length 15 000 symbols. All of
following calculations were accompanied by ensem
statistics yielding mean values and standard deviat
The standard deviations generally were much smaller
mean values.

Let us now introduce the measures we used:
in :­ i1, . . . , in be a binary subsequence. The station
probability to observe this subsequence shall be den
by psind. Then then-block entropies are defined by

Hn ­ 2
X

sind[h0,1jn

psindldpsind . (1)

The symbol ld denotes the logarithm base 2. Then-
block entropy (1) is interpreted as the average informa
necessary to predict a subsequencesi1, . . . , ind, of length
n or, equivalently, as the average information gained a
its actual observation.

The conditional entropieshn are introduced forn ­
1, 2, . . . by

hn ­ Hn11 2 Hn (2)

­

*
2

X
in11

psin11 j indldpsin11 j ind

+
sind

, (3)

where the brackets indicate averaging over the prehis
psind. This definition is supplemented byh0 :­ H1.
Here, psin11 j ind denotes the probability for the symb
in11 conditioned by then preceding symbolsin. Thehn

are interpreted as the average information necessa
predict the symbolin11 (or gained after its observatio
given knowledge ofin. Correlations existing between th
symbols of a sequence generally decrease this am
of information with increasing the lengthn of ob-
served prehistory.

Starting from the binary input (output) sequences
computed the relatedn-word probability distributions (by
simple word counting) forn ­ 1, . . . , 16 and in the seque
the conditional entropieshn for n ­ 0, . . . , 15. Figure 1
depicts thehn of the output sequences as a function
the noise intensityD. A nonmonotonic structure of th
curves becomes visible only forn . 5, i.e., after having
registered a half period in advance which is plausi
The minimum occurs forD ­ 60 and corresponds to th
most ordered structure of the output sequence, i.e., w
the sequence maximally reflects the periodic struct
4300
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FIG. 1. The conditional entropieshn [formula (3)] for the
output signal (h6 with circles), n ­ 0, . . . , 15 being the curve
parameters, andh6 for the input signal (with squares).

A second indication for the period is the decrease
conditional entropies with respect to increasingn (vertical
profile): significant jumps occur only for values ofn
which match multiples of the half period. The decline
conditional entropies for extremely small values of noi
intensity, i.e., forD , 35, is caused by the fact that th
output signal exhibits an intermittentlike character; t
system stays in each of the two minima for comparativ
long times. An intermittent sequence is a highly order
structure and because of that is easy to predict [16].

Figure 1 additionally includes a plot ofh6 computed
from the input signal. In contrast to the behavior observ
for the outputh6, a monotonic increase of the input en
tropy reflects the constantly growing randomization wh
increasing the noise intensity. Moreover, one can see
the input sequence rather rapidly gets randomized;
the related conditional entropies approach the maxim
value 1 for white noise, while the output sequence m
or less preserves the periodic structure. This means e
a rather noisy signal bearing only a weak reminiscence
a periodic structure can be efficiently filtered.

The limit entropy, defined by

h :­ lim
n!`

hn (4)

is the minimum amount of information necessary for
prediction of the next symbol even when accounting
all correlations, i.e., being informed about the comple
prehistory. For SR the limit entropy can be related
the residence time distribution [5]. This connection re
on the assumption that a binary sample sequence equ
lently can be constructed by independently choosing s
sequent residence times according to the residence
distribution and concatenating alternating laps of 0’s a
1’s. Then the following formula applies [17]:
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ktresl
, (5)

where Hfpresg denotes the Shannon entropy of t
residence time distribution andktresl the average
residence time. Figure 2 depicts the result of our co
putation for the system under investigation. Clearly, t
plot qualitatively is in agreement with Fig. 1. Therefo
we can realize that the minimum of the limit entro
corresponding to the most ordered structure of the ou
binary sequence refers to the first maximum of SNR.

Next we address the application of Kullback entrop
Generally the Kullback entropyKfp0, pg is defined by

Kfp0, pg :­
X

i

pi log
pi

p0
i

. (6)

Here,p0 (p) denote an initial (final) probability distribu
tion both with respect to the same set of events. T
the average information gained when replacing initialp0

by final p, perhaps due to some measurement, is given
Kfp0, pg. This quantity establishes a measure for the d
tance between the two distributionsp0 andp. Kfp0, pg
is always greater than or equal to zero and it vanishe
and only ifp0 andp are identical.

We consider the distributions of subsequences of len
n related to the binary input (output) sequences; i.e.,
identify p0

i :­ pin
n sind and pi :­ pout

n sind. The result of
our computation is shown in Fig. 3;n ranges from 1 to
8. Common to all curves is a relatively pronounced mi
mum for D ­ 40. This indicates that for this value o
noise intensity both distributions maximally match.
does not mean that the output sequence maximally refl
the periodic structure; this happens forD ­ 60, hence, for
larger noise intensity. For very small noise intensities
input sequence is closest to the periodic structure whe
t
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FIG. 2. An approximation to the source entropyh [formula
(5)] of binary output (full lines with points) and inpu
sequences (dotted lines with squares) as a function of the
intensityD.
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FIG. 3. The Kullback informationKfpin
n , pout

n g (see text) as a
function of the noise intensityD.

the output sequence is intermittentlike. Accordingly bo
distributions are vastly different. Increasing the noise
tensity towards the resonance region the periodic cha
teristics of the input sequence slightly get blurred. B
now the output signal acquires more and more perio
structure. Hence, both distributions converge. Beyo
the minimum valueD ­ 40 the output signal continues
approaching its best periodic shape. But now the in
signal gets increasingly randomized. This results in a
vergence of both distributions even before the resona
region aroundD ­ 60 is reached. We note that the valu
of the noise intensityD ­ 40 at which the Kullback en-
tropy takes its minimum exactly corresponds to the on
of the region of the synchronization (see Fig. 1 in [7]).

It has to be mentioned thatKfpin
n , pout

n g measures only
the distance between thestatisticsextracted from the input
(output) signal but makes no statement about correlati
existing between segments of the input (output) sign
In order to do that again we employ the Kullback measu
but use the following distributions:p0

i :­ pin
n sindpout

n sond
andpi :­ pin,out

n,n sin, ond whereon ­ so1, . . . ond.
This Kullback entropy measures the average inform

tion gained when replacing the assumption of unc
related input and output signals by the observation
correlations. The stronger both signal segments (sam
at equal times) are correlated, the larger will be its val
This quantity can be expressed by two entropies [18]

Kfpin
n pout

n , pin,out
n,n g ­ Hout

n 2 Hout j in
n # Hout

n . (7)

Hout
n is the standardn-block entropy [see (1)] related to

the output sequences.Hout j in
n is a generalized conditiona

entropy [analogous to (3)] now based on the probabi
of observing in the output sequence then word on
conditioned by then word in at equal time in the
input sequence.

Relation (7) can be used to normalizeKfpin
n 3

pout
n , pin,out

n,n g
4301
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FIG. 4. The normalized Kullback informationkfpin
n 3

pout
n , pin,out

n,n g (see text) as a function of the noise intensityD.
The peak aroundD ­ 45 mV attains a maximum value for th
half periodn ­ 6.

kfpin
n pout

n , pin,out
n,n g :­

Kfpin
n pout

n , pin,out
n,n g

Hout
n

# 1 . (8)

Results of applying this many-time correlation meas
to our system are displayed in Fig. 4. The most strik
observation is a peak aroundD ­ 45 which becomes
most pronounced for word lengths close to the half per
of the underlying periodic signal. In this way this plo
contains both the information about the periodand the
region of maximum synchronization. Again, this regio
of maximum synchronization does not coincide with t
region of maximum order in the output. Moreover, noti
that a constant phase shift between input and ou
sequences cannot be detected by this measure.

In conclusion, we have studied SR in the Schm
trigger system by employing the concept of dynami
entropies. We used an experimentally realized sys
whose input and output signals were converted to bin
sequences. The limit entropy attained its minimum a
SNR took its maximum for the same value of noise
tensity which refers to the most ordered output sign
Two Kullback type measures were employed. First
detected the minimal distance between input and ou
switching statistics. The second measure was desig
to find the state of maximally correlated input and o
put signals. Both extrema coincided for values of no
intensity corresponding to the onset of synchronizat
between periodic excitation and switching events.
summary, the measures presented here apply to three
ferent properties controlled by noise: best predictabi
and best matching of distributions and maximal corre
tions. In practice, one has to decide which of these pr
erties is the most relevant for signal transmission. T
application to other nonlinear stochastic phenomena, e
4302
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to threshold devices [3,19] or to resonant activation [2
seems to be possible.
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