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Quantum Bit Regeneration

Isaac L. Chuang and Yoshihisa Yamamoto
ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 9

(Received 18 September 1995)

Decoherence and loss will limit the practicality of quantum cryptography and computing unless
successful error correction techniques are developed. To this end, we have discovered a new schem
for perfectly detecting and rejecting the error caused by loss (amplitude damping to a reservoir
at T ­ 0), based on using a dual-rail representation of a quantum bit. This is possible because
(1) balanced loss does not perform a “which-path” measurement in an interferometer, and (2) balanced
quantum nondemolition measurement of the “total” photon number can be used to detect loss-induced
quantum jumps without disturbing the quantum bit’s coherence. [S0031-9007(96)00277-3]

PACS numbers: 89.70.+c, 03.65.Bz, 42.79.Ta, 89.80.+h
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Essential to the success of quantum cryptography
computing is the ability to create a quantum bit (qub
and to maintain its fragile superposition state for long
riods of time. A key ingredient will be the developme
of simple and effective quantum error correction schem
One particularly important classical technique is regen
ation, in which periodic measurement and reconstruc
is used to prevent multiplicative (exponential) growth
errors and thus preserve signal integrity. However, ap
cation of the analogous procedure to a qubit is not strai
forward, because no more than one bit of information
be extracted from a two-state system; simple measurem
collapses the wave function, causing loss of informat
about the qubit’s superposition state. Classical and qu
tum regeneration are similar in that redundancy mus
introduced in order to allow for error correction, but diffe
ent in that quantum regeneration must be performed w
out actually measuring the qubit being transmitted.

We have discovered a very simple scheme for quan
regeneration, under certain circumstances, which is m
possible by two key insights: (1) balanced loss in the t
arms does not perform a “which-path” measurement in
interferometer, and (2) balanced quantum nondemoli
(QND) measurement of the “total” photon number c
be used to determine whether quantum jumps due
loss have occurred, while preserving the essential lin
superposition state. More specifically, by using a “du
rail” encoding [1] of the logical zero and one qubit sta
as j01l and j10l, we can take advantage of the fact th
equal loss will always either leave the state intact or ca
a jump to thej00l state. Such jumps can be detected us
a balanced QND measurement of the total photon num
(not an ordinary QND measurement of the photon num
in a single mode). We explain this in detail below.

Consider the classical interferometer shown in Fig
It is well known that to achieve maximum fringe visibilit
at the output, it is necessary for the loss in both ar
to be equal; furthermore, despite the loss, unit visibi
can be achieved. This can be easily seen as follows
the interferometer inputs byEa

0 ­ A cosvt and Ea
0 ­ 0.

For 50y50 beam splitters, the field in the arms w
0031-9007y96y76(22)y4281(4)$10.00
d

-

.
-
n

-
t-

nt

-
e

-

e

n
n

o
r

then beEa
1 ­ Ea

1 ­ A cosvty
p

2. Equal lossg in both
arms causes the state immediately before the final be
splitter to beEa

2 ­ Ea
2 ­ Ae2g cosvty

p
2, but despite

this, the final output state isEa
3 ­ Ae2g cosvt andEa

3 ­
0. Moreover, the visibility is given by extremizing the
output intensities over a variable phase delay inserted
one arm, and in this case, we find thatV ­ fjEa

3 j2 2

jEa
3 j2gyfjEa

3 j2 1 jEa
3 j2g ­ 1, which is ideal. Equal loss

in both arms leads to no decrease in visibility.
The same applies in the quantum interferometer wh

we use a single photon. Let the input be the o
photon statejc0l ­ j10l, where the two labels give
the state of modesa and a. For beam splitters of
angleu ­ tan21sc1yc0d, the state in the arms isjc1l ­
c0j01l 1 c1j10l. Equal loss in both arms causes the sta
immediately before the final beam splitter to be

jc2l ­

Ω
c0j01l 1 c1j10l with probabilitye2g ,
j00l with probability1 2 e2g .

(1)

Letting a ­ jc0j
2 andb ­ c0cp

1, we find the correspond-
ing density matrix to be

r2 ­ $Gjc1l kc1j

­

2664
1 2 e2g 0 0 0

0 ae2g be2g 0
0 bpe2g s1 2 ade2g 0
0 0 0 0

3775
j00l
j01l
j10l
j11l

,

(2)
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letFIG. 1. Classical interferometer with equal loss in both ar
(modesa anda). The two beam splitters are inverses of ea
other. The expected results are shown to the left of the me
at the outputs.
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where the basis states are given on the right.$G ­ $a
G$a

G ,
where$a

G is a superscattering operator acting on modea
defined by

$a
Gj0l k0j ­ j0l k0j , (3)

$a
Gj0l k1j ­ e2gy2j0l k1j , (4)

$a
Gj1l k0j ­ e2gy2j1l k0j , (5)

$a
G j1l k1j ­ e2g j1l k1j 1 s1 2 e2gd j0l k0j , (6)

and $a
G follows similarly. These are obtained from th

usual density matrix approach [2] for amplitude dampi
to a reservoir at absolute zero in the Born-Mark
approximation, with the interaction Hamiltonian

H ­ g0
X

k

sayck 1 c
y
k ad 1 g0

X
k

saydk 1 d
y
k ad , (7)

where c and d are reservoir operators. Alternatively
the quantum Monte Carlo wave-function technique [
5] provides a picture of the evolution of a single wav
function. The result well describes the physical situati
experienced by single photons traversing an optical fib
where scattering is the main cause of errors and ph
decoherence is negligible. The decay of the diago
terms corresponds directly to loss of probability amplitu
for finding a photon in one of the arms, while th
decay of the off-diagonals is usually associated w
“decoherence.” Although the latter is true for dampin
of the usualj0l and j1l representation of a qubit, it is no
valid in our dual-rail qubit case. Here, coherence betwe
the j01l and j10l states is actuallypreservedwhen no
quantum jump occurs because of the symmetry of
damping;j01l andj10l suffer identically under$G.

The final state is given by taking the inverse bea
splitter transform of the above, which gives

jc3l ­

Ω
j10l with probabilitye2g ,
j00l with probability s1 2 e2gd , (8)

since in the ideal case the second beam splitter sim
undoes the action of the first, and otherwise it do
nothing to the vacuum statej00l. If we throw out those
cases in which no photon is registered by either of the t
output counters, then we find that the visibility is idea
just as in the classical interferometer with balanced los

Suppose now that we stretch out the interferome
such that the middle section extends for many kilomete
Along this transmission link, loss causes quantum jum
which result in j00l states. How may we discriminat
this state fromc0j01l 1 c1j10l for arbitrary c0 and c1?
The solution is a “balanced” QND measurement of t
total photon number.For example, we may envision th
quantum circuit shown in Fig. 2, where two Kerr med
are used to cross-phase modulate a probe signal. W
either arm contains a photon, the probe receives ap phase
shift; if neither or both arms contain a photon, the pro
4282
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FIG. 2. Quantum optical regenerator for dual-rail qubits usi
a balanced QND measurement of the total photon number.
top two wires carry the transmitted qubit, and the bottom tw
the probe. Triangles connected by vertical lines represenp
cross-phase shift Kerr media. The input is on the left and
output to the right.

receives no phase shift. From Eq. (1), we have that

jc0l ­

Ω
c0j0110l 1 c1j1010l ,
j0010l , (9)

using the labelingjaabbl. This is a mixed state, with
the probability of the upper and lower states beinge2g

and1 2 e2g , respectively. The first 50y50 beam splitter
gives us

jc1l ­

8<:
c0p

2
fj0110l 1 j0101lg 1

c1p
2

fj1010l 1 j1001lg ,
1

p
2

fj0010l 1 j0001lg ,
(10)

which is followed by the two Kerr media,

jc2l ­

8<:
c0p

2
f2j0110l 1 j0101lg 1

c1p
2

f2j1010l 1 j1001lg ,
1

p
2

fj0010l 1 j0001lg ,
(11)

and then the second beam splitter, to give the output

jc3l ­

(
c0j0101l 1 c1j1001l ,
j0010l .

(12)

The final measurement allows us to select thebb ­ 01
probe state, such that the transmitted qubit is guarant
to be

jcoutl ­ c0j01l 1 c1j10l (13)

with probability e2g. In analogy to the quantum-optica
Fredkin gate [6,7], ap phase shift unbalances the prob
interferometer, switching the output and thus discrimin
ing thehj01l, j10lj manifold perfectly from thej00l state.
Since only total photon number information is obtaine
this is a QND measurement, and the backaction is a r
domization of the phase between thehj01l, j10lj manifold
and thej00l state; however, the phase coherence betw
the j01l andj10l states is left intact because the measu
ment does not discriminate between them. Specifica
the QND observable [8] isQ ­ aya 1 aya, and the state
jfl ­ c0j01l 1 c1j10l is an eigenstate of the QND ob
servable, i.e.,Qjfl ­ jfl; thus, the linear superposition
statejfl is projected out by this QND measurement.



VOLUME 76, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 27 MAY 1996

g
b
a
e
ss
th

nt

e
ec

ili

og
ct
is
ec

ns

ub
ng
as
th

ta
fe

b
he

ta
re
e

th
F

r

n.
m
al
rro

og
ic

o
th
d
th
r

to
m

nal

ent
nes
for

me
is
its,

ible
is

s-
orm
gic

tly
ay
le-
he
m

ews
ant

to
rap
in
ion

a
de

e

d
a
lity
ic

ave
ults

-

.

t
M.
nd
This device is an ideal regenerator in the followin
sense: (1) it detects perfectly when an error occurs,
discriminating illegal states without destroying a leg
wave function, and (2) it can prevent multiplicativ
growth of error. Although the latter is not true when lo
is exponential (as for linear loss in fibers), error grow
can be prevented when loss occurs at a subexpone
rate. Suppose that instead ofe2g we have the loss
1 2 et2 after time t, for small e; this may be the case
for example, for spontaneous emission by cavity confin
atoms. Without regeneration, the final output is corr
with probability 1 2 en2 after n steps; however, when
regeneration is performed after each step, the probab
of a correct result iss1 2 edn ø 1 2 ne, which is
much better. This result is known as the watchd
effect [9], and is purely a quantum-mechanical effe
in fact, by regenerating infinitely often, evolution
suspended entirely by virtue of the quantum zeno eff
and amplitude damping is prohibited from happening.

Our results suggest the following scheme for tra
mission of a quantum bit: the two statesj01l and j10l
are used as basis states to form the arbitrary q
c0j01l 1 c1j10l. Physically, this may be generated usi
a single photon incident on a beam splitter and a ph
shifter. Under normal operation, the state satisfies
representation invariantcondition aya 1 aya ­ 1, but
when quantum jumps due to loss occurs the illegal s
j00l results. This is true only when both modes suf
equal loss, but that may be guaranteed experimentally
using time multiplexing to send both modes down t
same optical fiber. To regenerate, we discriminatej00l
from the representation manifold spanned byj01l and
j10l by using a balanced QND measurement of the to
photon number, which indicates if an error has occur
or not without introducing backaction noise into th
representation manifold. If an error occurs, we abort
transmission and request the sender to try again.
exponential loss,eg , 1 1 n2e trials are required to
transmit a perfect qubit, but for subexponential e
ror probability 1 2 e per step, only approximately
1 1 ne trials are required with periodic regeneratio
Perhaps the most interesting point is that this sche
provideserror-free transmission, in contrast to classic
regeneration, which requires acceptance of a finite e
probability.

Classical information theory describes a close anal
to our system: the binary erasure channel [10], in wh
1 and 0 are transmitted perfectly with probabilitye2g ­
a, and otherwise an error symbole is received. This
is an elementary model which describes the effect
classical noise due to loss, similar to the noise due to
superscattering operator$G. However, there is a subtle an
important distinction that must be made: the capacity of
classical channel isa bits. In contrast, according to ou
result, the capacity of the quantum channel is at leastay2
qubits(the factor of 2 comes from our use of two qubits
code each dual-rail qubit). A quantum bit is different fro
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a classical one; the receiver obtains not only the diago
elementsjc0j

2 and jc1j
2, but also the off diagonalsc0cp

1,
which may communicate information about entanglem
with other states. Shannon’s noisy coding theorem defi
the capacity of a noisy classical channel; the equivalent
quantum channels is presently unknown [11].

Practically speaking, we anticipate that our sche
may be useful to quantum cryptography, where it
necessary to guarantee the integrity of transmitted qub
but repeated transmission is allowed since it is permiss
to change the qubit sent each time retransmission
required. Furthermore, it is simple to show that cros
phase modulators, beam splitters, and phase shifters f
a complete set of operations necessary to perform lo
with dual-rail qubits, and thus our scheme is direc
applicable to quantum computation. For example, it m
be applied to correct loss induced errors in the sing
photonics quantum computation proposal of [1]. T
crucial impediment is the realization of a Kerr mediu
with sufficiently strong nonlinearity to obtainp cross-
phase modulation between single photons; the good n
is that recent experimental results indicate that reson
effects in atomic [12] and excitonic [13] cavity QED
may provide the key. Our scheme may also be used
correct errors due to spontaneous emission in ion t
quantum computers [14]; pairs of ions or states with
ions can be used as dual-rail qubits, with regenerat
being performed using cross-phase modulation with
probe quantum bit via the center-of-mass phonon mo
“bus” qubit.

I. L. C. gratefully acknowledges the support of th
Fannie and John Hertz Foundation.

Note added.—During the revision process, a relate
paper [15] was brought to our attention, in which
similar conclusion was reached regarding the desirabi
of having balanced loss in an ion trap quantum log
gate. New quantum error correction schemes [16] h
also been presented recently which generalize our res
beyond amplitude damping.

[1] I. L. Chuang and Y. Yamamoto, Phys. Rev. A52, 3489
(1995).

[2] W. H. Louisell, Quantum Statistical Properties of Radia
tion (Wiley, New York, 1973).

[3] H. J. Carmichael, Phys. Rev. Lett.70, 2273 (1993).
[4] K. Molmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am

B 10, 524 (1993).
[5] A. Imamoglu and Y. Yamamoto, Phys. Rev. Lett.72, 210

(1994).
[6] Y. Yamamoto, M. Kitagawa, and K. Igeta, inProceedings

of the 3rd Asia-Pacific Physics Conference(World Scien-
tific, Singapore, 1988).

[7] G. J. Milburn, Phys. Rev. Lett.62, 2124 (1989).
[8] V. Braginsky and F. Khalili, Quantum Measuremen

(Cambridge University Press, Cambridge, 1992); C.
Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, a
M. Zimmermann, Rev. Mod. Phys.52, 341 (1980).
4283



VOLUME 76, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 27 MAY 1996

y

nd

n-
ool

es,
r,

r,
[9] W. H. Zurek, Phys. Rev. Lett.53, 391 (1984).
[10] T. Cover and J. Thomas,Elements of Information Theor

(Wiley, New York, 1991).
[11] B. Schumacher, Phys. Rev. A51, 2738 (1995).
[12] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, a

H. J. Kimble, Phys. Rev. Lett.75, 4710 (1995).
[13] Y. Yamamoto, inSqueezing and Cavity QED in Semico

ductors,Proceedings of the Les Houches Summer Sch
4284
on Quantum Optics of Confined Systems, Les Houch
France, 1995, edited by D. Bloch and M. Ducloy (Kluwe
London, 1995).

[14] J. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091 (1995).
[15] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zolle

Phys. Rev. Lett.75, 3788 (1995).
[16] P. Shor, Phys. Rev. A52, 2493 (1995).


