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Biasing Brownian Motion in Different Directions in a 3-State Fluctuating Potential
and an Application for the Separation of Small Particles
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We consider diffusive motion on a periodic, anisotropic potential. Multiplicative three-state noise
can bring about net flow. As the speed of this noise varies, the direction of the flux can change. We
explain the flux reversals and discuss a possible application for the construction of a device for the
separation of small particles. [S0031-9007(96)00105-6]

PACS numbers: 87.10.+e, 05.60.+w, 05.40.+j

Nonequilibrium fluctuations acting on a particle on anstruction of a device to drive and possibly separate small
anisotropic periodic potentidl (x) can cause transport[1— particles or macromolecules [11]. Multiplicative noise is
3]. Thermal noise can complicate the situation and isalso more likely to be the operating principle for motor
sometimes necessary to get any flow at all. The studproteins. The binding of ATP, the subsequent hydrolysis,
of such systems has been motivated in part by recer@nd the release of ADP do not cause a macroscopic force
advances in the experimental study of motor proteins, i.ealong a biopolymer, but simply change the distribution of
proteins that convert the energy of ATP hydrolysis intocharges in the motor protein and thus the energy profile
motion along a biopolymer [4]. These tiny engines maythat the motor protein “feels” on the periodic biopolymer.
work by using the nonequilibrium fluctuations, brought The fluctuations of this profile can account for the observed
about by the ATP turnover, to make a Brownian step inspeeds and stopping forces of real motors [2,12].
one direction more likely than in the opposite direction. The models for which fluctuation induced flow has
This biasing of Brownian motion is an operating principle been studied have generally been as simple as possible.
that is fundamentally different from that of macroscopicA piecewise linear potential with two pieces per period
engines. Furthermore, nanotechnological devices havend a two-state additive or multiplicative Markovian
been constructed where the same principles are employéidictuation allows for analytic evaluation and why flux
to drive microscopi€<<10 pm) particles. Inthis Letterwe occurs and how it changes when parameter values are
go one step further. We fluctuate a potential in such a waghanged can be understood easily [1-3]. But when
that the direction of the biasing depends on the coefficiendpnly slight complications are added the behavior of the
of friction of the particle. We thus have a possible tool forsystem can become surprisingly rich [7-9,13] and flux

the separation of such particles. can actually change its direction more than once when a
The setup is summarized by the following Langevincertain parameter is varied. Doering studied a two piece
equation: piecewise linear potential and observed how in the fast
dx d fre noise limit of an added fluctuation the direction of the
ﬂZ - _a[g(t)U(x)] + () + (BV2D)E(), induced flow depends on a characteristic of the noise

where 8 is the coefficient of viscous frictioné(r) is the [8]. Bier considered a similar system with a three-state
function representing zero average, normalized white noisBuctuating force and observed and explained the many
[5], and D controls the amplitude of this noise. The flux reversals as noise characteristics were varied [7].
fluctuation-dissipation theored = kT /g relates the co- Chauwin, Ajdari, and Prost investigated a three piece
efficient of friction and the amplitude of thermal noise. piecewise linear periodic potential. When transition rates
The functionsf () andg(r) describe the “nonthermal” ad- between such a potential and a flat potential are changed
ditive and multiplicative noise, respectively. Whefr)  a reversal of flow occurs [13].

does not vary in time angl(r) = 0 no transport can occur. Below we consider a two piece piecewise linear poten-
Transport occurring witlf(r) = 0 and constang(z) means tial, but the imposed fluctuation is multiplicative and three
that thermal fluctuations are converted into work and im-state. Recently Mielke gave a very general treatment of
plies a violation of the second law of thermodynamics [6].multiplicative fluctuations acting on a periodic potential
A great many investigations have focused on additive fluc{14]. Here we consider a specific case for which analytic
tuations [1,7-9] or oscillations [10]. In this Letter we fo- solution is possible and where flux reversals can be intu-
cus on multiplicative noise, i.e., &¢) that varies in time itively understood. Our setup is depicted in Fig. 4, (x)
while f(r) = 0, which means that the periodic potential is a two piece piecewise linear potential with an energy
changes shape but no net macroscopic force ever occudifference between minimum and maximumefVy(x) is

The study of multiplicative noise has already led to the cona flat potential and by multiplyind’+ (x) with —1, which
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is equivalent to turning it upside down, we obtain (x).

Mathematically the problem reduces to two sets of three

The arrows indicate how the transitions occur. The transieoupled ordinary differential equations that are connected
tion rates are such that equal amounts of time are spent Bt the boundariesxs = @« and x = 0. The two linear

V+(x) andV_(x), leaving three parametersg, u, and A,

systems are sixth order and have constant coefficients.

to vary. The value of varies the speed of the noise. The Because of the symmetry of the system the zero eigenvalue
paramete governs the separation of time scales for theturns out to be degenerate, so the solution is the sum

V. < V, fluctuation relative to th&, — V_ fluctuation;
u times as many transitions are made ifto as intoV_
but the dwelling time iV is u times as small as the one
in V_ so the fractions of time iV, andV_ end up to be
the same. Obviously, fgr = 1 the system is effectively
isotropic and no flux can occur. With we can regulate
the time spent irV, relative toV, andV_. ForA — o
the fluctuation becomes dichotomous betw&enandV_
and forA — 0 all time is spent inVy. A commonly used
variable is the “flatness.” When we identify the. state
with ¢ = 1, the V_ state withg = —1, and theV, state
with g = 0, the flatness is defined as = (g*)/{g*)* and

as such is a good measure for how close to zero the valwstudied by Chauwin, Ajdari, and Prost [13]).

of a constant, a linear term, and four exponentials. The
coefficients are determined by the connections at «
andx = 0. Becausd = J; + J? + J; is valid at both

x = a andx = 0 there is one redundancy, and this leaves
room for the normalization of the total probability over one
period. A computer algebra system l[IKRATHEMATICA

can solve the system and determine the induced flow within
seconds. Figure 2 shows the induced flbas a function

of logy for three different values of with x = 1000.
There are two extrema and a flux reversal. Maximum
and minimum flow have about the same magnitude (they
were different by several orders of magnitude in the setup
Next we

of g stays on the average. For our case the flatness can béll explain flux reversals in terms that are more intuitive

derived to bep = 1 + 1/(21) (see also [7]).

and directly comprehensible than the large body of algebra

To make the resulting formulas as concise as possible wsolved byMATHEMATICA.
absorb the coefficient of friction of the Brownian particle We call =3 < logy < 0 the low frequency domain.

B into the time scale, take energy in unitskdf and take.

In this domain the sojourns into the minus state are too

as the unit of distance. The Fokker-Planck equations forare to be of significance, but the flipping betwdénand
the probability distribution in the stationary state are theV, is sufficiently frequent to bring about a pumping effect.

following:
Fi' — py pAy 0
py  Fl—(ew+ DAy vy
0 Ay Fi —vy
P’ 0
Pl =10][,
P; 0
wherei = 1 represents the system on the inter@@la)

and i = 2 represents the system on the interval 1).
P*(x), P°(x), andP~ (x) are the joint probability densities
for the particle to be ak and the potential to be in the
V4, Vo, or V_ configuration, respectively. The terms
F?, F; are the respective Fokker-Planck operatﬁrfé:z
0P — fo.P! and likewise forF) and F; , where
fi, 2, andf; represent the forcesa,V;", —a,V;, and

—9d,V; . Because of the piecewise linearity these forces

are independent of. In the matrix the termgs, A, and

v parametrize the flow of probability from one potential
to another. (f;" — a,)P;" is the flow J;" along thex
axis in the+ state; likewise we havé’ = (f,Q — 9P
andJ; = (f; — d,)P; . The net flow at any poink

is J=J" +J°+J7 and in the stationary state this
quantity must be the same at any poinfThe above matrix
equation can be viewed as a way of saying = 0 in

An important notion is the adiabatic adjustment time. The
adiabatic adjustment time on each of the two slopes is
the characteristic time for a probability distribution to
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terms of forces, transition rates, and probability densitiestIG. 1. The setup for the system. We study diffusive motion

There are boundary conditionssat= « andx = 0 (which
must coincide withx = 1), where the probability densities
P, P, and P, and the flows/;", J?, andJ; must be
identical fori = 1 andi = 2.
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along thex axis as the potential is flipping in a Markovian
fashion betweerV; (x), Vo(x), and V_(x) with the indicated
transition rates. We havé_(x) = —V.(x) and the transition
rates are such that equal amounts of time are spefit. i)
andV_(x).
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diffuse over the flat part of th&, state is negligible in
comparison to the time?/E that it takes to slide down
the long slope. Takinge’ to be one and multiplying by
the fraction of time spent in the O state we detlyg, ¢ =
AE/(2A + 1) (A + 1), or in terms of the flatnesByy fr =
AE/(¢ — DE/@ 2¢ — 1).

In the high frequency domain) <logy <3, u is
such thatuy) ! is shorter than any adiabatic adjustment
timescale of the system. This means that we think of the
system as flipping between the weighted average of the
vV, andV, state, i.e.V,y, = (AVy + Vg)/(A + 1), and
the V_ state as in the sketch below.

FIG. 2. A graph of the induced flow along the axis vs \V
logy, a variable that controls the speed of the fluctuations.

The parameter values afe= 10, « = 10/11, and . = 1000.

The variableA controls how much time is spent ity(x) vs

the other two states. Curves are drawn for three values of M/(7~+1)l TY

A: A = 1/3 (dotted),A = 1 (solid), andA = 3 (dashed).

flux

0.5 |

AE/(A+1)

adjust to the shape of the potentilx) on that slope
and we take this time to be equal to the characteristic V.
time for diffusion over the width of that slope if it were a

flat potential [15]. The adiabatic adjustment time on the

slope(0, @) thus equalsr?/2 and the adiabatic adjustment

time on the short slopéa,1) equals(l — a)?/2. In Thel/(A + 1)
[2] we have shown and explained in the context of & o state
two-state model how no significant flux occurs when th(—}IS the fraction
dwelling time in each state is much shorter than the tim
for adiabatic adjustment on each of the slopes. In thi

appears in front of the rate of the transition
because, when in thg,, state,1/(A + 1)

of time spent in the 0 state from where the
8ransition to theV_ state is possible. As in the previous

A =S. 1N MNi¥ase, we obtain flux when the dwelling times are between
case the probability distribution is simply the distribution \, 4 jiabatic adjustment times of the long slope and the

on the average potgntial. Maximal qu>§ occurs V\(hen theghort slope. The long slope has a flat average. For high
dwelling times are in between the adiabatic adjustmenty,, ,ghe \ve can think of the short slope as a barrier that

times on the long and the short slope. So at maximal fluf, . ates between being absorbing and reflecting as in the
in the low frequency domain we can think of the SyStemfoIIowing sketch

as being adiabatic at all times and with a short slope that
flips between 0 and’/a and a stationary long slope with

the average height ofE/(A + 1), i.e., Vavg
reflecting
V+
E X=0=1
AE/(A+1) x=0
absorbing
AY (A+1) ¥
)‘“YH W AE/(A1)
reflecting
Vo \
1-a o
absorbing

Note that in theV. state the slopes have opposite signs

and that this is not the case Iry. For the purpose of a It is obvious that for allh dwelling time inV,,, is longer
rough approximation we can assume that no flux occurand therefore we expect positive flux. We obtain this flux
in the V.. state and that the negative flux happens becaudgy substracting the fraction of time spentWn. from the

of the sliding down in theV, state. For the values we fraction spent inV,,, and multiplying this difference with
took (E = 10 and a =~ 10/11) the time(1 — a)>/2 to  the exit rate from the unit interval. For a particle starting
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at the reflecting barrier it takes on the average half a unitmaximum flow occurs when the flipping rate betwdén

of time to get to the absorbing barrier. This leads to theand V,, is about 20 Hz. After redimensionalization the
following estimate for the fludyign s = 2/(2 + 1), orin  formulas forJiey ¢ andJpign i become

terms of the flatnesgyighir = 2(¢ — 1)/ ¢. A EXT

Next we compare the approximatiofg, fr andJhigh fr Jonin = and
with the exact evaluations as depicted in Fig. 2. For @r+ D@+ 1) BL
a = 10/11 the adiabatic adjustment times of the two joo— 2
slopes are 2 orders of magnitude apart, their geometric ™A+ 1) BL

average occurs ak(l — «)/2 and on the log axis  \yhen we takeE = 10 (this is in principle under exper-
this corresponds to 1¢8/a(l — a)] = 1.6. In the oW  jmental control with the electrical field strength) we find
frequency domain the geometric average of the tran5|t|ogpeedS of abouit0 xm/s.

rates betweenV, and Vy is ,u_y\/X and in the high " pgjystyrene and latex spheres with submicrometer radii
frequency domain the geometric average of the transitiogre commercially available. The coefficient of friction
rates betwee,,, andV—is yyA/(A + 1). InFig. 2the  of sych beads is easily evaluated with Stokes’ formula
minima_occur atuy+/A = 2/a(l — @) and the maxima g — 677, where ) is the coefficient of viscosity. A

at yvA/(A + 1) = 2/a(l — a) within a factor of 4. pead with a radius 06.5 um thus has a coefficient of
The approximations predict that both extrema move leffriction that is about 100 times as much as that of a
for increasingA and this is indeed the case in Fig. 2. hemoglobin molecule. This means that the extrema of
The estimates/iow e and Jhignhr are within a factor of  the flux are aboud.1 uwm/s at characteristic flipping rates
2 from the values of the actual extrema of the flux. Thepf about 0.2 Hz and that separation of particles with radii
formula forJioy r predicts an extremum at = v/2/2. In different by a factor of 2 should be accomplishable in
Fig. 2 we indeed observe that the maximal negative flux;nder an hour.

is smaller atA = 1/3 and A = 3 than atA = 1. The We are grateful to David Grier for useful discussions
formula for Juignsr predicts that the positive maximum and ideas and to the NIH (Grants No. RO1ES06010
becomes larger with decreasing This prediction is and No. R29ES06620) and the MRSEC Program of the

borne out by the curves in Fig. 2. National Science Foundation (Award No. DMR-9400379)
Upon redimensionalizing the variables a possible applifor funding.
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