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Biasing Brownian Motion in Different Directions in a 3-State Fluctuating Potential
and an Application for the Separation of Small Particles
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We consider diffusive motion on a periodic, anisotropic potential. Multiplicative three-state noise
can bring about net flow. As the speed of this noise varies, the direction of the flux can change. W
explain the flux reversals and discuss a possible application for the construction of a device for th
separation of small particles. [S0031-9007(96)00105-6]
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Nonequilibrium fluctuations acting on a particle on
anisotropic periodic potentialUsxd can cause transport [1
3]. Thermal noise can complicate the situation and
sometimes necessary to get any flow at all. The st
of such systems has been motivated in part by re
advances in the experimental study of motor proteins,
proteins that convert the energy of ATP hydrolysis in
motion along a biopolymer [4]. These tiny engines m
work by using the nonequilibrium fluctuations, broug
about by the ATP turnover, to make a Brownian step
one direction more likely than in the opposite directio
This biasing of Brownian motion is an operating princip
that is fundamentally different from that of macroscop
engines. Furthermore, nanotechnological devices h
been constructed where the same principles are empl
to drive microscopics,10 mmd particles. In this Letter we
go one step further. We fluctuate a potential in such a w
that the direction of the biasing depends on the coeffic
of friction of the particle. We thus have a possible tool
the separation of such particles.

The setup is summarized by the following Langev
equation:

b
dx
dt

­ 2
≠

≠x
fgstdUsxdg 1 fstd 1 sb

p
2Ddjstd ,

whereb is the coefficient of viscous friction,jstd is the
function representing zero average, normalized white n
[5], and D controls the amplitude of this noise. Th
fluctuation-dissipation theoremD ­ kTyb relates the co-
efficient of friction and the amplitude of thermal nois
The functionsfstd andgstd describe the “nonthermal” ad
ditive and multiplicative noise, respectively. Whengstd
does not vary in time andfstd ­ 0 no transport can occur
Transport occurring withfstd ­ 0 and constantgstd means
that thermal fluctuations are converted into work and
plies a violation of the second law of thermodynamics [
A great many investigations have focused on additive fl
tuations [1,7–9] or oscillations [10]. In this Letter we f
cus on multiplicative noise, i.e., agstd that varies in time
while fstd ­ 0, which means that the periodic potent
changes shape but no net macroscopic force ever oc
The study of multiplicative noise has already led to the c
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struction of a device to drive and possibly separate sm
particles or macromolecules [11]. Multiplicative noise
also more likely to be the operating principle for moto
proteins. The binding of ATP, the subsequent hydrolys
and the release of ADP do not cause a macroscopic fo
along a biopolymer, but simply change the distribution
charges in the motor protein and thus the energy pro
that the motor protein “feels” on the periodic biopolyme
The fluctuations of this profile can account for the observ
speeds and stopping forces of real motors [2,12].

The models for which fluctuation induced flow ha
been studied have generally been as simple as poss
A piecewise linear potential with two pieces per perio
and a two-state additive or multiplicative Markovia
fluctuation allows for analytic evaluation and why flu
occurs and how it changes when parameter values
changed can be understood easily [1–3]. But wh
only slight complications are added the behavior of t
system can become surprisingly rich [7–9,13] and fl
can actually change its direction more than once whe
certain parameter is varied. Doering studied a two pie
piecewise linear potential and observed how in the f
noise limit of an added fluctuation the direction of th
induced flow depends on a characteristic of the no
[8]. Bier considered a similar system with a three-sta
fluctuating force and observed and explained the ma
flux reversals as noise characteristics were varied
Chauwin, Ajdari, and Prost investigated a three pie
piecewise linear periodic potential. When transition rat
between such a potential and a flat potential are chan
a reversal of flow occurs [13].

Below we consider a two piece piecewise linear pote
tial, but the imposed fluctuation is multiplicative and thre
state. Recently Mielke gave a very general treatment
multiplicative fluctuations acting on a periodic potenti
[14]. Here we consider a specific case for which analy
solution is possible and where flux reversals can be in
itively understood. Our setup is depicted in Fig. 1.V1sxd
is a two piece piecewise linear potential with an ener
difference between minimum and maximum ofE. V0sxd is
a flat potential and by multiplyingV1sxd with 21, which
© 1996 The American Physical Society 4277
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is equivalent to turning it upside down, we obtainV2sxd.
The arrows indicate how the transitions occur. The tra
tion rates are such that equal amounts of time are spe
V1sxd andV2sxd, leaving three parameters,g, m, andl,
to vary. The value ofg varies the speed of the noise. T
parameterm governs the separation of time scales for
V1 $ V0 fluctuation relative to theV0 $ V2 fluctuation;
m times as many transitions are made intoV1 as intoV2

but the dwelling time inV1 is m times as small as the on
in V2 so the fractions of time inV1 andV2 end up to be
the same. Obviously, form ­ 1 the system is effectively
isotropic and no flux can occur. Withl we can regulate
the time spent inV0 relative toV1 andV2. For l ! `

the fluctuation becomes dichotomous betweenV1 andV2

and forl ! 0 all time is spent inV0. A commonly used
variable is the “flatness.” When we identify theV1 state
with g ­ 1, the V2 state withg ­ 21, and theV0 state
with g ­ 0, the flatness is defined asw ­ kg4lykg2l2 and
as such is a good measure for how close to zero the v
of g stays on the average. For our case the flatness ca
derived to bew ­ 1 1 1ys2ld (see also [7]).

To make the resulting formulas as concise as possibl
absorb the coefficient of friction of the Brownian partic
b into the time scale, take energy in units ofkT and takeL
as the unit of distance. The Fokker-Planck equations
the probability distribution in the stationary state are
following:24 F1

i 2 mg mlg 0
mg F0

i 2 sm 1 1dlg g

0 lg F2
i 2 g

35
24 P1

i
P0

i
P2

i

35 ­

24 0
0
0

35 ,

wherei ­ 1 represents the system on the intervals0, ad
and i ­ 2 represents the system on the intervalsa, 1d.
P1sxd, P0sxd, andP2sxd are the joint probability densitie
for the particle to be atx and the potential to be in th
V1, V0, or V2 configuration, respectively. The termsF1

i ,
F0

i , F2
i are the respective Fokker-Planck operators:F1

i ­
≠xxP1

i 2 f1
i ≠xP1

i and likewise forF0
i and F2

i , where
f1

i , f0
i , andf2

i represent the forces2≠xV 1
i , 2≠xV 0

i , and
2≠xV 2

i . Because of the piecewise linearity these for
are independent ofx. In the matrix the termsm, l, and
g parametrize the flow of probability from one potent
to another. sf1

i 2 ≠xdP1
i is the flow J1

i along thex
axis in the1 state; likewise we haveJ0

i ­ sf0
i 2 ≠xdP0

i
and J2

i ­ sf2
i 2 ≠xdP2

i . The net flow at any pointx
is J ­ J1

i 1 J0
i 1 J2

i and in the stationary state th
quantity must be the same at any pointx. The above matrix
equation can be viewed as a way of saying≠xJ ­ 0 in
terms of forces, transition rates, and probability densit
There are boundary conditions atx ­ a andx ­ 0 (which
must coincide withx ­ 1), where the probability densitie
P1

i , P0
i , and P2

i and the flowsJ1
i , J0

i , and J2
i must be

identical fori ­ 1 andi ­ 2.
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Mathematically the problem reduces to two sets of th
coupled ordinary differential equations that are connec
at the boundariesx ­ a and x ­ 0. The two linear
systems are sixth order and have constant coefficie
Because of the symmetry of the system the zero eigenv
turns out to be degenerate, so the solution is the s
of a constant, a linear term, and four exponentials. T
coefficients are determined by the connections atx ­ a

andx ­ 0. BecauseJ ­ J1
i 1 J0

i 1 J2
i is valid at both

x ­ a andx ­ 0 there is one redundancy, and this leav
room for the normalization of the total probability over on
period. A computer algebra system likeMATHEMATICA

can solve the system and determine the induced flow wit
seconds. Figure 2 shows the induced flowJ as a function
of logg for three different values ofl with m ­ 1000.
There are two extrema and a flux reversal. Maximu
and minimum flow have about the same magnitude (th
were different by several orders of magnitude in the se
studied by Chauwin, Ajdari, and Prost [13]). Next w
will explain flux reversals in terms that are more intuitiv
and directly comprehensible than the large body of alge
solved byMATHEMATICA.

We call 23 , logg , 0 the low frequency domain
In this domain the sojourns into the minus state are
rare to be of significance, but the flipping betweenV1 and
V0 is sufficiently frequent to bring about a pumping effec
An important notion is the adiabatic adjustment time. T
adiabatic adjustment time on each of the two slopes
the characteristic time for a probability distribution t
s

.FIG. 1. The setup for the system. We study diffusive moti
along thex axis as the potential is flipping in a Markovia
fashion betweenV1sxd, V0sxd, and V2sxd with the indicated
transition rates. We haveV2sxd ­ 2V1sxd and the transition
rates are such that equal amounts of time are spent inV1sxd
andV2sxd.
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FIG. 2. A graph of the induced flow along thex axis vs
logg, a variable that controls the speed of the fluctuatio
The parameter values areE ­ 10, a ­ 10y11, andm ­ 1000.
The variablel controls how much time is spent inV0sxd vs
the other two states. Curves are drawn for three value
l : l ­ 1y3 (dotted),l ­ 1 (solid), andl ­ 3 (dashed).

adjust to the shape of the potentialV sxd on that slope
and we take this time to be equal to the characteri
time for diffusion over the width of that slope if it were
flat potential [15]. The adiabatic adjustment time on
slopes0, ad thus equalsa2y2 and the adiabatic adjustme
time on the short slopesa, 1d equals s1 2 ad2y2. In
[2] we have shown and explained in the context o
two-state model how no significant flux occurs when
dwelling time in each state is much shorter than the t
for adiabatic adjustment on each of the slopes. In
case the probability distribution is simply the distributi
on the average potential. Maximal flux occurs when
dwelling times are in between the adiabatic adjustm
times on the long and the short slope. So at maximal
in the low frequency domain we can think of the syst
as being adiabatic at all times and with a short slope
flips between 0 andEya and a stationary long slope wit
the average height oflEysl 1 1d, i.e.,
n

u
u

e

ux

g

Note that in theV1 state the slopes have opposite sig
and that this is not the case inV0. For the purpose of a
rough approximation we can assume that no flux occ
in theV1 state and that the negative flux happens beca
of the sliding down in theV0 state. For the values w
took sE ø 10 and a ø 10y11d the time s1 2 ad2y2 to
.

f

c

e
s

t
x

diffuse over the flat part of theV0 state is negligible in
comparison to the timea2yE that it takes to slide down
the long slope. Takinga2 to be one and multiplying by
the fraction of time spent in the 0 state we deriveJlow fr ­
lEys2l 1 1d sl 1 1d, or in terms of the flatnessJlow fr ­
lEysw 2 1dEyw s2w 2 1d.

In the high frequency domain,0 , logg , 3, m is
such thatsmgd21 is shorter than any adiabatic adjustme
timescale of the system. This means that we think of
system as flipping between the weighted average of
V1 and V0 state, i.e.,Vavg ­ slV1 1 V0dysl 1 1d, and
theV2 state as in the sketch below.

The1ysl 1 1d appears in front of the rate of the transitio
to the2 state because, when in theVavg state,1ysl 1 1d
is the fraction of time spent in the 0 state from where
transition to theV2 state is possible. As in the previou
case, we obtain flux when the dwelling times are betw
the adiabatic adjustment times of the long slope and
short slope. The long slope has a flat average. For h
enoughE we can think of the short slope as a barrier th
fluctuates between being absorbing and reflecting as in
following sketch.
s

rs
se

It is obvious that for alll dwelling time inVavg is longer
and therefore we expect positive flux. We obtain this fl
by substracting the fraction of time spent inV2 from the
fraction spent inVavg and multiplying this difference with
the exit rate from the unit interval. For a particle startin
4279
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at the reflecting barrier it takes on the average half a u
of time to get to the absorbing barrier. This leads to t
following estimate for the flux:Jhigh fr ­ 2ys2 1 1d, or in
terms of the flatnessJhigh fr ­ 2sw 2 1dyw.

Next we compare the approximationsJlow fr andJhigh fr

with the exact evaluations as depicted in Fig. 2. F
a ­ 10y11 the adiabatic adjustment times of the tw
slopes are 2 orders of magnitude apart, their geome
average occurs atas1 2 ady2 and on the logg axis
this corresponds to logf2yas1 2 adg ­ 1.6. In the low
frequency domain the geometric average of the transit
rates betweenV1 and V0 is mg

p
l and in the high

frequency domain the geometric average of the transit
rates betweenVavg andV2 is g

p
lysl 1 1d. In Fig. 2 the

minima occur atmg
p

l ø 2yas1 2 ad and the maxima
at g

p
lysl 1 1d ø 2yas1 2 ad within a factor of 4.

The approximations predict that both extrema move l
for increasingl and this is indeed the case in Fig.
The estimatesJlow fr and Jhigh fr are within a factor of
2 from the values of the actual extrema of the flux. T
formula forJlow fr predicts an extremum atl ­

p
2y2. In

Fig. 2 we indeed observe that the maximal negative fl
is smaller atl ­ 1y3 and l ­ 3 than atl ­ 1. The
formula for Jhigh fr predicts that the positive maximum
becomes larger with decreasingl. This prediction is
borne out by the curves in Fig. 2.

Upon redimensionalizing the variables a possible ap
cation of the above theory comes to mind. To unsc
the flipping rates they have to be multiplied withkTybL2,
whereL is the length of a period of the potential andb

represents the coefficient of viscous friction of the diffu
ing particle. The value ofb is specific for each molecule
and depends on shape and size. For a given flipping r
different macromolecules thus find themselves at diff
ent locations along the logg axis in Fig. 2. It is always
possible to impose a flipping rate on the system such
a molecule with frictionb1 moves in a direction oppo-
site to the one of a molecule with frictionb2. Devices for
the separation of macromolecules usually operate base
the fact that molecules with a largerb move slower in a
certain direction when a force is applied in that directio
The device proposed here is actually able to let molecu
with differentb’s move in opposite directions. Thus a d
vice of short length would already be able to separate v
efficiently.

In nanotechnology it is now possible to construct gri
with a period of about5 mm. The creation of a field as in
Fig. 1 on such a scale is thus feasible. In dilute solutio
proteins like hemoglobin have friction coefficients o
about 10210 s21 [16]. This translates into a diffusion
coefficient of about50 mm2ys. So keeping the system
in the flat state for a tenth of a second is enough
allow diffusion over about half a period. In terms of ou
setup this means that the negative minimum occurs w
the flipping rate betweenV1 and V0 is about 20 Hz and
4280
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maximum flow occurs when the flipping rate betweenV2

and V0 is about 20 Hz. After redimensionalization th
formulas forJlow fr andJhigh fr become

Jmin ­
l

s2l 1 1d sl 1 1d
EkT
bL

and

Jmax ­
2

s2l 1 1d
kT
bL

.

When we takeE ­ 10 (this is in principle under exper
imental control with the electrical field strength) we fin
speeds of about10 mmys.

Polystyrene and latex spheres with submicrometer r
are commercially available. The coefficient of frictio
of such beads is easily evaluated with Stokes’ form
b ­ 6phr, whereh is the coefficient of viscosity. A
bead with a radius of0.5 mm thus has a coefficient o
friction that is about 100 times as much as that o
hemoglobin molecule. This means that the extrema
the flux are about0.1 mmys at characteristic flipping rate
of about 0.2 Hz and that separation of particles with ra
different by a factor of 2 should be accomplishable
under an hour.

We are grateful to David Grier for useful discussio
and ideas and to the NIH (Grants No. R01ES060
and No. R29ES06620) and the MRSEC Program of
National Science Foundation (Award No. DMR-940037
for funding.
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