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Shear Induced Displacement of the Spinodal of Brownian Systems
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The displacement of the gas-liquid spinodal of colloids on applying a shear flow is analyzed o
basis of the Smoluchowski equation. Relatively simple arguments predict that the off-critical part
spinodal is displaced linearly with the shear rateÙg, while the shift of the critical temperature is, Ùg1yg,
with g the critical exponent for the reciprocal equilibrium compressibility. This differs consider
from what is known for molecular systems. It is also argued that the cloud-point curve under sh
longer coincides with the spinodal, and is displaced far into the unstable region of the phase di
A sharp increase of forward scattered intensity in a sheared system does not probe the location
spinodal. [S0031-9007(96)00310-9]

PACS numbers: 82.70.Dd, 64.60.Ak
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Renormalization group theoretical expansions in4 2 d
(with d the spatial dimensionality) for molecular fluid
as performed by Onukiet al. [1,2] predict a shift of the
critical temperature due to shearing motion, Ùgp, with
p ø 0.52, where Ùg is the shear rate. This paper prese
a relatively simple calculation of the shift of the spinod
due to shear flow for Brownian systems, including t
off-critical part, starting from an equation of motio
for the probability density function of the phase spa
coordinates. It is found that the shift of the off-critic
part of the spinodal is a linear function of the shear r
Ùg, while the critical temperature is shifted, Ùg1yg , with
g the critical exponent for the inverse compressibili
Since equilibrium critical exponents for molecular flui
are the same as for colloids, and the critical expon
g for molecular fluids isø1.23, this predicts that the
critical temperature for colloids is shifted such as, Ùgp

with p ø 0.81. This exponent differs considerably fro
that found for molecular fluids.

The displacement of the spinodal, including its o
critical part, can be described on the basis of the Sm
chowski equation. This is the equation of motion on
diffusive time scale for the probability density functio
(PDF) P of the position coordinateshrjj of theN Brown-
ian particles in the system. This “Liouville equation o
the diffusive time scale” reads [3–5], with the neglect
hydrodynamic interactions,
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≠t
P ­
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j­1
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e
.
it

0031-9007y96y76(22)y4269(4)$10.00
s

e

t

-

whereb ­ 1ykBT (with kB being the Boltzmann’s con
stant andT the temperature),F is the potential en-
ergy of the assembly of Brownian particles,D is the
Stokes-Einstein diffusion constant, and===j is the gradient
operator with respect torj. Furthermore,G is the velocity
gradient tensor, withG12 ­ Ùg, and all other entries equa
to 0. This corresponds to a flow in thex direction with its
gradient in they direction. The equation of motion (1) i
a conservation equation, where the velocity of phase sp
coordinates is driven by a Brownian force2kBT===j lnhPj,
by a force due to direct interactions2===jF, and where
there is an additional convective contribution to the vel
ity equal toG ? rj.

The spinodal is defined as the points in the tempera
T versus number densityr ­ NyV diagram, where the
system becomes unstable against density fluctuation
infinite wavelength and infinitesimally small amplitud
Hence, to calculate the spinodal, an equation of mo
for the number density must be obtained from Eq. (
after which a simple linear stability analysis for ze
wave vectors can be performed to locate the spino
In the metastable region of the phase diagram things
much more complicated, and at least the leading o
nonlinear term must be included in the stability analy
to calculate the binodal. The discussion here is restric
to the spinodal.

Integration of Eq. (1), assuming a pairwise addit
potential energy, yields the following equation of moti
for the macroscopic densityrsr, tj Ùgd,
≠

≠t
rsr, tj Ùgd ­ D

Ω
===2rsr, tj Ùgd 1 b=== ? rsr, tj Ùgd

Z
dr0f===V sjr 2 r0jdgrsr0, tj Ùgdgsr, r0, tj Ùgd

æ
2 === ? fG ? rrsr, tj Ùgdg ,

(2)
air-
r

where V is the pair-interaction potential. The tim
and shear rate dependences are denoted explicitly
closed equation of motion for the macroscopic dens
A
y

is obtained when a sensible closure relation for the p
correlation functiongsr, r0, tj Ùgd can be derived. Since ou
interest is restricted to thedisplacementof the spinodal,
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we only need to derive an appropriate form forthe change
of the pair-correlation function on applying a shear flo
The crucial thing here is that the pair-correlation functi
in Eq. (2) is multiplied in the integrand by the pair forc
===V sjr 2 r0jd. A closure relation is therefore neede
only for distancesjr 2 r0j # RV , with RV the range of
the pair-interaction potential. This fact has importa
consequences. First of all, relaxation of the stable sh
wavelength density fluctuations is very fast compar
to relaxation (or demixing) rates of long waveleng
density fluctuations, the dynamics of which is severe
slowed down close to the spinodal [see, in this resp
also, the comment below Eq. (10)]. As a consequen
the nonequilibrium pair-correlation function relaxes f
distancesjr 2 r0j # RV on a time scale that still resolve
the dynamics of the long wavelengths, which rend
the system unstable below the spinodal. For the sm
distances for which the closure relation is needed,
pair-correlation function can therefore be replaced
uc
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the stationary solutiongstatsjr 2 r0j j Ùgdjr­rsss sr1r 0dy2,tj Ùgddd
of its equation of motion, at the local densityrssssr 1

r0dy2, tj Ùgddd. Without shear flow, the stationary solution i
nothing but the equilibrium pair-correlation function, an
this separation in time scales between demixing unsta
long wavelengths, and the relaxation of stable sm
wavelengths may be regarded as the statistical analo
thermodynamic local equilibrium. In fact, Eq. (2) can b
used to rederive the Cahn-Hilliard equation of motio
for spinodal decomposition, where the assumption
thermodynamic local equilibrium is employed. Secon
the equation of motion for the pair-correlation functio
[which can be obtained by integration of Eq. (1)]
regularly perturbed by the shear flow for such sm
distances, since the perturbing term in that equation, be
equal to 2=== ? fG ? sr 2 r0dgg, is bounded from above
by a form that is linear in the shear rate provided th
jr 2 r0j # RV . In fact, it is readily shown that (with
R ­ r 2 r0),
gstatsRj Ùgdjr­rsss sr1r0dy2,tj Ùgddd ­ geqsRdjr­rsss sr1r0dy2,tj Ùgddd 1 FsRdjr­rsss sr1r0dy2,tj ÙgdddPe0 1 O sss sPe0d2ddd for R # RV , (3)
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where

Pe0 ­
ÙgR2

V

2D
(4)

is the bare Peclet number, which measures shear ind
microstructural distortion over distances of the orderRV .
The functionF in Eq. (3) describes the distortion of th
pair-correlation function for small distances and can
principle, be calculated as the linear response solutio
its equation in motion.

Substitution of the closure relation (3) into the equat
of motion (2), linearization with respect to the deviati
drsr, tj Ùgd ­ rsr, tj Ùgd 2 r of the density relative to th
average densityr ­ NyV , Fourier transformation an
expanding up toO sssskRV d4ddd yields∑

≠

≠t
2 Ùgk1

≠

≠k2

∏
drsk, tj Ùgd ­ 2Deffskj Ùgdk2drsk, tj Ùgd ,

(5)
with kj the jth component of the wave vector, and whe
the effective diffusion coefficient is equal to

Deffskj Ùgd ­ D

∑
b

≠peqsr, T d
≠r

1 f0sk̂jr, T dPe0

1 k2fbSsr, T d 1 f1sk̂jr, T dPe0g

1 O ssssPe0d2, skRV d4ddd
∏

, (6)

with

peqsr, Td ­ rkBT

2
2p

3
r2

Z `

0
dR R3 dV sRd

dR
geqsRjr, T d (7)

the pressure of the unsheared, equilibrium sys
(the density and temperature dependence of the
ed

of

ir-

correlation function is denoted explicitly here), and

Ssr, T d ­
2p

15
r

Z `

0
dR R5 dV sRd

dR

3

∑
geqsRjr, T d 1

1
8

r
dgeqsRjr, T d

dr

∏
(8)

is directly proportional to the Cahn-Hilliard squar
gradient coefficient. Furthermore,

f0sk̂jr, T d ­ 2 br
Z

dRsk̂ ? Rd2 1
R

dV sRd
dR

3

∑
FsRjr, Td 1

1
2

r
≠FsRjr, T d

≠r

∏
, (9)

f1sk̂jr, T d ­
1
6

br
Z

dRsk̂ ? Rd4 1
R

dV sRd
dR

3

∑
FsRjr, Td 1

1
8

r
≠FsRjr, T d

≠r

∏
, (10)

wherek̂ ­ kyk is the unit wave vector. These integra
can be evaluated after the functionF is determined as
the linear response solution of the equation of mot
for the pair-correlation function for small distancesR ­
jr 2 r0j # RV .

Notice that close to the spinodal, whereb≠peqy≠r

is small, the effective diffusion coefficient (6) for sma
wave vectors is much smaller thanD. Together with
the factor k2 in Eq. (5) that multiplies the diffusion
coefficient, this implies the separation of time scales
long and short wavelength dynamics referred to earlie
connection with the closure relation (3).

The spinodal is defined as the set of densities and t
peratures where the system becomes unstable against
sity fluctuations of infinite wavelength and infinitesimal
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small amplitude. This happens if, and only if, the e
fective diffusion coefficient at zero wave vector becom
equal to 0. There is a subtlety involved here related
the dependence of the functionf0 in Eq. (6) for the ef-
fective diffusion coefficient on the direction of the wa
vector. Wave vectors with the particular direction whe
f0 attains its minimum value become unstable first. Le

f
s2d
0 sr, Td ; min

k̂
f0sk̂jr, T d (11)

denote the minimum value off0 with respect to all direc-
tions of wave vector for a given density and temperatu
The implicit relation between the temperature and the d
sity that defines the spinodal now follows from Eq. (6),

b
≠peqsr, T d

≠r
1 f

s2d
0 sr, T dPe0 ­ 0

defines the spinodalT ; T srd , (12)

where higher order contributions in Pe0 are omitted. For
zero shear rates this reproduces the well-known ther
dynamic definition of the spinodal. The above relation
a generalization of that thermodynamic definition wh
includes effects of shear flow.

As f
s2d
0 is related to the short-ranged shear induc

distortion of the pair-correlation function, we will assum
that it is well behaved on the spinodal.

Let us first consider the displacement of the spino
away from the critical point, where≠2peqsr, T0

s dy≠r2 fi

0, where the subscripts refers to quantities on the spin
odal, and the superscript 0 refers to the quiescent,
sheared system. LetdTs denote the shift of the spinoda
temperature at a given fixed number densityr when a
shear flow is applied. WritingTs ­ T0

s 1 dTs, with Ts

and T0
s the spinodal temperature of the sheared and

sheared system, respectively, and expanding Eq. (12
to leading order indTs and Pe0 gives

dTs ­ 2
f

s2d
0 sr, T 0

s d
b≠2peqsr, T 0

s dy≠r2 Pe0. (13)

The shift of the spinodal temperature at a given densit
thus seen to vary linearly with the shear rate.

The above arguments fail at the critical point since th
≠2peqsr, T 0

c dy≠r2 ­ 0, where the subscriptc is used to
indicate quantities at the critical point, and, as above
superscript 0 refers to the quiescent, unsheared equ
rium system. Close to the critical point of the unshea
system, the divergence of the reciprocal equilibrium co
pressibility is characterized by the critical exponentg,

b
≠peqsr, T d

≠r
­ csT 2 T0

c dg , (14)

wherec is a constant independent of density and temp
ture. Substitution of this expression into Eq. (12) yie
the following prediction for the shiftdTc of the critical
temperature:

dTc ­

µ
2f

s2d
0 sr, T 0

c d
c

∂1yg

sPe0d1yg . (15)
the
-
s
to

e

e.
n-

o-
s
h

d

al

n-

n-
up

is

re

a
ib-
d
-

a-
s

Contrary to the displacement of the spinodal temperat
away from the critical point, the displacement of the cri
cal temperature is generally proportional to a fraction
power of the shear rate.

In order to determine whether the spinodal temperat
is increased or decreased by applying a shear flow,
linear response solution of the equation of motion for t
pair-correlation function for small distancesjr 2 r0j #

RV should be calculated. This is beyond the scope
this Letter.

The turbidity of a colloidal system measures the to
amount of light that is scattered by the colloidal particle
and is formally equal to an integral over the scatter
intensity. The cloud-point curve is defined as the set
temperatures and densities where the turbidity diverg
This divergence is due to the development of long-rang
structure, that is, due to the long-ranged character of
pair-correlation function. The displacement of the clou
point curve due to shear flow is therefore related to t
effect that the shearing motion has on the long-rang
structure of the pair-correlation function. This is differe
for the displacement of the spinodal, which is relat
to the effect of shearing motion on the short-rang
behavior of the pair-correlation function, as explaine
in detail above. Since the shear rate dependence of
long-ranged part of the pair-correlation function is high
nonlinear, contrary to its short-ranged part [see Eq. (3
the displacement of the cloud-point curve is expected
be much more pronounced than for the spinodal. In
quiescent dispersion the cloud-point curve coincides w
the spinodal. In a sheared system, however, the two
not coincide, since for the spinodal and cloud-point cur
the distortion of the short-ranged and long-ranged part
the pair-correlation function are, respectively, responsi
for their displacement. The cloud-point curve in a shear
system is expected to be located below the spinodal, in
unstable part of the phase diagram.

There are a number of experiments on systems with
upper critical point where the critical temperature is fou
to be lowered by shear flow, such as polystyrene/ce
lose/benzene [6], polystyrene/polybutadiene/dioctylphth
late [7,8], isobuteric acid/water [9–11], and polystyren
trans-decaline of low molecular mass [12] (polystyre
solutions in trans-decaline with high molecular mass sh
a decrease of the critical temperature). For deforma
particles, such as high molecular weight polymers, a
anisometric particles, there is an additional effect of she
not included in the present theory due to changes of
teractions on the pair level as a result of single parti
deformation and alignment.

In the above-mentioned systems an exponent for
shift of the critical temperature of about 0.50 is reporte
except in Ref. [6], where a linear displacement of t
critical temperature is found. It should be mentione
that in some of these experiments the location of t
cloud-point curve might have been probed instead of
4271
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FIG. 1. A schematic of the displacement of the spinodal d
to shear flow, where a lowering of the spinodal due to sh
and g . 1 are assumed. The off-critical part of the spinod
is shifted linearly with the shear rate, while the critical po
is shifted with the reciprocal critical exponent of the inver
compressibility≠peqsr, T dy≠r. The cloud-point curve in the
sheared system is expected to be located far below the she
spinodal, in the unstable part of the phase diagram.

critical point. It seems the displacement of the cloud po
varies with the shear rate asÙgp, with p ø 0.50. The
displacement of the cloud point as reported in Ref.
can indeed be fitted with such a power law.

When experiments on the displacement of the criti
temperature are performed either at a somewhat
critical density or at temperatures not very close to
critical point (so thatg attains its mean-field value 1)
a linear displacement of the critical temperature w
be found.
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No experiments on colloidal systems that unambig
ously probe the location of the critical point exist as yet
test the above predictions.

The above predictions are summarized in Fig. 1, wh
a decrease of the spinodal temperature is assumed. A
from the critical point the displacement is linear in th
shear rate; at the critical point the displacement is larg
provided thatg . 1, and there is a crossover betwe
these two scenarios on approach of the critical point,
indicated by the dashed part of the spinodal of the shea
system.
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