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Shear Induced Displacement of the Spinodal of Brownian Systems

Jan K. G. Dhont

van 't Hoff Laboratory, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
(Received 1 February 1996

The displacement of the gas-liquid spinodal of colloids on applying a shear flow is analyzed on the
basis of the Smoluchowski equation. Relatively simple arguments predict that the off-critical part of the
spinodal is displaced linearly with the shear rgtewhile the shift of the critical temperature isy!/?,
with y the critical exponent for the reciprocal equilibrium compressibility. This differs considerably
from what is known for molecular systems. It is also argued that the cloud-point curve under shear no
longer coincides with the spinodal, and is displaced far into the unstable region of the phase diagram.
A sharp increase of forward scattered intensity in a sheared system does not probe the location of the
spinodal. [S0031-9007(96)00310-9]

PACS numbers: 82.70.Dd, 64.60.Ak

Renormalization group theoretical expansiong in d  where 8 = 1/kzT (with kg being the Boltzmann’s con-
(with d the spatial dimensionality) for molecular fluids stant and7T the temperature)® is the potential en-
as performed by Onukét al. [1,2] predict a shift of the ergy of the assembly of Brownian particleB, is the
critical temperature due to shearing motieny”, with ~ Stokes-Einstein diffusion constant, aWd is the gradient
p =~ 0.52, wherevy is the shear rate. This paper presentsoperator with respect toy. Furthermore] is the velocity
a relatively simple calculation of the shift of the spinodal gradient tensor, witd';, = v, and all other entries equal
due to shear flow for Brownian systems, including theto 0. This corresponds to a flow in thedirection with its
off-critical part, starting from an equation of motion gradient in they direction. The equation of motion (1) is
for the probability density function of the phase spacea conservation equation, where the velocity of phase space
coordinates. It is found that the shift of the off-critical coordinates is driven by a Brownian foregczTV; In{P},
part of the spinodal is a linear function of the shear rateby a force due to direct interactionsV;®, and where
v, while the critical temperature is shiftedy!/”, with  there is an additional convective contribution to the veloc-
v the critical exponent for the inverse compressibility.ity equal toI" - r;.
Since equilibrium critical exponents for molecular fluids The spinodal is defined as the points in the temperature
are the same as for colloids, and the critical exponenf versus number density = N/V diagram, where the
v for molecular fluids is=1.23, this predicts that the system becomes unstable against density fluctuations of
critical temperature for colloids is shifted such ag/” infinite wavelength and infinitesimally small amplitude.
with p = 0.81. This exponent differs considerably from Hence, to calculate the spinodal, an equation of motion
that found for molecular fluids. for the number density must be obtained from Eq. (1),
The displacement of the spinodal, including its off- after which a simple linear stability analysis for zero
critical part, can be described on the basis of the Smoluwave vectors can be performed to locate the spinodal.
chowski equation. This is the equation of motion on theln the metastable region of the phase diagram things are
diffusive time scale for the probability density function much more complicated, and at least the leading order
(PDF) P of the position coordinatels;} of the N Brown-  nonlinear term must be included in the stability analysis
ian particles in the system. This “Liouville equation on to calculate the binodal. The discussion here is restricted
the diffusive time scale” reads [3—5], with the neglect ofto the spinodal.
hydrodynamic interactions, Integration of Eg. (1), assuming a pairwise additive
P N potential energy, yields the following equation of motion
EP = JZ1 V; - {D[V,P + BPV;®]—(I" - r;P)}, (1) for the macroscopic densify(r, t|y),

2wl = D{Vzp(r,tl*y) £ BY - p(etl) f e[V (e — r'|>]p<r',r|«‘y>g<r,r',rm} — V[T rp(alf)].

()

where V is the pair-interaction potential. The timle is obtained when a sensible closure relation for the pair-
and shear rate dependences are denoted explicitly. @orrelation functiorg(r,r’, t[y) can be derived. Since our
closed equation of motion for the macroscopic densityinterest is restricted to thdisplacemenof the spinodal,
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we only need to derive an appropriate form foe change the stationary solutiong®*'(Ir — r'[ |V)i5=p(@+r)/2:1%)

of the pair-correlation function on applying a shear flow.of its equation of motion, at the local densip((r +

The crucial thing here is that the pair-correlation functionr’)/2, t|y). Without shear flow, the stationary solution is
in Eqg. (2) is multiplied in the integrand by the pair force nothing but the equilibrium pair-correlation function, and
VV(Ir — r'|). A closure relation is therefore needed this separation in time scales between demixing unstable
only for distancedr — r/| = Ry, with Ry the range of long wavelengths, and the relaxation of stable small
the pair-interaction potential. This fact has importantwavelengths may be regarded as the statistical analog of
consequences. First of all, relaxation of the stable shothermodynamic local equilibrium. In fact, Eq. (2) can be
wavelength density fluctuations is very fast comparedised to rederive the Cahn-Hilliard equation of motion
to relaxation (or demixing) rates of long wavelengthfor spinodal decomposition, where the assumption of
density fluctuations, the dynamics of which is severelythermodynamic local equilibrium is employed. Second,
slowed down close to the spinodal [see, in this respedhe equation of motion for the pair-correlation function
also, the comment below Eq. (10)]. As a consequencdwhich can be obtained by integration of Eqg. (1)] is
the nonequilibrium pair-correlation function relaxes forregularly perturbed by the shear flow for such small
distancegr — r’| = Ry on atime scale that still resolves distances, since the perturbing term in that equation, being
the dynamics of the long wavelengths, which renderqual to—V - [I" - (r — r')g], is bounded from above
the system unstable below the spinodal. For the smalby a form that is linear in the shear rate provided that
distances for which the closure relation is needed, thér — r’| = Ry. In fact, it is readily shown that (with
pair-correlation function can therefore be replaced |byR =r —r'),

gStat(Rl'5’)|E=p((r+r’)/2,t|)'/) — geq(R)|F=p((r+r’)/2,l|)") —+ F(R)|ﬁ=p((r+r’)/2,t|5/)Pé) + @((Pé))z) forR = RV, (3)

where | correlation function is denoted explicitly here), and
:p2
YRy f s dV(R)
= — T RR
Pe = b @ 2D = 15 d dR
is the bare Peclet number, which measures shear induced | _dg®(R[p,T)
microstructural distortion over distances of the oréer [ “RIp.T) + - 3 T} (8)

The functionF in Eq. (3) describes the distortion of the i i .
pair-correlation function for small distances and can, in’S directly proportional to the Cahn-Hilliard square-
principle, be calculated as the linear response solution diradient coefficient. Furthermore, L avR)
its equation in motion. e ppl dV(R

Substitution of the closure relation (3) into the equationfO(klp’T) - AP [ dR(k - R) R dR
of motion (2), linearization with respect to the deviation 1 (R[7,T)
Sp(r,tly) = p(r,tly) — p of the density relative to the [F(Rlp T) + 5P a——} 9)
average densityp = N/V, Fourier transformation and P

[ ) i 1 dV(R
exapandlng up ta@ ((kRy)*) yields F1k[7.T) = —,Bpde ‘. R)4 d;)
| = ki et i) = DT KIRSp(, 1), i}
ot _ 1_oFR|p,T)
X | FRlp,T) + cp——— |, (10)
(5) 8 9
with k; the jth component of the wave vector, and wherewherek = k/k is the unit wave vector. These integrals
the effecnve diffusion coefficient is equal to can be evaluated after the functidgh is determined as
ap* (5, T) the linear response solution of the equation of motion
y) = P olklp, or the pair-correlation function for small distancRs=
D (k|y) = D| B + fo(klp, T)PE for th | f fi Ild
. [r — r'| = Ry.
+ K [B2(p,T) + f1(k|p, T)P€E] Notice that close to the spinodal, whegdp®i/ip
i 2 4 is small, the effectlve diffusion coefficient (6) for s_maII
O((PE). (kRv)") |. ©) wave vectors is much smaller than. Together with
with the factor k> in Eq. (5) that multiplies the diffusion
P, T) = pkpT coefficient, this implies the separation of time scales for
5 " AV (R) long and short wavelength dynamics referred to earlier in
_ET 2 3 (Rl ti ith the closure relation (3).
dR R 9R|7.T) (7 connection wi
™ [ B eawip.1) @)

d The spinodal is defined as the set of densities and tem-
the pressure of the unsheared, equilibrium systerperatures where the system becomes unstable against den-
(the density and temperature dependence of the paisity fluctuations of infinite wavelength and infinitesimally
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small amplitude. This happens if, and only if, the ef- Contrary to the displacement of the spinodal temperature
fective diffusion coefficient at zero wave vector becomesaway from the critical point, the displacement of the criti-
equal to 0. There is a subtlety involved here related ta@al temperature is generally proportional to a fractional
the dependence of the functigfy in Eq. (6) for the ef- power of the shear rate.
fective diffusion coefficient on the direction of the wave In order to determine whether the spinodal temperature
vector. Wave vectors with the particular direction whereis increased or decreased by applying a shear flow, the
fo attains its minimum value become unstable first. Let linear response solution of the equation of motion for the
f(()‘>(ﬁ, T) = min fo(k[p.T) (11)  Pair-correlation function for small distancés — r'| =

k Ry should be calculated. This is beyond the scope of
denote the minimum value g¢f, with respect to all direc- this Letter.
tions of wave vector for a given density and temperature. The turbidity of a colloidal system measures the total
The implicit relation between the temperature and the denamount of light that is scattered by the colloidal particles,
sity that defines the spinodal now follows from Eq. (6), and is formally equal to an integral over the scattered

api(p,T) (-),_ 9 — intensity. The cloud-point curve is defined as the set of
B p + fo (p,T)PE =0 temperatures and densities where the turbidity diverges.
defines the spinoddl = T'(7). (12) This divergence is due to the development of long-ranged

structure, that is, due to the long-ranged character of the
where higher order contributions in Pare omitted. For pair-correlation function. The displacement of the cloud-
zero shear rates this reproduces the well-known thermgoint curve due to shear flow is therefore related to the
dynamic definition of the spinodal. The above relation iseffect that the shearing motion has on the long-ranged
a generalization of that thermodynamic definition whichstructure of the pair-correlation function. This is different
include(sieffects of shear flow. for the displacement of the spinodal, which is related
As f, ' is related to the short-ranged shear inducedo the effect of shearing motion on the short-ranged
distortion of the pair-correlation function, we will assume behavior of the pair-correlation function, as explained
that it is well behaved on the spinodal. in detail above. Since the shear rate dependence of the
Let us first consider the displacement of the spinodalong-ranged part of the pair-correlation function is highly
away from the critical point, wheré?p®i(p, T?)/dp> #  nonlinear, contrary to its short-ranged part [see Eq. (3)],
0, where the subscript refers to quantities on the spin- the displacement of the cloud-point curve is expected to
odal, and the superscript O refers to the quiescent, urse much more pronounced than for the spinodal. In the
sheared system. L&iT, denote the shift of the spinodal quiescent dispersion the cloud-point curve coincides with
temperature at a given fixed number dengitywhen a  the spinodal. In a sheared system, however, the two do
shear flow is applied. Writing’y = T2 + 8T,, with Ty not coincide, since for the spinodal and cloud-point curve
and T} the spinodal temperature of the sheared and urthe distortion of the short-ranged and long-ranged part of
sheared system, respectively, and expanding Eqg. (12) upe pair-correlation function are, respectively, responsible
to leading order in5 7, and Pé€ gives for their displacement. The cloud-point curve in a sheared
ST, — f(()_)(ﬁ, T9) pd 13 system is expected to be located below the spinodal, in the
S Bapea(p, T ap? (13)  unstable part of the phase diagram.
There are a number of experiments on systems with an

The shift of the spinodal temperature at a given density is ¢ critical point where the critical temperature is found
thus seen to vary linearly with the shear rate. upper critical po ere ne critical temperature 1S Tou

The above arguments fail at the critical point since therc%o b/eb lowered 6by shleatr ﬂOW’/ sulcg ?S dPO'yféYfe{‘?/‘;]et'r']U'
a?pd(p, T%)/ap? = 0, where the subscript is used to ose/benzene [6], polystyrene/polybutadiene/dioctylphtha-

indicate quantities at the critical point, and, as above, ilate [7,8], isobuteric acid/water [9-11], and polystyrene/

superscript 0 refers to the quiescent, unsheared equili [ans_—decglme of low r_nolec_ular_ mass [12] (polystyrene
Gsolutlons in trans-decaline with high molecular mass show

rium system. Close to the critical point of the unsheare a decrease of the critical temperature). For deformable
system, the divergence of the reciprocal equilibrium com- P :

T . - particles, such as high molecular weight polymers, and
pressibility is characterized by the critical exponent anisometric particles, there is an additional effect of shear,

ﬁw = o(T — TY), (14) not included in the present theory due to changes of in-
ap teractions on the pair level as a result of single particle

wherec is a constant independent of density and temperadeformation and alignment.
ture. Substitution of this expression into Eq. (12) yields In the above-mentioned systems an exponent for the
the following prediction for the shif67. of the critical  shift of the critical temperature of about 0.50 is reported,

temperature: except in Ref. [6], where a linear displacement of the
—f(()*)(p, 79 1y U critical temperature is found. It should be mentioned
oT. = <—> (P&)'/7. (15)  that in some of these experiments the location of the

cloud-point curve might have been probed instead of the
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shift ~ ¥ /¥ No experiments on colloidal systems that unambigu-
ously probe the location of the critical point exist as yet to
) test the above predictions.
shift ~ ¥ The above predictions are summarized in Fig. 1, where
\ a decrease of the spinodal temperature is assumed. Away
“ from the critical point the displacement is linear in the
shear rate; at the critical point the displacement is larger,
provided thaty > 1, and there is a crossover between
these two scenarios on approach of the critical point, as
indicated by the dashed part of the spinodal of the sheared
system.
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