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Magnetic Susceptibility of Insulators from First Principles
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We present amb initio approach for the computation of the magnetic susceptibjlityf insulators.
The approach is applied to compuygein diamond and in solid neon using density functional theory in
the local density approximation, obtaining good agreement with experimental data. In solid neon, we
predict an observable dependenceyofipon pressure. [S0031-9007(96)00308-0]

PACS numbers: 75.20.—g, 71.15.Mb

The response of an extended system to a uniform exended solid, the expectation values of the perturbative
ternal magnetic field is a fundamental property. This reHamiltonian on delocalized eigenstates are not well-
sponse can be used as a sensitive probe to the structuddfined quantities for a uniform field. To avoid this prob-
and electronic properties of materials, such as in the cadem we consider the response of the system to a mag-
of nuclear magnetic resonance spectroscopy. However, twetic field with a finite wavelengthq =(¢,0,0), i.e.,
our knowledge, the orbital magnetic susceptibijtpfreal  B(x) = 5(0,0,v/2codgx)) =V X A with A(x) = b(0,
solids has not been computed from first principles. In thisy/2 sin(gx)/q,0). Defining
Letter we discuss aab initio approach for the evaluation PE
of y ininsulators within density functional theory (DFT). X(@q) =——F5, (2)

We applied our formalism to diamond and solid neon using db

the local density approximation (LDA) for the exchangeln the limit of ¢ — 0, we obtain the macroscopic suscep-
and correlation energy. The agreement of our results witfibility x [4].

experimental data indicates that DFT-LDA describes cor- Let us first consider a system described by a single
rectly the magnetic response of these systems. particle Hamiltonian. If the coupling betwedh and the

The susceptibilityy has been evaluated in cubic semi- Spin of the electron can be neglected, the perturbation to
conductors using empirical methods [1]. Exact expresthe Hamiltonian can be written asH = H") + H® with

sions for)( of a periodic solid in terms of Blpch e.igenstates o 1 V2 sin(gx)

and eigenvalues have already been derived in the 1960s H'W =-p-A=— pyb,

[2—4]. However, these approaches are rather involved and ¢ ¢ . g

have not been applied to real materials. A more compact H® =LA2 _ 1 S|n2(qx)b2 3)
expression foly was recently given in Ref. [5], where it is 2¢2 2 g? ’

applied to a model two-dimensional system. Our approactynere atomic units are useplis the momentum operator,
for the computation ofy in real systems is related to the 54, is the speed of light.

one in Ref. [3]. _ _ For a periodic insulator we have
This paper is organized as follows. First, we present

the formalism for a generic single particle Hamiltonian. Y(q)b? = — 42 ds_k f k'

Then we justify the use of DFT in the LDA in the com- c? 873 83

putation of y, and we discuss the accuracy and the limits (e i |HD e A2

of the additional use of the pseudopotential approxima- X ——

tion. Finally, we apply our formalism to diamond and I€OET ki T €K

solid neon, studying the behavior gfas a function of the _ 4 [ dk G H ). (@)
lattice constant. c? 873 % ki kil

The magnetic susceptibility is defined as the seconc\zINhere and e : are the Bloch eigenstates and eigen-
derivative of the total energy per unit volum with vaIuesw(l)(flthe uenk’lerturbed Hamiltongiaﬁ is the volumge
respect to the macroscopic magnetic fiBldi.e., b ’

5 of the unit cell, ® and E are the sets of occupied and
__dE (1) empty bands, and a factor of 2 for spin degeneracy is in-
dB;dB;’ cluded. By inserting Eq. (3) into Eq. (4), we get
wherei and; are the Cartesian indexes. To simplify the ’ Pk
notation in the following discussion, we consider a cubic x(¢) = — - | —=le(k + q.k) + g(k — q,k)]
system for whichy;; = 8;x- 4 8ar
Perturbation theory can be used to compute This is N 5
straightforward for a finite system. However, in an ex- Qc2qg?’ (5)

Xij =
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whereN is the number of electrons per unit cell, considered. To discuss the validity of the pseudopotential
, approximation in the computation gf, we divide the set
g(k', k) of occupied band® into the sets of core bands and
_ Z ukr il — iVy + (k) + ky)/2lux ;)12 ©) valence bandsV. Then we have
i€0 jEE ki T €k, X =XCE T XVE=Xc— Xxc,v + xve. (10)

and |ug ;) is the periodic part of the Bloch eigenstate Here yc.z is given by Egs. (6) and (9) with the sum over
(normalized in the unit cell). Faj— 0, the two terms on  the; and indexes in Eq. (6) running over the sets of core
the right-hand side (rhs) of Eq. (5) individually diverge, states(, and of empty state<, respectively. The other
but x (¢) remains finite. To show this, we use tfiesum  , ith two indices are defined in a similar wayyc is

rule, the magnetic susceptibility of the core electrons, which is
N d’k not sensitive on the chemical environment and thus can be
=0 =74 s g(k. k). (7) " computed considering the isolated atoms, i.e.,
By inserting Eq. (7) into Eq. (5) we obtain
d gzq (;31( % © Xc = XC.E +XC,V:—$Z > (W),
x(q) = — ) o3 riec (11)
c 8
gk +q,k)—2g(k,k)+ g(k — q,k) where we sum over the atoms in the unit cell, and
X 7 ) w! are the core atomic wave functions of the atdm
Then Among the three terms i'n the rhs of Eq. ('].Q)}/,f is _
) Pk L the only one accessible in a pseudopo'genﬂal calculation;
¥y =lmy(@ =-= | == =gk kK)lw—x. (9) Xc can be computed using an atomic code, but the
g9—0 c2 ) 8m3 dk? evaluation ofyc.y requires the knowledge of both core
Similar conclusions have been obtained in Ref. [5]. and valence wave functions. Singg- v and yc are

In our numerical evaluation of the macroscopicwe  expected to be of the same order of magnitude, the
use Eq. (8) with a small but finitge. Note that Eq. (5) pseudopotential approximation introduces an error of the
is not suitable to this approach. Indeed, in a practicabrder of ¢ by neglectingyc.y. This error is reasonably
application, both the integral ik space and the sum over small only for elements in the first and second rows of
all empty bands are replaced by finite sums. Under thesine periodic table, for whichyc < y. For application
conditions thef-sum rule, Eq. (7), is no longer exactly of the present theory to heavier elements, all-electron
satisfied. Then fog — 0 the rhs of Eq. (5) will diverge calculations are needed. Finally, in our pseudopotential
asAf,c %q %, whereAf, is the error in thef-sum rule.  calculation, we replaced the operateiV + k in Eq. (6)
This numerical instability does not occur in Eq. (8), wherewith the velocity operatowy, = (d/dk)Hy where Hy, is
every term is treated consistently. the pseudo-Hamiltonian [12].

We computedy using DFT-LDA, i.e., we neglected any ~ We computedy for isolated carbon (C) and neon (Ne)
explicit dependence of the exchange-correlation functionahtoms, for solid Ne in the fcc structure, and for solid C
on the current density. Reference [6] proposes an approxa the diamond structure. In the atomic phases we used
imate functional for the exchange correlation enefgy  the all-electron ground state wave functions to compute
which also depends on the current. The current term irv¢ using Eg. (11). In Ne we also computed the atomic
E.. influences the magnetic response in systems with g using Eqg. (11) with the sum over the indéxunning
small electronic density. It is negligible in our case, sinceover all occupied states. In the solid phases, we evalu-
it yields a correction tg smaller thar2% at the electronic  ated y ¢ using Eq. (8) with ag = 0.0377/a, wherea
densities typical of the systems we are studying [6,7]. Was the lattice constant of the cubic cell. The pseudopoten-
also do not consider magnetic local field effects, which ardials were generated using the prescription of Ref. [13].
negligible in nonmagnetic materials [8]. Finally, we noteIn Ne we expanded the wave functions on a plane-wave
that the DFT Hamiltonian depends in a self-consistent wayasis set with a 120 Ry cutoff. We sampled thespace
upon the electronic charge density. Thus, in general, tintegrals with 10 specid points in the irreducible Bril-
compute the second order variation in the total energy wittouin zone, and considered 400 empty states. In dia-
respect to an external perturbation, one should take intmond we used a 60 Ry cutoff, 60 speclalpoints, and
account the linear variation of the Hamiltonian induced by300 empty states. We verified that with the above pa-
the linear variation of the charg®p (see, e.g., Ref. [11]). rameters the convergence error in the valugyok less
However, if the perturbation is a magnetic fieldlp is  than0.2%.
zero by time reversal symmetry. Thus Eq. (8) is correct The results for Ne are shown in Table I. The atomic
within DFT. calculation is in good agreement with the experimental

In our present practical calculation we used the pseudadata. For the solid fcc phase we repgry, £ as a func-
potential approach, in which only the valence electrons aré&on of the lattice constant. We note thafyy ¢ reaches
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TABLE |.
Ne in units of 107° cm?®/mole.
different values of the lattice constaat We indicate withag

Magnetic susceptibility of atomic and solid fcc TABLE |II.
In the solid, we considered diamond in units of10% cnm?/mole of Cs.

Magnetic susceptibility of atomicC and of
For the solid,

we considered different values of the lattice constantWe

the experimental equilibrium lattice constant. The theoreticaindicate with af and af the experimental and theoretical

pressureP is also reported.

equilibrium lattice constants, respectively. The theoretical
pressureP is also reported.

X —xc —xvz P (GPa)
Atom (experiment) 7.2 X —xc —xvz P(GPa)
Atom (theory) 7.80 0.05 Atom (experiment) 11.8
Solid a = 8.37 a.u.= ag 7.79 -2 Atom (theory) 0.32
Solida = 7.87 a.u. 7.76 -2 Solid a = 6.75 a.u.= a; 11.17 -17
Solida = 7.37 a.u. 7.64 -1 Solid a = 6.66 a.u.= aj 11.23 0
Solida = 6.87 a.u. 7.41 4 Solid a = 6.55 a.u. 11.26 25
Solida = 6.37 a.u. 7.14 15 Solid a = 6.35 a.u. 11.23 85
Solida = 5.87 a.u. 6.66 50 Solida = 6.15 a.u. 11.26 168
Solida = 5.37 a.u. 6.04 151 Solida = 5.95 a.u. 11.09 283

a plateau fora ~ ag, whereag is the experimental equi-
librium lattice constant. This indicates that far= a
the interaction among Ne atoms is negligible. Moreover
XV.r ata = ay is very close to the value gf computed
for the isolated atom. This establishes, in the atomic limit
the correctness of approach and the accuracy of the ps
dopotential approximation. As decreases; yv.¢ de-
creases. This can be understood by noting that for an is
lated closed shell atom only a negative diamagnetic term
contributes toy, since the unperturbed Hamiltonian is
spherically symmetric. As the Ne atoms get closer, spher-
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