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Magnetic Susceptibility of Insulators from First Principles
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We present anab initio approach for the computation of the magnetic susceptibilityx of insulators.
The approach is applied to computex in diamond and in solid neon using density functional theory
the local density approximation, obtaining good agreement with experimental data. In solid neo
predict an observable dependence ofx upon pressure. [S0031-9007(96)00308-0]

PACS numbers: 75.20.–g, 71.15.Mb
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The response of an extended system to a uniform
ternal magnetic field is a fundamental property. This
sponse can be used as a sensitive probe to the stru
and electronic properties of materials, such as in the
of nuclear magnetic resonance spectroscopy. Howeve
our knowledge, the orbital magnetic susceptibilityx of real
solids has not been computed from first principles. In
Letter we discuss anab initio approach for the evaluatio
of x in insulators within density functional theory (DFT
We applied our formalism to diamond and solid neon us
the local density approximation (LDA) for the exchan
and correlation energy. The agreement of our results
experimental data indicates that DFT-LDA describes c
rectly the magnetic response of these systems.

The susceptibilityx has been evaluated in cubic sem
conductors using empirical methods [1]. Exact expr
sions forx of a periodic solid in terms of Bloch eigenstat
and eigenvalues have already been derived in the 1
[2–4]. However, these approaches are rather involved
have not been applied to real materials. A more com
expression forx was recently given in Ref. [5], where it
applied to a model two-dimensional system. Our appro
for the computation ofx in real systems is related to th
one in Ref. [5].

This paper is organized as follows. First, we pres
the formalism for a generic single particle Hamiltonia
Then we justify the use of DFT in the LDA in the com
putation ofx, and we discuss the accuracy and the lim
of the additional use of the pseudopotential approxi
tion. Finally, we apply our formalism to diamond an
solid neon, studying the behavior ofx as a function of the
lattice constant.

The magnetic susceptibility is defined as the sec
derivative of the total energy per unit volumeE with
respect to the macroscopic magnetic fieldB, i.e.,

xij ­ 2
d2E

dBidBj
, (1)

wherei andj are the Cartesian indexes. To simplify t
notation in the following discussion, we consider a cu
system for whichxij ­ dijx .

Perturbation theory can be used to computex . This is
straightforward for a finite system. However, in an e
0031-9007y96y76(22)y4246(4)$10.00
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tended solid, the expectation values of the perturba
Hamiltonian on delocalized eigenstates are not w
defined quantities for a uniform field. To avoid this pro
lem we consider the response of the system to a m
netic field with a finite wavelengthq ­ sq, 0, 0d, i.e.,
Bsxd ­ bsss0, 0,

p
2 cossqxdddd ­ = 3 A with Asxd ­ bsss0,p

2 sinsqxdyq, 0ddd. Defining

xsqd ­ 2
d2E
db2

, (2)

in the limit of q ! 0, we obtain the macroscopic susce
tibility x [4].

Let us first consider a system described by a sin
particle Hamiltonian. If the coupling betweenB and the
spin of the electron can be neglected, the perturbatio
the Hamiltonian can be written asDH ­ Hs1d 1 Hs2d with

Hs1d ­
1
c

p ? A ­

p
2

c
sinsqxd

q
pyb ,

Hs2d ­
1

2c2
A2 ­

1
c2

sin2sqxd
q2

b2, (3)

where atomic units are used,p is the momentum operator
andc is the speed of light.

For a periodic insulator we have

xsqdb2 ­ 2 4
V

c2

Z d3k
8p3

Z d3k0

8p3

3
X

i[O ,j[E

jkck,ijHs1djck0 ,jlj2

ek,i 2 ek0,j

2
4
c2

Z d3k
8p3

X
i[O

kck,ijH
s2djck,il , (4)

whereck,i and ek,i are the Bloch eigenstates and eige
values of the unperturbed Hamiltonian,V is the volume
of the unit cell,O and E are the sets of occupied an
empty bands, and a factor of 2 for spin degeneracy is
cluded. By inserting Eq. (3) into Eq. (4), we get

xsqd ­ 2
2

c2q2

Z d3k
8p3

fgsk 1 q, kd 1 gsk 2 q, kdg

2
N

Vc2q2
, (5)
© 1996 The American Physical Society
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whereN is the number of electrons per unit cell,

gsk0, kd

­
X

i[O ,j[E

jkuk0 ,ij 2 i=y 1 sk0
y 1 kydy2juk,jlj2

ek0,i 2 ek,j
, (6)

and juk,il is the periodic part of the Bloch eigensta
(normalized in the unit cell). Forq ! 0, the two terms on
the right-hand side (rhs) of Eq. (5) individually diverg
but xsqd remains finite. To show this, we use thef-sum
rule,

fs ­
N
V

­ 24
Z d3k

8p3
gsk, kd . (7)

By inserting Eq. (7) into Eq. (5) we obtain

xsqd ­ 2
2
c2

Z d3k
8p3

3
gsk 1 q, kd 2 2gsk, kd1 gsk 2 q, kd

q2
. (8)

Then

x ­ lim
q!0

xsqd ­ 2
2
c2

Z d3k
8p3

d2

dk2
x

gsk, k0djk0­k . (9)

Similar conclusions have been obtained in Ref. [5].
In our numerical evaluation of the macroscopicx we

use Eq. (8) with a small but finiteq. Note that Eq. (5)
is not suitable to this approach. Indeed, in a pract
application, both the integral ink space and the sum ove
all empty bands are replaced by finite sums. Under th
conditions thef-sum rule, Eq. (7), is no longer exact
satisfied. Then forq ! 0 the rhs of Eq. (5) will diverge
asDfsc22q22, whereDfs is the error in thef-sum rule.
This numerical instability does not occur in Eq. (8), whe
every term is treated consistently.

We computedx using DFT-LDA, i.e., we neglected an
explicit dependence of the exchange-correlation functio
on the current density. Reference [6] proposes an app
imate functional for the exchange correlation energyExc
which also depends on the current. The current term
Exc influences the magnetic response in systems wi
small electronic density. It is negligible in our case, sin
it yields a correction tox smaller than2% at the electronic
densities typical of the systems we are studying [6,7].
also do not consider magnetic local field effects, which
negligible in nonmagnetic materials [8]. Finally, we no
that the DFT Hamiltonian depends in a self-consistent w
upon the electronic charge density. Thus, in genera
compute the second order variation in the total energy w
respect to an external perturbation, one should take
account the linear variation of the Hamiltonian induced
the linear variation of the chargedr (see, e.g., Ref. [11])
However, if the perturbation is a magnetic field,dr is
zero by time reversal symmetry. Thus Eq. (8) is corr
within DFT.

In our present practical calculation we used the pseu
potential approach, in which only the valence electrons
,
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considered. To discuss the validity of the pseudopoten
approximation in the computation ofx, we divide the set
of occupied bandsO into the sets of core bandsC and
valence bandsV . Then we have

x ­ xC ,E 1 xV ,E ­ xC 2 xC ,V 1 xV ,E . (10)

HerexC ,E is given by Eqs. (6) and (9) with the sum ov
thei andj indexes in Eq. (6) running over the sets of co
states,C , and of empty states,E , respectively. The othe
x with two indices are defined in a similar way.xC is
the magnetic susceptibility of the core electrons, which
not sensitive on the chemical environment and thus can
computed considering the isolated atoms, i.e.,

xC ­ xC ,E 1 xC ,V . 2
1

Vc2

X
I

X
i[C

kCI
i jx2jCI

i l ,

(11)

where we sum over the atoms in the unit cell, a
C

I
i are the core atomic wave functions of the atomI.

Among the three terms in the rhs of Eq. (10),xV ,E is
the only one accessible in a pseudopotential calculat
xC can be computed using an atomic code, but
evaluation ofxC ,V requires the knowledge of both cor
and valence wave functions. SincexC ,V and xC are
expected to be of the same order of magnitude,
pseudopotential approximation introduces an error of
order ofxC by neglectingxC ,V . This error is reasonably
small only for elements in the first and second rows
the periodic table, for whichxC ø x. For application
of the present theory to heavier elements, all-elect
calculations are needed. Finally, in our pseudopoten
calculation, we replaced the operator2i= 1 k in Eq. (6)
with the velocity operatorv

p
k ­ sdydkdHp

k whereH
p
k is

the pseudo-Hamiltonian [12].
We computedx for isolated carbon (C) and neon (Ne

atoms, for solid Ne in the fcc structure, and for solid
in the diamond structure. In the atomic phases we u
the all-electron ground state wave functions to comp
xC using Eq. (11). In Ne we also computed the atom
x using Eq. (11) with the sum over the indexi running
over all occupied states. In the solid phases, we ev
atedxV ,E using Eq. (8) with aq ­ 0.03pya, wherea
is the lattice constant of the cubic cell. The pseudopot
tials were generated using the prescription of Ref. [1
In Ne we expanded the wave functions on a plane-w
basis set with a 120 Ry cutoff. We sampled thek space
integrals with 10 specialk points in the irreducible Bril-
louin zone, and considered 400 empty states. In d
mond we used a 60 Ry cutoff, 60 specialk points, and
300 empty states. We verified that with the above
rameters the convergence error in the value ofx is less
than0.2%.

The results for Ne are shown in Table I. The atom
calculation is in good agreement with the experimen
data. For the solid fcc phase we reportxV ,E as a func-
tion of the lattice constanta. We note thatxV ,E reaches
4247
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TABLE I. Magnetic susceptibility of atomic and solid fc
Ne in units of 1026 cm3ymole. In the solid, we considere
different values of the lattice constanta. We indicate withae

0
the experimental equilibrium lattice constant. The theoret
pressureP is also reported.

2x 2xC 2xV ,E P (GPa)

Atom (experiment) 7.2
Atom (theory) 7.80 0.05
Solid a ­ 8.37 a.u.­ ae

0 7.79 22
Solid a ­ 7.87 a.u. 7.76 22
Solid a ­ 7.37 a.u. 7.64 21
Solid a ­ 6.87 a.u. 7.41 4
Solid a ­ 6.37 a.u. 7.14 15
Solid a ­ 5.87 a.u. 6.66 50
Solid a ­ 5.37 a.u. 6.04 151

a plateau fora , ae
0, whereae

0 is the experimental equi
librium lattice constant. This indicates that fora $ ae

0
the interaction among Ne atoms is negligible. Moreov
xV ,E at a ­ a0 is very close to the value ofx computed
for the isolated atom. This establishes, in the atomic lim
the correctness of approach and the accuracy of the p
dopotential approximation. Asa decreases,2xV ,E de-
creases. This can be understood by noting that for an
lated closed shell atom only a negative diamagnetic te
contributes tox, since the unperturbed Hamiltonian
spherically symmetric. As the Ne atoms get closer, sph
ical symmetry is broken and a positive paramagnetic te
also contributes tox. For the sake of comparison wit
future experiments, we also report the theoretical press
P as a function ofa. Solid Ne at zeroP is bonded by a
weak van der Waals interaction, which is incorrectly giv
by LDA [14]. Thus, for the largera, we do not expect to
obtain accurate values forP. However, we expect LDA
to describe correctly the repulsive interaction between
atoms, which dominatesP at smallera. Note that atP ­
50 GPa,2xV ,E is decreased by16% with respect to its
atomic value.

The results forC are shown in Table II. Since C is not
closed shell atom, in the atomic case onlyxC is reported.
In the diamond phase we reportxV ,E as a function of
the lattice constanta. The computed pressure obtain
from the LDA-DFT total energies is also shown. In th
range of experimentally accessible pressures,xV ,E shows
a negligible dependence upona. Both the values ofxV ,E

at the experimentalsae
0d and at the theoreticalsat

0d equi-
librium lattice constant are in very good agreement w
the experimental data.

In conclusion, we have presented a method to comp
the magnetic response of real solids from first principl
We have shown that DFT-LDA reproduces the magne
susceptibilityx of diamond. In diamond,x is found to
be insensitive to the applied pressure, whereas we pre
an observable pressure dependence ofx in solid Ne.
4248
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TABLE II. Magnetic susceptibility of atomicC and of
diamond in units of1026 cm3ymole of C2. For the solid,
we considered different values of the lattice constanta. We
indicate with ae

0 and at
0 the experimental and theoretica

equilibrium lattice constants, respectively. The theoreti
pressureP is also reported.

2x 2xC 2xV ,E P (GPa)

Atom (experiment) 11.8
Atom (theory) 0.32
Solid a ­ 6.75 a.u.­ ae

0 11.17 217
Solid a ­ 6.66 a.u.­ at

0 11.23 0
Solid a ­ 6.55 a.u. 11.26 25
Solid a ­ 6.35 a.u. 11.23 85
Solid a ­ 6.15 a.u. 11.26 168
Solid a ­ 5.95 a.u. 11.09 283
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