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Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids
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We have calculated the tunneling density of states (DOS) at the location of a backward scatter
defect for quantum wires and for edge state electrons in quantum Hall systems. A singular enhancem
of the DOS arises as a result of the combined effect of multiple backward scattering together with
repulsive electron-electron interaction. [S0031-9007(96)00317-1]

PACS numbers: 73.40.Gk, 72.10.Fk, 73.40.Hm
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With the rapid advance of the submicron technolo
[1] the fabrication of one-dimensional (1D) quantum wir
has become a reality. The properties of these wires
expected to be unusual. It is known that the electr
electron interaction in a 1D electron gas, when aw
from the density wave or from the superconductiv
instabilities, leads to the Tomonaga-Luttinger (TL) liqu
behavior [2]. The spectacular feature of the TL liquid
the vanishing of the single-particle density of states (DO
at the Fermi energy [3,4]. In this Letter we calculate
tunneling DOS of the TL liquid at the location of a defe
center that causes backward scattering of the conduc
electrons. By mapping the problem onto a Coulomb
theory, we show that the DOS diverges at energies clos
the Fermi energy when the electron-electron interactio
repulsive and not too strong; i.e., the DOS in the vicin
of a backward scatterer is in clear contrast with the D
in a clean TL liquid or far away from the scattering cent
It has already been noted by us in connection with
study of the Fermi-edge singularity in 1D that the lo
energy physics of the backward scattering together w
the electron-electron repulsion resembles the physic
the Kondo resonance [5]. The singular enhancemen
the DOS is a consequence of a many body effect o
similar type.

Recently, considerable efforts have been directed
ward the study of the transport properties of the 1D
liquids [6–14]. For a repulsive electron-electron intera
tion it has been predicted that at zero temperature ev
single weak backward scatterer eventually causes the
ductance to vanish. It is widely accepted that the l
energy physics of this system can be described by
semi-infinite lines connected by a weak link junction (e.
in Ref. [6] the vanishing of the conductance has be
traced to the fact that the tunneling DOS into the end
a semi-infinite TL liquid vanishes at the Fermi energ
However, as found in the present work, in the vicin
of the backward scatterer the DOS is enhanced for a
pulsive electron-electron interaction. We believe that
description of the low energy physics of this problem
two disconnected wires should be exploited with cautio

A measurement of the DOS by tunneling spectrosc
methods will provide, in a direct way, information abo
0031-9007y96y76(22)y4230(4)$10.00
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non-Fermi-liquid properties of electrons in quantu
wires. Such experiments are highly desirable. Besi
the quantum wires, the TL-liquid behavior can be d
played by edge state electrons in quantum Hall devi
[12,13,15,16]. The tunneling DOS in the quantum H
systems will be discussed at the end of the paper.

The renormalization group treatment shows that
effective amplitude of the backward scattering increa
and becomes strong when the energy of the scatte
electrons approaches the Fermi energy [6,17]. Theref
at low temperatures, one needs to understand the phy
of the strong coupling regime. From the experien
of the study of local defect problems in metals, it
known that mapping the problem onto a Coulomb g
theory can be instructive (see, e.g., Ref. [18]). T
discussed problem has been mapped onto a theory
neutral gas of positively and negatively charged class
particles interacting via a logarithmic potential [6]. The
charges are located on a line, and they describe the
history of the backscattering events. Unlike the Kon
problem, this problem is described by a nonalternat
Coulomb gas. The physics of this gas has been w
studied. There are two phases separated at a cri
temperature,Tcr , by a transition of the Kosterlitz-Thoules
type [19,20]. The temperature of the Coulomb gas,Tgas,
is determined by the electron-electron interaction of t
original problem. At low temperatures,Tgas , Tcr , the
particles form dipoles, while in the hot phase,Tgas . Tcr ,
the dipoles dissociate and the gas is in a plasma s
From the renormalization group analysis, it follows th
when the electron-electron interaction is repulsive t
system is in the hot plasma phase, while the dipole ph
corresponds to the attractive electron-electron interact
In the plasma phase the logarithmic interactions betw
charged particles are screened off at distances excee
the radius of screeningtscr . To describe the strong
coupling regime of the backward scattering problem
the TL liquid, we will utilize the physics of screening i
the plasma phase of the Coulomb gas.

For simplicity, we start with the spinless case a
will include the spin degrees of freedom later. Th
Hamiltonian of the LT liquid in 1D can be written in term
of the bosonic field operatorsf andf̃ as [21,22]
© 1996 The American Physical Society
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HTL ­
yF

2g

Z
dx

"µ
df

dx

∂2

1

µ
df̃

dx

∂2
#

, (1)

where g ­
p

s1 2 gdys1 1 gd, g ­ Vys2pyF 1 V d,
yF is the Fermi velocity, andV describes the density
density interaction with momentum transfers smal
than the Fermi momentumkF . In Eq. (1) the operator
dfsxdydx is proportional to the deviation of the electro
density from its average value, anddf̃sxdydx is propor-
tional to the current density;f and its dual partner̃f are
conjugate variables, i.e.,fdfsxdydx, f̃sydg ­ idsx 2 yd.
The Hamiltonian (1) describes the 1D electron liqu
when the backward scattering can be ignored in
processes of the electron-electron interaction. The fi
operatorscRsLdsxd of electrons with momenta close t
6kF can be represented using the bosonization techni
[4,17,21,22] as

cRsLdsxd ­
e6ikFx

p
2ph

exp

"
2

i
2

√
4p

b
f̃sxd 6 bfsxd

!#
,

(2)
whereb2 ­ 4pg andh21 is an ultraviolet cutoff of the
order of the conduction bandwidth.

We concentrate below on the2kF backward scattering
only. It will be argued later that the DOS is no
influenced by the forward scattering. The backwa
scattering induced by a defect located at the pointx ­ 0
is described by a term

Hbs ­ Us2kFdcy
R s0dcLs0d 1 Ups2kFdcy

L s0dcRs0d , (3)

whereUs2kFd is the 2kF Fourier transform amplitude o
the scattering potential, andcRsLds0d ­ cRsLdsx ­ 0d. In
the bosonic representation,Hbs can be written as

Hbs ­ 2
d2

p

yF

h
cosfbfs0d 1 wug , (4)

whered2 ­ jUs2kFdjyyF andwu ­ argsss 2 Us2kFdddd.
The local tunneling DOS will be found as

%se, xd ­ 2
1
p

Im

ΩZ `

0
Gst; x, xdeient dt

æ
ien!e1id ,

(5)
whereGst; x, xd ­ 2kTrcst, xdcys0, xdl is the Matsub-
ara Green’s function of the electrons at the pointx and
cst, xd ­ cLst, xd 1 cRst, xd. In the absence of scatter
ing, Gst; x, xd can be readily obtained using represen
tion (2) and the fact that the Hamiltonian (1) is quadrat
This leads toGst; x, xd , expf2 1

2 sgDf 1 g21Df̃dg,
where Dfstd ­ 2pkfst, xdfs0, xd 2 fs0, xd2l ­
lns1 1 yFtyhgd is the Green function of thef opera-
tors, and, in a similar way,Df̃std ­ lns1 1 yFtyhgd.
As a result [3,4],

%se, xdesg21d2y2g . (6)

To study the DOS at the location of the backward sc
terer, x ­ 0, we treatGst; 0, 0d in the interaction repre-
r

d
e
ld

ue

d

-
.

t-

sentation with respect toHbs. When the backward scat
tering is written as in Eq. (4), each term in the pertu
bation series forGst; 0, 0d can be calculated using th
Baker-Haüsdorf formula repeatedly. This procedure gi
straightforwardly a representation of the Green fun
tion in terms of partition functions of a one-dimension
Coulomb gas of classical particles:

Gst; 0, 0d , t21y2gfZestd 2 ZostdgyZ . (7)

The factort21y2g originates from thef̃-field factors in
the bosonic representation of the fermion-field operat
[see Eq. (2)]. Since the operatorscst, xd have left
and right components,Zestd and Zostd contain four
contributions each, e.g.,Zestd ­ Z12

e std 1 Z21
e std 1

Z11
e std 1 Z22

e std. The termZ12
e is the grand partition

function of a neutral Coulomb gas that has a cha
1

1
2 at the point 0, a charge2 1

2 at the pointt, and
an even number of charges61 between them. The
other three termsZaa0

e std are defined in a similar way
namely, the upper indices correspond to the signs
the 6

1
2 charges located at the points 0 andt. These

half-charges originate from thef-field factors of the
operatorscLsRd in the Green function.Zostd is analogous
to Zestd, but with an odd number of61 charges inside
the intervals0, td. The term in the denominator,Z, is the
grand partition function of the Coulomb gas without t
additional half-charges. The minus sign in front ofZ0std
in Eq. (7) appears because of the anticommutation of
fermion operators. In the discussed Coulomb gases
particles interact via a logarithmic potentialyst 2 t0d ­
lns1 1 yF jt 2 t0jyhgd, the fugacity isgd2y2p and the
effective temperatureTgas ­

1
2g . Thus, the calculation

of the DOS is reduced to the calculation of correlati
functions in the Coulomb gas theory.

To analyze the functionsZaa0

e std and Zaa0

o std we inte-
grate out the fieldfst, xd in the entire space, except th
point of the backward scatterer location, and reformul
the problem in terms of a functional integral overfstd ;
fst, x ­ 0d. The differenceDZaa0

­ Zaa0

e std 2 Zaa0

o std
can be obtained using the effective action

Saa0

sfd ­
1
2

Z
dt dt0 fstdy21st 2 t0dfst0d

1
2d2

ph

Z
dt cosfbfstd 1 W stdg

1 a
i
2

bfs0d 1 a0 i
2

bfstd . (8)

Here y21 is the inverse of the potentialy; the po-
tential W std ­ pfust 2 01d 2 ust 2 t 1 01dg in the
cosine term is inserted to weigh the even and odd c
figurations with opposite signs. In order to estima
DZaa0

we use the mean field approximation. In this a
proximation the grand partition functions of the syste
are determined by the saddle point solutions,fs, of the
effective functionalSaa0

. The solutions,fs, correspond
4231
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to the equilibrium electrostatic potential of the plasm
gas in the presence of two external half-charges loca
at points 0 andt. In this way one obtainsDZ11 ­
DZ22 ­ 0, while DZ12std ­ DZ21std ! const when
t ! `. These results are rather natural. The cance
tion of Z11

e with Z11
o occurs because the gas config

rations with even and odd numbers of charges ins
the intervals0, td are equally far away from the optima
configuration. The latter should have, inside the int
val, a charge equal to2 1

2 to screen the two externa
half-charges of the same sign. (Technically, that ca
cellation occurs between contributions of different sad
point solutions in the vicinity of consecutive minima o
the cosine. The existence of a manifold of minima r
flects in a formal way the discreet nature of the charg
in the gas.) When the external half-charges have op
site signs, the optimal configuration has an even num
of charges in the intervals0, td, and such a cancellation
does not occur. The value of the actionS12 at the op-
timal configurationfs determines the screened intera
tion between the two external charges. Fort exceeding
the screening radiustscr the bare logarithmic interaction
between the external charges is screened off, and th
fore DZ12std has a finite limit at larget. In the mean
field approximationDZ12stdyZ ; Dg , shyyFtscr dgy2,
wheretscr ­

hg
yF

s gd2

p d21ys12gd.
Substituting these results into Eq. (7) yields in t

asymptotic regiont ¿ tscr

Gst; 0, 0d ,
1
h

exp

µ
2

1
2

g21Df̃

∂
,

1
h

µ
h

yFt

∂1y2g

Dg .

(9)

This result implies that the tunneling DOS,% se, 0d,
diverges in the infrared limit for a moderately repulsiv
electron-electron interaction,1y2 , g , 1:

%se, 0d ,
1

eh
sehyyFd1y2gDg, e ø t21

scr (10a)

(note that botht21
scr andDg go to zero wheng ! 1).

Up to now the electron-electron interaction wa
considered a short-range one. However, for qu
tum wires, the long-range character of the Coulom
interaction may be important. The strength of t
interaction depends on the particular electrostatics
the sample. To include the spatial dependence of
interaction amplitude, one should substitute the co
bination g21Df̃ by

Rh21

0 dpgspd21s1 2 eipyF tdyp in
Eq. (9); heregspd ­

p
f1 2 gspdg f1 1 gspdg, gspd ­

V spdyf2pyF 1 V spdg, and V spd is the Fourier
transform of the electron-electron interaction. F
the Coulomb interaction V spd ­ 2e2yk lns1yjpjwd,
where k is the dielectric constant andw is the width
of the wire. In this case, in the asymptotic regio
t ¿ tscr one getsGst; 0, 0d , expf2 1

2
1

3x s1 1 2x 3

ln tyF

h d3y2g, where x ­ e2ykp h̄yF . Inserting this ex-
4232
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pression into Eq. (5) yields that% se, 0d is nonmonotonic
if t21

scr . ep , h

yF
exps2 3

2 x21d. As e decreases, the
DOS increases whent21

scr . e . ep, and forep . e the
DOS starts to vanish. Sincetscr is determined byd2,
while ep is not, the situation whent21

scr is smaller thanep

is possible.
When the spin degrees of freedom of the cond

tion electrons are included, the above considerati
do not change essentially. The calculation of t
DOS can be reduced to the calculation of correlat
functions in a Coulomb gas. Due to the spin, t
plasma contains two types of charged particles. T
latter aspect does not alter the physics of screen
There are two fields,fr and fs (and, correspond-
ingly, two dual fieldsf̃r and f̃s), that describe charge
and spin density modes. The Green function c
tains the factor expf2 1

4 sg21
r Df̃r

1 g21
s Df̃s

dg, where
gs ­ 1 and gr ­

p
s1 2 grdys1 1 grd , gr ­ Vy

spyF 1 V d ­ 2gys1 1 gd. This factor is not influ-
enced by the screening, and this yields

%se, 0d ,
1
e

sehyyFd1y4gr11y4Dg, e ø t21
scr .

(10b)

Therefore, in the spin case the tunneling DOS diver
when1y3 , gr , 1.

Let us now discuss why the forward scattering do
not influence the DOS. In terms of thef-field operators
the forward scattering can be written asbd1

p

df

dx jx­0,
where d1 ­ Usk ­ 0dyyF , and the amplitudeUsk ­
0d is the Fourier component of the scattering poten
with k ­ 0. For the linearized spectrum the forwa
scattering can be absorbed in a phase factor which fin
disappears. To see this in a formal way, one can ap
the canonical transformationU ­ expfi d1

2p gbf̃sx ­
0dg which removes the forward scattering term from t
Hamiltonian, but produces a phase factor in the backw
scattering term and in the electron operatorscRsLdsx ­ 0d.
However, due to the charge neutrality of the Coulomb g
(including the external half-charges), these phase fac
cancel each other out.

In a two-dimensional electron gas under the conditio
of the quantum Hall effect (QHE) the edge excitatio
are described by TL-like theories [15]. In the case of
integer QHE, it is the interedge interaction that leads
the TL-liquid behavior [16]. The above treatment of t
backward scattering is not altered considerably. Howe
since the particles which are moving on opposite ed
are spatially separated, the amplitudes which desc
the interedgesVerd and the intraedgesVrad electron-
electron interactions are not equal. For that reason
expression forg should be modified. For the symmetric
case, when the velocities of the excitations moving
opposite directions are the same,g ­ Verys2pyF 1 Vrad.
Since the electron liquid in the case of a fully occupi
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Landau level is incompressible, it cannot screen
the long-range Coulomb interaction between the e
electrons. In order to consider this effect the depende
of Ver spd and Vraspd on the momentum should b
included, as discussed above.

Because of the nontrivial character of the electron
uid in the fractional QHE state, electrons close to
edges exhibit an abnormal TL-type behavior even in
absence of interedge interaction [15]. The backward s
tering term describes now the scattering of fractiona
charged quasiparticles from one edge to the other.
find the asymptotic behavior of the Green function of ed
electrons for a filling factorn ­ 1yn, wheren is an odd
integer, one should replaceg with n in expression (9).
This leads to% se, 0d , eny221 near the backward scatte
ing center. This is a considerable enhancement comp
to % se, 0d , en21 in the absence of the backward sc
tering. When the interedge electron-electron interac
is relevant, one gets%sed , e1y2sngn d2121 where gn ­p

s1 2 gndys1 1 gnd , gn ­ nVerys2pyF 1 nVrad. The
long-range Coulomb interaction can be treated as in
case of the 1D quantum wire.

Let us discuss now the mechanism of the enhancem
of the DOS. Following the interpretation of the lo
energy physics of the backward scattering in a
wire as a weak link junction, one would not expect
enhancement but a vanishing of the DOS such aseg2121

for g , 1 [6]. To understand the enhancement, note t
the bosonic representation (2) makes evident the affi
of the DOS with the “Debye-Waller factor” of thef
mode. As a result of the backward scattering, toge
with the repulsion between electrons, the propaga
of small oscillations of the fieldfst, x ­ 0d acquires
a mass and becomessjvnj 1 md21, where vn is a
Matsubara frequency (see, e.g., Ref. [14]). The z
mode oscillations of thef mode becomes less effectiv
and the Debye-Waller factor does not vanish. Beca
of such pinning of thef mode, the amplitude of a
electron created at the location of the backward scatte
center falls down slower than in the case of free electr
[see Eq. (9)]. Thus, because of the multiple backw
scattering, the escape rate of an electron from the de
center slows down. The enhancement of the DOS
consequence of this effect. In the study of the Fermi-e
singularity in the TL liquid, it has been concluded [5] th
the infrared physics of the backward scattering prob
resembles the physics of a Kondo resonance. We be
that the enhancement of the tunneling DOS is reminisc
of a resonance of a similar type. We emphasize, howe
that the treatment above is not related directly to
analysis of the transport properties of TL liquids.

In summary, we have calculated the tunneling DOS
the location of a backward scatterer in a 1D quantum w
and for edge state electrons under the conditions of
QHE. A singular enhancement of the DOS was obtain
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The enhancement of the DOS in the TL liquid may
observed not only when the backward scattering is
to an internal defect. When the counterelectrode in
tunneling experiment has the shape of a sharp tip, t
the tip itself may cause a backward scattering and lea
the enhancement of the DOS..
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