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Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids
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We have calculated the tunneling density of states (DOS) at the location of a backward scattering
defect for quantum wires and for edge state electrons in quantum Hall systems. A singular enhancement
of the DOS arises as a result of the combined effect of multiple backward scattering together with a
repulsive electron-electron interaction. [S0031-9007(96)00317-1]

PACS numbers: 73.40.Gk, 72.10.Fk, 73.40.Hm

With the rapid advance of the submicron technologynon-Fermi-liquid properties of electrons in quantum
[1] the fabrication of one-dimensional (1D) quantum wireswires. Such experiments are highly desirable. Besides
has become a reality. The properties of these wires arthe quantum wires, the TL-liquid behavior can be dis-
expected to be unusual. It is known that the electronplayed by edge state electrons in quantum Hall devices
electron interaction in a 1D electron gas, when away12,13,15,16]. The tunneling DOS in the quantum Hall
from the density wave or from the superconductivity systems will be discussed at the end of the paper.
instabilities, leads to the Tomonaga-Luttinger (TL) liquid The renormalization group treatment shows that the
behavior [2]. The spectacular feature of the TL liquid iseffective amplitude of the backward scattering increases
the vanishing of the single-particle density of states (DOSand becomes strong when the energy of the scattered
at the Fermi energy [3,4]. In this Letter we calculate theelectrons approaches the Fermi energy [6,17]. Therefore,
tunneling DOS of the TL liquid at the location of a defect at low temperatures, one needs to understand the physics
center that causes backward scattering of the conductiasf the strong coupling regime. From the experience
electrons. By mapping the problem onto a Coulomb gasf the study of local defect problems in metals, it is
theory, we show that the DOS diverges at energies close known that mapping the problem onto a Coulomb gas
the Fermi energy when the electron-electron interaction itheory can be instructive (see, e.g., Ref. [18]). The
repulsive and not too strong; i.e., the DOS in the vicinitydiscussed problem has been mapped onto a theory of a
of a backward scatterer is in clear contrast with the DOSheutral gas of positively and negatively charged classical
in a clean TL liquid or far away from the scattering center.particles interacting via a logarithmic potential [6]. These
It has already been noted by us in connection with theharges are located on a line, and they describe the time
study of the Fermi-edge singularity in 1D that the low history of the backscattering events. Unlike the Kondo
energy physics of the backward scattering together witlproblem, this problem is described by a nonalternating
the electron-electron repulsion resembles the physics d&€oulomb gas. The physics of this gas has been well
the Kondo resonance [5]. The singular enhancement dftudied. There are two phases separated at a critical
the DOS is a consequence of a many body effect of &emperatureT,., by a transition of the Kosterlitz-Thouless
similar type. type [19,20]. The temperature of the Coulomb dBs;,

Recently, considerable efforts have been directed tois determined by the electron-electron interaction of the
ward the study of the transport properties of the 1D TLoriginal problem. At low temperatured,,, < 7T, the
liquids [6—14]. For a repulsive electron-electron interac-particles form dipoles, while in the hot phadg,; > T,
tion it has been predicted that at zero temperature eventae dipoles dissociate and the gas is in a plasma state.
single weak backward scatterer eventually causes the cofRfom the renormalization group analysis, it follows that
ductance to vanish. It is widely accepted that the lowwhen the electron-electron interaction is repulsive the
energy physics of this system can be described by twgystem is in the hot plasma phase, while the dipole phase
semi-infinite lines connected by a weak link junction (e.g.,corresponds to the attractive electron-electron interaction.
in Ref. [6] the vanishing of the conductance has beenn the plasma phase the logarithmic interactions between
traced to the fact that the tunneling DOS into the end otharged particles are screened off at distances exceeding
a semi-infinite TL liquid vanishes at the Fermi energy).the radius of screening,. To describe the strong
However, as found in the present work, in the vicinity coupling regime of the backward scattering problem in
of the backward scatterer the DOS is enhanced for a rehe TL liquid, we will utilize the physics of screening in
pulsive electron-electron interaction. We believe that thehe plasma phase of the Coulomb gas.
description of the low energy physics of this problem by For simplicity, we start with the spinless case and
two disconnected wires should be exploited with caution.will include the spin degrees of freedom later. The

A measurement of the DOS by tunneling spectroscopyamiltonian of the LT liquid in 1D can be written in terms
methods will provide, in a direct way, information about of the bosonic field operatoks and ¢ as [21,22]
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v do\? dd\? sentation with respect t#,,. When the backward scat-
Hr, = i dx (d—x> + <E> ’ (1) tering is written as in Eg. (4), each term in the pertur-
bation series forG(r;0,0) can be calculated using the
where g =./(1 —y)/(1 + y),y = V/Qmvr + V), Baker-Haiisdorf formula repeatedly. This procedure gives
vr is the Fermi velocity, and/ describes the density- straightforwardly a representation of the Green func-
density interaction with momentum transfers smallertion in terms of partition functions of a one-dimensional
than the Fermi momenturky. In Eqg. (1) the operator Coulomb gas of classical particles:
d¢(x)/dx is proportional to the deviation of the electron ) _—1)2 _
density from its average value, aadb(x)/dx is propor- G(r;0,0) ~ 7 [Z(7) ZZ(T)]/Z' (7)
tional to the current densityp and its dual partned are  The factorr~!/%¢ originates from theg-field factors in
conjugate variables, i.64d ¢ (x)/dx, d(y)] = id(x — y). the bosonic representation of the fermion-field operators
The Hamiltonian (1) describes the 1D electron liquid[see EQ. (2)]. Since the operatoig(r,x) have left
when the backward scattering can be ignored in thé@nd right componentsZ.(r) and Z,(r) contain four
processes of the electron-electron interaction. The fiel§ontributions each, e.gZ.(r) = Z/ (7) + Z, " (r) +
operatorsyz()(x) of electrons with momenta close to Z. (1) + Z, (7). The termZ;" is the grand partition
+kr can be represented using the bosonization techniquénction of a neutral Coulomb gas that has a charge
[4,17,21,22] as +5 at the point 0, a charge-5 at the pointr, and
+ikpx (4 an even number of charges1 between them. The
¢ ex;{—i<—w d(x) = qu(x))}, other three termsZ?“(r) are defined in a similar way,
V2mn 2\ B namely, the upper indices correspond to the signs of
(2) the i% charges located at the points 0 and These
where 8% = 47rg and ! is an ultraviolet cutoff of the half-charges originate from the-field factors of the
order of the conduction bandwidth. operatorsf(g) in the Green function.Z,(7) is analogous
We concentrate below on tt; backward scattering to Z.(7), but with an odd number of-1 charges inside
only. It will be argued later that the DOS is not the interval(0, 7). The term in the denominataZ, is the
influenced by the forward scattering. The backwardgrand partition function of the Coulomb gas without the
scattering induced by a defect located at the peist 0  additional half-charges. The minus sign in frontf(r)
is described by a term in Eq. (7) appears because of the anticommutation of the
. 1 " 1 fermion operators. In the discussed Coulomb gases the
Hys = UQkp)§r(0)1(0) + U2k )¢k (0), (3) particles interact via a logarithmic potentialr — 7/) =
where U(2kr) is the 2kr Fourier transform amplitude of In(1 + ve|r — 7/|/ng), the fugacity isgé_ /27 and the

the scattering potential, ank)(0) = ¢rw)(x = 0). In  effective temperaturdy,, = i. Thus, the calculation

Yra)(x) =

the bosonic representatioH,, can be written as of the DOS is reduced to the calculation of correlation
S_ v functions in the Coulomb gas theory.
Hpy = —— Y cog B4 (0) + ¢ul, (4) To analyze the functiong%¢'(r) and Z%“'(r) we inte-
grate out the fieldp (¢, x) in the entire space, except the

whereé- = |UQ2kr)|/vr andg, = arg( — U(2kr)). point of the backward scatterer location, and reformulate
The local tunneling DOS will be found as the problem in terms of a functional integral owg(r) =
1 oo ‘ é(t,x = 0). The differenceAz’ = z%' () — 2% (1)

o(e,x) = - |m{[0 G(T;x»x)eleﬂdT}ien—»eﬂ'(S» can be obtained using the effective action
6 5@ = [ sww = ()

whereG(r;x,x) = —(T,¢(r, x)y1(0, x)) is the Matsub-
ara Green'’s function of the electrons at the poinand
Y(r,x) = Y (7,x) + Ygr(7,x). Inthe absence of scatter-
ing, G(7; x,x) can be readily obtained using representa-

+ 264[ dt cog B (1) + W(1)]
T

tion (2) and the fact that the Hamiltonian (1) is quadratic. +a é Bo(0) + d é Bb(r). (8)
This leads toG(r;x,x) ~ ex;{—% gDy + g7 'Dy)],
where Dy (1) = 27(p(7,x)$(0,x) — ¢$(0,x)%) = Here v~ ! is the inverse of the potentiab; the po-

In(1 + vpr/ng) is the Green function of thes opera- tential W(r) = #[0(r — 07) — 6(t — 7 + 07)] in the
tors, and, in a similar wayDy(7) = In(1 + vr7/ng). cosine term is inserted to weigh the even and odd con-
As a result [3,4], figura}tions with opposite signs. In order to estimate
(e—11/2¢ AZ we use the mean field approximation. In this ap-
e(e,x)e . () proximation the grand partition functions of the system

To study the DOS at the location of the backward scatare determined by the saddle point solutioss, of the

terer,x = 0, we treatG(r;0,0) in the interaction repre- effective functionalS*®. The solutions g, correspond
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to the equilibrium electrostatic potential of the plasmapression into Eq. (5) yields that(e, 0) is nonmonotonic
gas in the presence of two external half-charges locatefl r~! > ¢* ~ %exq—%)(_l). As e decreases, the

scr

at points 0 andr. In this way one obtain\Z™" = pDOS increases wher,! > € > €*, and fore* > ¢ the

AZ=" = 0,while AZ""(r) = AZ""(7) — const when  DOS starts to vanish. Since.. is determined bys_,
T — . These results are rather natural. The cancellaghile ¢* is not, the situation when_! is smaller thane*

tion of Z" with Z; " occurs because the gas configu-is possible. .

rations with even and odd numbers of charges inside When the spin degrees of freedom of the conduc-
the interval(0, 7) are equally far away from the optimal tion electrons are included, the above considerations
configuration. The latter should have, inside the interdo not change essentially. The calculation of the
val, a charge equal t&% to screen the two external DOS can be reduced to the calculation of correlation
half-charges of the same sign. (Technically, that canfunctions in a Coulomb gas. Due to the spin, the
cellation occurs between contributions of different saddlgplasma contains two types of charged particles. The
point solutions in the vicinity of consecutive minima of |atter aspect does not alter the physics of screening.
the cosine. The existence of a manifold of minima re-There are two fields,¢, and ¢, (and, correspond-
flects in a formal way the discreet nature of the chargesngly, two dual fieldsJ)p and ¢,,), that describe charge
in the gas.) When the external half-charges have oppaand spin density modes. The Green function con-
site signs, the optimal configuration has an even numbagins the factor e){rf%(gflpa) + g,'D;.)], where
. . . p p [ o

of charges in the intervdl0, 7), and such a cancellation —1 and —Ja = 7,) /0 +7,) —v/
does not occur. The value of the actiSii— at the op- f" L V) =2 ‘% + ) T’{{-’ fact I ,y,;)t infl
timal configuration¢, determines the screened interac-ezggd b the_sc7r/eenin ya.nd thiI: i:ﬁjsr 'S ot infit-
tion between the two external charges. Foexceeding y 9 y
the screening radius,., the bare logarithmic interaction
between the external charges is screened off, and there-
fore AZ*~(7) has a finite limit at larger. In the mean (10b)
field approximatiomAZ*~(7)/Z = A, ~ (9/vrTe:r)?/?,
wherery,, = Z—f(%)*l/“*g).

Substituting these results into Eq. (7) yields in the
asymptotic regiomr > 7y,

scr

1
0(€,0) ~ —(en/up) 48 14N, e < 1.
€

Therefore, in the spin case the tunneling DOS diverges
whenl1/3 < g, < 1.

Let us now discuss why the forward scattering does
L2 not influence the DOS. In terms of thﬁ-fiel% oggrators
G(7:0.0) ~ iexp(—lg_ll)(;) _ l(i) A, the forward scattering can be written 428

7 n 2 n\vpT 8 where 6, = U(k = 0)/vp, and the amplitudelU(k =
(9) 0) is the Fourier component of the scattering potential
with k¥ = 0. For the linearized spectrum the forward
scattering can be absorbed in a phase factor which finally
disappears. To see this in a formal way, one can apply
the canonical transformatiorill = exdi f—; gBod(x =
~ L 1/2¢ -1 0)] which removes the forward scattering term from the

e(e,0) €n (en/vp) =4y, € <1 (103) Hamiltonian, but produces a phase factor in the backward
(note that bothr scattering term and in the electron qperatms&)(x = 0).

Up to nowscsthe electron-electron interaction was HOWever, due to the charge neutrality of the Coulomb gas
considered a shortrange one. However, for quar](mcludmg the external half-charges), these phase factors
tum wires, the long-range character of the CoulomiFancel each_other out. L
interaction may be important. The strength of the In a two-dimensional electron gas under the CO.ndIt{IOHS
interaction depends on the particular electrostatics o?f the quantum Hall _effect (QHE) the edge excitations
the sample. To include the spatial dependence of th@re described by TL-like theories [15]. In the case of the

interaction amplitude, one should substitute the com!nteger .QH.E' it is the interedge interaction that leads to
bination «~'D- b fn" dpe(p)- (1 — ¢ /p in the TL-liquid behgvu_)r [16]. The abovg treatment of the
ihation g~ 2g DY Jo dpsip p backward scattering is not altered considerably. However,
Eq. (9); hereg(p) = V[1 = ¥(p)I[1 + y(P)L. ¥(P) = since the particles which are moving on opposite edges
V(p)/[2mvr + V(p)], and V(p) is the Fourier 5o gpatially separated, the amplitudes which describe
transform of the eleqtron—electron interaction.  Foripe interedge(V.;) and the intraedge(V,,) electron-
the Coulomb interaction V(p) = 262/"_"‘(1/'1"?")1 electron interactions are not equal. For that reason the
where « is the dielectric constant and is the width  gyression fory should be modified. For the symmetrical
of the wire. In this case, in the asymptotic region case when the velocities of the excitations moving in
T > 7 ONe getsG(r;0,0) ~ exd—7 5;(1 + 2x X opposite directions are the same= V../Qmvr + V).
In 725)*/2], where y = ¢?/kmhvr. Inserting this ex- Since the electron liquid in the case of a fully occupied

This result implies that the tunneling DO (e, 0),
diverges in the infrared limit for a moderately repulsive
electron-electron interactiohy2 < g < 1:

<. andA, go to zero whery — 1).
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Landau level is incompressible, it cannot screen offThe enhancement of the DOS in the TL liquid may be

the long-range Coulomb interaction between the edgebserved not only when the backward scattering is due

electrons. In order to consider this effect the dependenc® an internal defect. When the counterelectrode in a

of Vi(p) and V.,(p) on the momentum should be tunneling experiment has the shape of a sharp tip, then

included, as discussed above. the tip itself may cause a backward scattering and lead to
Because of the nontrivial character of the electron lig-the enhancement of the DOS..
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