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Criticality in Droplet Fragmentation
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Experiments in rupture of mercury drops have been performed recording the size distribution of the
cumulative number of drops for different conditions of rupture. A transition of the distribution from
log-normal to scaling behavior is shown. To describe it, a geometric probabilistic model is proposed.
Consequently, the rupture can be described as a process of percolation in a Bethe lattice. Then, the
rupture process and the transition to scaling can be viewed as a problem of phase transition. Comparison
with several fracture experimental data is also made showing the possibilities of this viewpoint.

PACS numbers: 46.30.Nz, 02.50.Cw, 05.70.Fh, 82.20.Wt

The interest in the problem of rupture in liquids is in- and Matsushita [7] is that the log-normal behavior remains
creasing because of the possible application in processas all scales. This is because, in any scale, the shape
such as combustion as we already reported [1]. In generabf our fragments (droplets) is always spherical, whereas
the interest in rupture processes is universal and not rén [7], as the rod fragments become of the order of the
stricted to liquids as, for example, the process of rock fracrod diameter, their shape ceases to be nearly cylindrical
ture related to log-normal distribution [2]. Some modelsand the fracture process evolves, from fracture of nearly
for fragmentation have been elaborated upon (e.g., [3—6]pne-dimensional objects (cylinders with large aspect ratio)
Fragmentation has been experimentally studied showintp three-dimensional fracture (objects that already do not
the complexity and the difficulties involved in the study resemble cylinders). This change affects the behavior of
of the behavior of this phenomenon (e.g., [7]). The cu-the fragmentation at small scales, as the authors correctly
mulative number of fragments, i.e., the number of frag-pointed out.
ments larger than a given size, has special importance in On the other hand, in our work as in [7], as the falling
the description of the fracture-rupture processes. This pdieight is increased, the cumulative number variation starts
per is devoted to describing a model able to reproduce the
behavior exhibited by the fragment distribution in frac-
ture or rupture as, for instance, that reported by Ishii and
Matsushita which measured the size distribution of frag-
ments produced by breaking long thin glass rods [7]. We
have performed some experiments on rupture of mercur
droplets that give a clear understanding of this model.

The experimental setup is extremely simple. At thes . .
height &, we let fall mercury droplets of about 2.0 mm 3
radius (emerging from a hypodermic needle) directly on . . .
a glass Petri dish, where all fragments were collected. ™ -n
Because of the very high surface tension of the mercury
(Weber number is of the order #0~¢), the rupture occurs
at the moment of the contact against the dish. Later the
fragments were counted and measured with a microscope
The results of the cumulative number of drops versus

the drop diameter are plotted in Fig. 1. The solid line . .

. L . FIG. 1. Experimental results of the cumulative number of
represents t_he theoretical predlctlo_n assuming th.at th&roplets (in 10% and log scale) vs log — log((r)), where
distribution is log normal. The distribution obtained (;) is the geometrical mean of the droplet radii. The falling
shows a clear tendency from a log-normal to a scaled onleights are 0.5 m (circles), 1 m (squares), and 5 m (diamonds).
as the falling height: is increased. We have performed Note that, to clarify the plot, we have shifted one unit to the

Qi _AFfi ; left of the results fork = 0.5 m and one unit to the right of
:geasKSOlerT;Ot%?Sr(i\énSdrgggfv goodness-of-fit test [8] in Orderthe results forh = 5 m. Solid lines represent the theoretical

. . prediction (related to the error function) assuming log-normal
For small enough values of the falling height a distributions. Transition to a scaling law when falling height is
different characteristic of our results with those of Ishiiincreased is evident.

0
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to show a power law dependence on their size, especially .
for the larger droplets. The viewpoint presented in [4]
gives a nice geometrical description of the power law
distribution but the transition from log normal to scaling
at our present knowledge has not yet been described.
We propose a geometrical model which does not
take into account the physical mechanism of rupture
and, as in [4], we use essentially the same procedure . 0 .
but conditioned by a parametep which represents
the probability of rupture of a given drop. So let us
start with Ny initial droplets of unit radius and break
probability p. ThuspN, droplets will break givingF'pNy

fragments of radius, = F~13 and(1 — p)Ny droplets o) ® o S °®

will stay without breaking. Then, as a consequence of the ®

first breakage, we have a collection @f — p)N, first

generation droplets with unit radius arftp N, smaller

droplets with radiusr; = F~'/3 (droplets of second

generation).

Now let us apply the same procedure to these smaller cee eeo o0 oee 000

to even smaller droplets. As each one will break into9eometric TOd‘?'-l FI'J”d'CirtCletsh itngicatls tha:] fragm(?nt_ati%nt
. . CCUrs, em CIrcles Inaicate that breaking chain ends In thal

F pleces again, the number .Of even smaller drOple'{gagment. %ﬂs is indeed the characteristic(‘ij feature of a Bethe

(droplets of third generation) will b@?F>Ny. The new |attice.

collection of droplets at this step of the procedure will

be(l1 — p)Ny drops of radius- = rg = 1, (1 — p)pFN

droplets of radius- = r; = F~'/3, and p2F2N, droplets

of radius r = r, = F~23. The process can easily be In Fig. 2, we illustrate with a drawing the process

in the kth generation fok > 1 as to three new droplets. Only two of them undergo the
- 20 k=1 rk—1 process of subsequent division, each generating three

N = = pNo(l + pF + p7F" + -+ p7IF) ey fragments. The other drop does not continue the
~ p*Fk, process. In this way we can understand this scheme as

wherel + pF + p2F2 + -.- + pk-1Fk~1 is the sum of a lattice through which a process of percolation occurs.

a geometric progression with a common rapd. In 'I.'h.e system will generate a C'“S‘ef V\_/h_ose length will be

order to not have converging series, the common raio nite for smallp (i.e., p < p.) and infinite or very long

must be larger than 1, so (i.e., percolation) ifp > p.. Besides, we can see that

p>p.=1/F. (1) the critical probability for percolation to occur is precisely

On the other hand, if this distribution is scaled (i.e.,Pc_— 1/3. . i i
N ~ r~¥), we can obtain fork > 1 the following ex- The description of the rupture process in th|s way has
pression forr, been translated to the problem of percolation in the Bethe

lattice. Thus we may try to calculate the influencepof
X = 3<1 + In_p> in the percolation lengtly.
InF As percolation must occur aboye= p., then we may

For x to be positive the conditiop > p. = 1/F must  formulate that
from the nonconvergence of the sum of the geometric &~ - (2
progression. (pe = p)

This gives us some kind of critical value or threshold Following the standard procedure of renormalization, let
above which this model can show scaled distributionsus set that in the lattice a cluster is occupied when
Otherwise, if p < p., the breaking process will stop at least one of the bonds exists. As an example, in
in some stage of the rupture chain and the cumulativé&ig. 2 the first cluster is, of course, occupied, because
number, in this last case, will saturate in small scales. Ashe first drop was broken and the two fragments of the
we will see, this behavior resembles the correspondingxtremities also continue the process. The third step

one of them inF fragments (smaller droplets) with

droplets, i.e., a fractiorszNo of droplets will break FIG. 2. A drawing of the breaking process in this probabilistic

continued and the cumulative number can be expressealready described. One of the initial drops gives rise
this cluster is the reproduction of a Bethe lattice, in which

be accomplished, which is the same condition obtained 1

one to the log-normal distribution law. shows an empty cluster (the upper one) and four occupied
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clusters. In general, when each node of the Bethe lattice ,4, s ! . L .
hasF terminals, the above definition of occupied clusters
applies. In such a way the probability of occupation of a
bond is the probability of breaking the first drop)(and 150 —
also any of the subsequent fragments, i.e.,

p'=p+ (F + Dpf(l - p)

& 100 L
F+1 _
(P - - |
F+1 *7 N
201 _ \F-—1
+<F_1>P(1 P) > (3 4 L
where this sum comprises up to the probability that 1 0 -
of the newdrops do not break whereas theotherdrop . .
and one of theirdaughterswas broken [last term in
Eq. (3)]. FIG. 3. Variation of the penetration length in the Bethe lattice

The first term on the right hand side of (3) describes thé‘iczrguiggti?(;‘ t%fg I)C;(f) Fi) szedlOrhogglcles(':msggﬁdtgeir?((rlaigg;gor
probab!l!ty for breakage of all the drops, the second is th(fhe variation of¢ with p according o Eq. (2) fov = vmgy —
probability of breakage of all except one drop, and so 0Ny 569837 and v = wmin = 1/3, respectively.

(»)

b

represents combinations of objects in groups ofb,
whereb < a. Really, in this formulation is hidden the
possibility that one of the nonbroken drops is thether
but it is to be expected that, near the percolation threshol

this process would not be significant.
By the binomial formula, (5) can be transformed to

phenomena. Although this simple model has a fixed

it reproduces very well the behavior of the cumulative
umber of droplets in the rupture process. We point
ut how universal properties can be obtained from this

oversimplified model. We do not try to reproduce with

this model the actual dynamics of the droplet rupture,
/ F+1 F Fil which is, surely, much more complex than our model,

p=1- < F )p(l —p) — (@ =p . (4 even with a variable value of the paramegerdepending

on thek step. However, we have simulated the rupture

ini 1/3 . . .
Now we are able to rescale (coarse grainingy F Pr. process withp variable, and we have obtained the same
After this rescaling, we will have a new percolation lengthqajitative results.

& = ¢/FY3. The standard renormalization procedure
leads us to the following result:

1 InF
S I MEF DT F -G =15 O \E+0 -

from where we obtain the valueg,,x = 0.569837 as the -
maximum value of the exponent corresponding to twog
fragments andr,;, = 1/3 corresponding to a largg.

It is not difficult to make a simulation of this percola-
tion process obtaining for each value pfthe value of
the percolation length represented with dots in Fig. 3 ancg
the analytic behavior of Eq. (2) for both extreme values§ 1E-2
of v. As can be seen there is a nice similarity in behav--g
ior. In Fig. 4 we show the correspondence of the cumula-s
tive number of fragments predicted by this model with
the experimental data. The simulation was performec  1E3 T T T T T T T T T
for F =2 andp = 0.82. In Fig. 5, the variation of the 1E-2 ) (1B ) 1E+0
cumulative number of fragment distribution for different Dimensionless radius
values ofp according to this model is shown. FIG. 4. Similarity in behavior of the model with an exper-

This proposed viewpoint indicates that rupture behavegnental realization. The comparison was, in this case, per-

o - . . ormed with data (diamonds) corresponding to our experiment
as a critical phenomenon, at !east in this description. Th?or h =1 m, and the theoretical line (full line with empty cir-
model presented here describes the process of transitifys) forF = 2 andp = 0.82. Other curves can also be fitted
experienced by the distribution of fragments in breakingoy using this model with an adequate selectionFadnd p.
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