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Criticality in Droplet Fragmentation
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Experiments in rupture of mercury drops have been performed recording the size distribution of
cumulative number of drops for different conditions of rupture. A transition of the distribution from
log-normal to scaling behavior is shown. To describe it, a geometric probabilistic model is propos
Consequently, the rupture can be described as a process of percolation in a Bethe lattice. Then
rupture process and the transition to scaling can be viewed as a problem of phase transition. Compa
with several fracture experimental data is also made showing the possibilities of this viewpoint.

PACS numbers: 46.30.Nz, 02.50.Cw, 05.70.Fh, 82.20.Wt
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The interest in the problem of rupture in liquids is in
creasing because of the possible application in proce
such as combustion as we already reported [1]. In gene
the interest in rupture processes is universal and not
stricted to liquids as, for example, the process of rock fr
ture related to log-normal distribution [2]. Some mode
for fragmentation have been elaborated upon (e.g., [3–
Fragmentation has been experimentally studied show
the complexity and the difficulties involved in the stud
of the behavior of this phenomenon (e.g., [7]). The c
mulative number of fragments, i.e., the number of fra
ments larger than a given size, has special importanc
the description of the fracture-rupture processes. This
per is devoted to describing a model able to reproduce
behavior exhibited by the fragment distribution in fra
ture or rupture as, for instance, that reported by Ishii a
Matsushita which measured the size distribution of fra
ments produced by breaking long thin glass rods [7]. W
have performed some experiments on rupture of merc
droplets that give a clear understanding of this model.

The experimental setup is extremely simple. At t
height h, we let fall mercury droplets of about 2.0 mm
radius (emerging from a hypodermic needle) directly
a glass Petri dish, where all fragments were collect
Because of the very high surface tension of the merc
(Weber number is of the order of1026), the rupture occurs
at the moment of the contact against the dish. Later
fragments were counted and measured with a microsc
The results of the cumulative number of drops vers
the drop diameter are plotted in Fig. 1. The solid lin
represents the theoretical prediction assuming that
distribution is log normal. The distribution obtaine
shows a clear tendency from a log-normal to a scaled
as the falling heighth is increased. We have performe
the Kolmogorov-Smirnov goodness-of-fit test [8] in ord
to assure this tendency.

For small enough values of the falling heighth, a
different characteristic of our results with those of Ish
0031-9007y96y76(1)y42(4)$06.00
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and Matsushita [7] is that the log-normal behavior remai
in all scales. This is because, in any scale, the sha
of our fragments (droplets) is always spherical, where
in [7], as the rod fragments become of the order of t
rod diameter, their shape ceases to be nearly cylindri
and the fracture process evolves, from fracture of nea
one-dimensional objects (cylinders with large aspect rat
to three-dimensional fracture (objects that already do n
resemble cylinders). This change affects the behavior
the fragmentation at small scales, as the authors corre
pointed out.

On the other hand, in our work as in [7], as the fallin
height is increased, the cumulative number variation sta

FIG. 1. Experimental results of the cumulative number
droplets (in 10% and log scale) vs logsrd 2 logskrld, where
krl is the geometrical mean of the droplet radii. The fallin
heights are 0.5 m (circles), 1 m (squares), and 5 m (diamond
Note that, to clarify the plot, we have shifted one unit to th
left of the results forh ­ 0.5 m and one unit to the right of
the results forh ­ 5 m. Solid lines represent the theoretica
prediction (related to the error function) assuming log-norm
distributions. Transition to a scaling law when falling height
increased is evident.
© 1995 The American Physical Society
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to show a power law dependence on their size, espec
for the larger droplets. The viewpoint presented in [
gives a nice geometrical description of the power la
distribution but the transition from log normal to scalin
at our present knowledge has not yet been described.

We propose a geometrical model which does n
take into account the physical mechanism of ruptu
and, as in [4], we use essentially the same proced
but conditioned by a parameterp which represents
the probability of rupture of a given drop. So let u
start with N0 initial droplets of unit radius and brea
one of them in F fragments (smaller droplets) with
probabilityp. ThuspN0 droplets will break givingFpN0

fragments of radiusr1 ­ F21y3, ands1 2 pdN0 droplets
will stay without breaking. Then, as a consequence of
first breakage, we have a collection ofs1 2 pdN0 first
generation droplets with unit radius andFpN0 smaller
droplets with radiusr1 ­ F21y3 (droplets of second
generation).

Now let us apply the same procedure to these sma
droplets, i.e., a fractionp2FN0 of droplets will break
to even smaller droplets. As each one will break in
F pieces again, the number of even smaller dropl
(droplets of third generation) will bep2F2N0. The new
collection of droplets at this step of the procedure w
be s1 2 pdN0 drops of radiusr ­ r0 ­ 1, s1 2 pdpFN0
droplets of radiusr ­ r1 ­ F21y3, andp2F2N0 droplets
of radius r ­ r2 ­ F22y3. The process can easily b
continued and the cumulative number can be expres
in thekth generation fork ¿ 1 as

N ­ s1 2 pdN0s1 1 pF 1 p2F2 1 · · · 1 pk21Fk21d

, pkFk ,

where1 1 pF 1 p2F2 1 · · · 1 pk21Fk21 is the sum of
a geometric progression with a common ratiopF. In
order to not have converging series, the common ratiopF
must be larger than 1, so

p . pc ­ 1yF . (1)

On the other hand, if this distribution is scaled (i.e
N , r2x), we can obtain fork ¿ 1 the following ex-
pression forx,

x ­ 3

µ
1 1

lnp
lnF

∂
.

For x to be positive the conditionp . pc ­ 1yF must
be accomplished, which is the same condition obtain
from the nonconvergence of the sum of the geome
progression.

This gives us some kind of critical value or thresho
above which this model can show scaled distributio
Otherwise, if p , pc, the breaking process will stop
in some stage of the rupture chain and the cumulat
number, in this last case, will saturate in small scales.
we will see, this behavior resembles the correspond
one to the log-normal distribution law.
lly
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FIG. 2. A drawing of the breaking process in this probabilist
geometric model. Full circles indicate that fragmentatio
occurs, empty circles indicate that breaking chain ends in th
fragment. This is indeed the characteristic feature of a Bet
lattice.

In Fig. 2, we illustrate with a drawing the proces
already described. One of the initial drops gives ris
to three new droplets. Only two of them undergo th
process of subsequent division, each generating th
new fragments. The other drop does not continue t
process. In this way we can understand this scheme
a lattice through which a process of percolation occu
The system will generate a cluster whose length will b
finite for smallp (i.e., p , pc) and infinite or very long
(i.e., percolation) ifp . pc. Besides, we can see tha
this cluster is the reproduction of a Bethe lattice, in whic
the critical probability for percolation to occur is precisel
pc ­ 1y3.

The description of the rupture process in this way h
been translated to the problem of percolation in the Bet
lattice. Thus we may try to calculate the influence ofp
in the percolation lengthj.

As percolation must occur abovep ­ pc, then we may
formulate that

j ,
1

spc 2 pdn
. (2)

Following the standard procedure of renormalization, l
us set that in the lattice a cluster is occupied whe
at least one of the bonds exists. As an example,
Fig. 2 the first cluster is, of course, occupied, becau
the first drop was broken and the two fragments of th
extremities also continue the process. The third st
shows an empty cluster (the upper one) and four occup
43
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clusters. In general, when each node of the Bethe latt
hasF terminals, the above definition of occupied cluste
applies. In such a way the probability of occupation of
bond is the probability of breaking the first drop (p) and
also any of the subsequent fragments, i.e.,

p0 ­ pF11 1 sF 1 1dpF s1 2 pd

1

µ
F 1 1

2

∂
pF21s1 2 pd2 1 · · ·

1

µ
F 1 1
F 2 1

∂
p2s1 2 pdF21 , (3)

where this sum comprises up to the probability thatF 2 1
of the new drops do not break whereas themotherdrop
and one of theirdaughters was broken [last term in
Eq. (3)].

The first term on the right hand side of (3) describes t
probability for breakage of all the drops, the second is t
probability of breakage of all except one drop, and so oµ

a
b

∂
represents combinations ofa objects in groups ofb,
where b , a. Really, in this formulation is hidden the
possibility that one of the nonbroken drops is themother,
but it is to be expected that, near the percolation thresho
this process would not be significant.

By the binomial formula, (5) can be transformed to

p0 ­ 1 2

µ
F 1 1

F

∂
ps1 2 pdF 2 s1 2 pdF11 . (4)

Now we are able to rescale (coarse graining)r ! F1y3r.
After this rescaling, we will have a new percolation leng
j0 ­ jyF1y3. The standard renormalization procedu
leads us to the following result:

n ­
1
3

lnF
lnsF 1 1d 1 sF 2 1d lns1 2 1yFd

, (5)

from where we obtain the valuesnmax ­ 0.569837 as the
maximum value of the exponent corresponding to tw
fragments andnmin ­ 1y3 corresponding to a largeF.

It is not difficult to make a simulation of this percola
tion process obtaining for each value ofp the value of
the percolation length represented with dots in Fig. 3 a
the analytic behavior of Eq. (2) for both extreme value
of n. As can be seen there is a nice similarity in beha
ior. In Fig. 4 we show the correspondence of the cumu
tive number of fragments predicted by this model wi
the experimental data. The simulation was perform
for F ­ 2 and p ­ 0.82. In Fig. 5, the variation of the
cumulative number of fragment distribution for differen
values ofp according to this model is shown.

This proposed viewpoint indicates that rupture behav
as a critical phenomenon, at least in this description. T
model presented here describes the process of trans
experienced by the distribution of fragments in breakin
44
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FIG. 3. Variation of the penetration length in the Bethe latti
as a function ofp for F ­ 10. Circles indicate the behavior
according to the proposed model. Curvesa and b indicate
the variation ofj with p according to Eq. (2) forn ­ nmax ­
0.569837 andn ­ nmin ­ 1y3, respectively.

phenomena. Although this simple model has a fixedp,
it reproduces very well the behavior of the cumulativ
number of droplets in the rupture process. We po
out how universal properties can be obtained from t
oversimplified model. We do not try to reproduce wit
this model the actual dynamics of the droplet ruptu
which is, surely, much more complex than our mod
even with a variable value of the parameterp, depending
on thek step. However, we have simulated the ruptu
process withp variable, and we have obtained the sam
qualitative results.

FIG. 4. Similarity in behavior of the model with an exper
imental realization. The comparison was, in this case, p
formed with data (diamonds) corresponding to our experim
for h ­ 1 m, and the theoretical line (full line with empty cir
cles) forF ­ 2 andp ­ 0.82. Other curves can also be fitte
by using this model with an adequate selection ofF andp.
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FIG. 5. Variation of cumulative numberN vs dimensionless
radius, according to this model. We point out that, for differe
p’s, the shape of the curves behaves as the experime
results for different falling heights. Squares representp ­ 0.9,
diamondsp ­ 0.4, and circlesp ­ pc ­ 0.5, with F ­ 2.

This work was carried out while one of the autho
(O. S.) was visiting the U.N.E.D. in Madrid, Spain. Th
financial support by the Vicerrectorado de Centros As
ciados of the U.N.E.D. is gratefully acknowledged. Th
t
tal

-
s

work was partially supported by the Dirección Gener
de Investigación Cientı´fica y Técnica (DGICYT, Span-
ish Ministry of Education and Science) under Proje
No. PB91–0221. We also want to thank Professor Liña
Professor Castillo, and Professor Garcı´a-Ybarra for fruit-
ful discussions.

†Permanent address: Departamento de Fı´sica Teórica,
Facultad de Fı´sica, Universidad de la Habana, Haban
10400, Cuba.

[1] O. Sotolongo-Costa, E. Lopéz-Pages, F. Barreras-Tole
and J. Marı´n-Antuña, Phys. Rev. E49, 4027 (1994).

[2] J. Aitchison and J. Brown,The Lognormal Distribution
(Cambridge University Press, London, 1963).

[3] H. Furukawa, Phys. Rev. A34, 2315 (1986).
[4] M. Matsushita, J. Phys. Soc. Jpn.54, 57 (1985).
[5] G. J. Rodgers and M. K. Hassan, Phys. Rev. E50, 3458

(1994).
[6] P. L. Krapivsky and E. Ben-Naim, Phys. Rev. E50, 3502

(1994).
[7] T. Ishii and M. Matsushita, J. Phys. Soc. Jpn.61, 3474

(1992).
[8] J. H. Pollard,A Handbook of Numerical and Statistica

Techniques(Cambridge University Press, London, 1977)
45


