VOLUME 76, NUMBER 22 PHYSICAL REVIEW LETTERS 27 My 1996

Networks of Steps on Crystal Surfaces
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Scanning tunneling microscopy observations show that steps on vicinal surfaces near (110) missing-
row reconstructed surfaces of metals such as Au and Pt tend to form networks. A simple microscopic
model introduced here shows that these networks are unstable (or metastable) against faceting. This
leads to the formation of ridges between rounded areas and of angles in the equilibrium shape of the
(110) facet. [S0031-9007(96)00334-1]

PACS numbers: 68.35.Bs, 68.35.Md, 82.65.Dp

The free energy per unit of area of a crystal surfacesteps, making on average angl¢sand —¢, with the
depends rather strongly on the surface orientation. Typivertical direction in Fig. 1.
cally, especially at low temperatures, certain orientations Why is the surface forming this pattern? The explana-
corresponding to high symmetry directions in the crystation [3] is related to the large energy difference between
lattice have low free energies and appear as large flat aretso different types of steps which can be generated on the
(facets) in the equilibrium crystal shape (ECS). surface: the clockwise (CW) steps and the anticlockwise
Orientations tilted over a small angle with respect to alACW) steps, illustrated in the examples of Fig. 2. Scan-
facet are called vicinals and consist of steps separated ing tunneling microscopy (STM) observations at room
large terraces. The free energy of a vicinal is typicallytemperature show that ACW steps appear very rarely on
expressed as an expansion in the step depsity << 1).  the surface and CW steps, which cost lower energy, pre-
In this Letter we investigate the surface free energies ofail [2,3]. In Fig. 2(a) we show two possibilities for the
certain vicinals of missing-row (MR) reconstructéd0)  microscopic configurations of steps: on the left side the
facets of metals such as Au and Pt. We will show thatypical crossing pattern as observed in STM experiments;
these orientations are, in fact, not stable which leads ton the right side two pieces of isolated steps, coming
faceting, or in other words to the presence of sharp edgedose to each other in the given example. Figure 2(b)
in the ECS [1]. shows the cross section of the surface along the segment
Figure 1 shows a typical pattern of steps found onAB: going from A to B one meets a CW up step and a
vicinal orientations of Au and P110) surfaces [2,3] (areas CW down step, with a change in the reconstruction state
of equal contrast denote terraces of the same heightqs shown in the figure. In the configuration on the right
Instead of an array of parallel steps, as found ordinarilyside of Fig. 2(a), the point€ andD belong to the same
on such surfaces, one sees a pattern of zigzagging stepsrrace, and therefore belong to the same reconstructed
which repeatedly touch each other at a collection ofstate. Only a combination of a CW and an ACW step
contact points. We call this patternreetwork of steps, matches this requirement [Fig. 2(c)]. The situation where
since we can think of it as two arrays of roughly parallelfour terraces meet in a single point is favored, since only
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FIG. 2. (a) Top view of the surface with two possible step
FIG. 1. STM images of vicinals of Aul0) (courtesy of configurations (see text). The thin lines are the top rows of
M.S. Hoogeman, L. Kuipers, and J.W. M. Frenken, AMOLF the reconstruction, while thick lines denote clockwise (solid) or
Amsterdam). The area shown is db0 nm X 120 nm at  anticlockwise (dashed) steps. (b), (c) Cross sections along the
T = 550 K, with a miscut angle of 0.07 deg. segmentAB and CD of (a).
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low energy CW steps are involved. In fact, the combi- (a) 2.0 (b)
nation of a CW and an ACW step, as in Fig. 2(c), can y, 1.8
also be avoided connecting, e.g., the polatandF by a L Ls
domain wall between the two reconstructed phases. How x =
ever, such domain walls are energetically costly and there 7 o
fore the crossing (in which one could say the domain wal P~
is reduced to a single point) is preferred. -

We present here a theoretical estimate of the total fre ™ 2a 03 BS =18
energy of the network. First, we calculate the free energ p5 =04
of a single isolated step under an anglewith the y axis Az} 005 30 0 30

(see Fig. 3). We introducé, and é,, the energies per Veang

unit of length of step segments along theandy axes, gig. 3. (a) Example of microscopic configuration of a step.

denoting the directions perpendicul@®(1]) and parallel  (b) Step free energy per unit of projected length onto the
([110]) to the MRs. Only step segments in thex  x direction.

directions and the-y direction are allowed (i.e., we forbid

anticlockwise step segments), which will have length 3 one dimensional solid-on-solid model (see, for instance,
and a/~/2, respectively. In this approximation the step Ref. [4]). In the present case we find a step free energy
free energy becomes identical to the surface free energf/ @er unit of length of the following form:

Inz(¢) [ Jz <2cosr(2,86x) — [z(¢) + 1/z(¢)1>}
Y + . 9
whereg = 1/(kzT) and ! Fig. 4; we suppose that a miscut along [ih&0] direction
is generated by a pattern of crossing steps forming angles
cosh2B8,)t(¢) + /1 + sinkt(286,) ;2(¢) ¢ and ¢, with the y axis. The parameters andg are
() = 1+ 1() fixed and denote the tangents of the tilting angles of the

) surface along thg110] and[001] directions. The dashed
inclined lines indicate hypothetical parallel isolated steps

with #(¢) = |tang|/2+/2. The limiting value for the free that would generate the same macroscopic orientation
energy of a step running perpendicular to the MRs isas the network;l/¢ and 1/p are the average distances
simply fs(7/2) = &,: such steps are perfectly straight. between these steps along thend they direction. To

It is convenient to considef,(¢)/| sing|, the step free each pair of crossing steps we associate an interaction free
energy per unit of projected length along thalirection.  energy e, which keeps account of both short and long
This quantity is shown in Fig. 3(b): it has a local maxi- range interactions between them.
mum with a cusp atp = 7 /2. For steps slightly inclined The free energy per unit of projected area reads
with respect to this orientation it decreases, since such 1
steps have a larger entropy. Obviougly¢)/|sing| di-  f(p,q, 1, ¢2) = fo + — [Lifs(p1) + Lfs(dr) + €],
verges for¢p — 0. The function reaches its minimum at 2A
an angleg, satisfying (4)

where f; is the free energy per unit area of tki&l0)
\/[COSKZBS ) — e BY /f3|nr(2/36 )P -1 facet, while/; and [/, are the lengths of the two sides

e B&/N25inh288,)

(o) =
)

Note that the quantity under the square root may become
negative; this happens at temperatures above the roughen-
ing temperature (at small values g5, and 86,) when
the solid-on-solid approximation for the step free energy
fs(¢) is not positive definite and the simple theory con-
sidered here breaks down. Equation (3) gives an explicit
relationship between the angig,, the step energies per
unit lengthé, andd, and temperature. This relationship
may be used to determine the parametgrand d, from
measured values af, at different temperatures.

To calculate the total free energy as a function of the
orientation we use the simple geometric construction of FIG. 4. Schematic view of the network of crossing steps.
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of the dashed triangle, of aref shown in Fig. 4. The (a)
following relations hold:2A = [l sin(¢p, — ¢»), I} =
cosy/[p cod¢ — )], andl, = cos)/[ p cod ¢, — ¢)],
wherey is the angle shown in Fig. 4(= p tany).
The actual free energy can be found by minimizing
the free energy (4) with respect th; and ¢,; using the
preceding relations foA, [;, andl, one can show that,
to lowest orders inp and g and for ¢y < 7/2 — ¢y,
this amounts to minimizing,(¢)/| sing|. Therefore the
minimum of (4) is aip; = —¢, = ¢¢ + O(p, q), where
¢ is the angle given by (3). Substituting this back intoF|g. 5. (a) The network of crossing steps, and (b) a combina-

(4) and expanding to lowest orderspnandg we find tion of two step arrays of different orientation, after the phase
5 separation, predicted by (5) far > 0, has occurred. The-
f(p.q) = fo + JM p+ £ <p_ — tan¢0q2>. and — indicate the opposite reconstruction phases induced by
’ sing 2 \tang, the clockwise steps.

5)
The term linear inp represents the contribution of nonin- slopes(p, p tang,) and(p, — p tang,) joining at a ridge,
teracting steps. The interaction terms are quadratic in thas depicted in Fig. 5(b).
step densities, differently from usual step-step interactions We recall that two clockwise steps ending in a common
which lead to terms cubic in the step densities [5]. Thepoint [as the steps shown in Fig. 5(b)] induce a differ-
origin of the quadratic term can be understood easily: thent reconstruction order in either the lower or the upper
number of step crossings per unit area is simply proporterrace: they must be accompanied by a boundary separat-
tional to the product of the densities, + ¢ tang,, of the  ing two different reconstruction phases. It suffices having
two types of steps.e is the interaction free energy of two boundaries every other couple of steps, as shown in the
crossing steps and depends obviously on the anglesid  figure. Furthermore, as in the case of crossings, the do-
¢»; however, to lowest ordep; = — ¢, = ¢, Sothe an- main boundary can be avoided by having four steps join-
gle dependence of can be neglected. In addition, there ing in the same lattice point. This too is schematically
are long range interactions between parallel steps, but théjustrated in Fig. 5(b).
will only contribute to terms of cubic or higher order in the  The equilibrium shape of th¢110) facetcan be found
step density expansion of the free energy [5]. by applying the Wulff construction to the step free energy
For ¢ > m/2 — ¢, the expression (4) is minimized as a function of the orientation [1]. The result is shown in
by a single array of steps (s¢; = ¢ andl, = 0) and Fig. 6. Because of the instability of steps of orientations
the free energy takes the usual form [5] close to¢p = 7 /2, the facet shape shows sharp cusps. A
typical arrangement of steps around this facet is sketched
f(p.@) = fo + f(dWp> + ¢ + 0((p> + 4. in Fig. 6(b). Notice the vertical ridges extending from
(6) the cusps.
There is no contradiction between the instability de-
Notice that the expression (5) for the free energy ofscribed here, and the observation of networks of steps in
the step network is a nonconvex function pf and the STM experiments. Crystals hardly ever assume equi-
qg. This leads to instabilities and to the disappearance
of certain ranges of orientations from the equilibrium
crystal shape. Our results imply that the network is s

unstable irrespective of the sign ef A priori either (a) (b) ()
sign could be expected: the increase in horizontal kink 15} /K\\
length at a step crossing compared to an ordinary kink |:."|'r. R\
yields a positive contribution te, whereas forpy < 45° o5 | i
the elastic interaction between crossing steps usually i ¥ ‘H M
negative [6]. The two possibilities far give rise to two  -ast I
different types of faceting, which we discuss separately. I'ull ] nU.'I
(1) € > 0.—1In this case the instability is along the -5} ﬂ\/’“

direction, as a function of the paramejgethe free energy

is stable. The instability can be understood as follows:-25 ol
a positive amount of free energy is associated with each .

pair of crossing steps, therefore the total free energy ca IG. 6. Top view of thg110) facet calculated from the model

. . . or the same parameters as in Fig. 3: éa) 0 (solid line) and
be reduced by decreasing the density of crossings. By, ncation of this shape by edges fer< 0 (dashed lines).

applying the Maxwell construction to Egs. (5) and (6) onearrangement of the surrounding steps for> 0 in the stable
finds that the system separates into two orientations gfhase (b), in the metastable phase (c), ancefer 0 (d).
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librium shapes. In many cases, though, unstable surfacasirfaces show a tendency to form networks of crossing
will facet after a certain amount of time; in the presentsteps, which can avoid the reconstruction mismatch.
case this may be extremely long. In fact, once the netHowever, these networks turn out to be unstable (or at
work has been formed, the process of disentangling it intéeast metastable) with respect to faceting. This leads to
stable orientations as the ones shown in Fig. 5(b) may rea cusped equilibrium shape for tHé10) facet and to
quire the investment of a large amount of free energy tahe formation of ridges in the equilibrium crystal shape
go through very unfavorable states, and it may be diffi-between rounded parts of the crystal and, in the case
cult to observe it experimentally without a careful long of negative free energies for step crossings, between
annealing of the surface. For describing the surface frethe (110) facet and the surrounding region. The model
energy and the shape of the metastable surface one cproduces detailed predictions for the equilibrium shape
use Eq. (5) again. A typical arrangement of steps aroundf the (110) facet, as well as for the preferred step
the (110) facet in this situation is shown in Fig. 6(c). Indirections as a function of microscopic step energies
this case the shape profile along theaxis of the crys- and temperature. These predictions could be checked
tal for vicinal orientations is expected to be of the typeexperimentally by studying equilibrium crystal shapes and
z(y) ~ (y — yo)?, due to the term proportional tp> in  average orientations of steps in networks.
the surface free energy. A free energy expansion with Small gold crystallites in thermal equilibrium with
a term cubic in the step density would produce a shaptheir vapor were studied by Heyraud and Métois [8], but
profile with an exponent 2, the so-called Pokrovski- the range of temperatures investigat@d=¢ 1000 °C) is
Talapov exponent (see, for instance, [1]). above the roughening temperature of (h&0) facet: only
Thermodynamically the metastability encountered herghe (111) and (100) facets were observed. We hope that
is highly unusual. In, e.g., a homogeneous gas-liquicbur work will stimulate new experimental investigation of
system a free energy that is a concave function of densitthe equilibrium shapes of MR reconstructed surfaces at
always leads to instability due to spinodal decompositionlower temperatures, below the roughening temperature of
In our system this is impeded by topological constraintghe (110) facet.
on the steps, requiring concerted mass transportation overIn this Letter we restricted ourselves to the range
relatively large distances for the decomposition of aof vicinal orientations around th€110) facet. In a
network into stable surfaces. Therefore even a nonconverecent paper Vilfan [9] discussed the influence of long
free energy can be metastable. range interactions, which become important for a higher
(2) e < 0.—In this case orientations with a large density of steps. However, he does not take into account
density of step crossings are favored, which will give risethe instabilities arising from the quadratic terms in the
to ridges connecting the (110) facet either to other facetgxpressions for the surface free energy.
into which one then could say the crossing steps condense, We are grateful to J. W. M. Frenken, M. S. Hoogeman,
or to rounded areas, in case the entropic repulsion betweemd E. Tosatti for stimulating discussions.
steps is strong enough to restore a convex free energy for
larger values ofp. In either case the vicinal orientations
are really unstable, as there is no free energy barrier
against the contraction of the network to a state of

higher step density. The same phenomena. occurrin ir‘[l] H. van Beijeren and I. Nolden, iBtructure and Dynamics
g P Y- P ! 9 of Surfacesedited by W. Schommers and P. von Blacken-

a simple r_nodel_ giving rise to a ljegative crossing eNergy,  hagen (Springer-Verlag, Berlin, 1987), Vol. 2, p. 259.
are described in Ref. [7]. In Fig. 6(a) the dashed lines [2] T. Gritsch, D. Coulman, R.J. Behm, and G. Ertl, Surf.
show the truncation of the equilibrium shape of thé0) Sci. 257, 297 (1991); J.K. Gimzewski, R. Berndt, and
facet by ridges connecting the facet to rounded areas, and R.R. Schittler, Phys. Rev. B5, 6844 (1992).
Fig. 6(d) shows the expected arrangement of steps aroungB] L. Kuipers, Ph.D. thesis, Amsterdam, 1994.
the truncated facet. Notice that in this case there are[4] J.E. Avron, H. van Beijeren, L.S. Schulman, and R.K.P.
ridges between rounded regions covered by networks of  Zia, J. Phys. Al5, L81 (1982).
steps and regions covered by noncrossing step arrays. [5] E.E. Gruber and W.W. Mullins, J. Phys. Chem. Sol&#;

In conclusion, we studied the typical pattern of steps gﬁ?élgzz);ébjggjgr?fggg C. Rottman, and W.F. Saam,
observed in STM experiments on .(QILIO) ?‘”d P_(llO) [6] M. Bernasconi,and E. Tosatti, Surf. Sci. Repz, 363
surfaces. The free energy of vicinal orientations was

: : o (1993).
calculated from a simple, yet quite realistic, model. In [7] E. Carlon, H. van Beijeren, and G. Mazzeo, Phys. Rev. E

this model step segments under positive and negative (to be published); E. Carlon, Ph.D. thesis, Utrecht, 1996.

angles with they axis cannot be simply joined together, [g] J.C. Heyraud and J.J. Métois, Acta Metaig, 1789
because this would give rise to a mismatch in the  (1980).

reconstruction order. As a consequence of this, sloped?9] I. Vilfan, Surf. Sci.350 329 (1996).
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