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Networks of Steps on Crystal Surfaces
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Scanning tunneling microscopy observations show that steps on vicinal surfaces near (110) m
row reconstructed surfaces of metals such as Au and Pt tend to form networks. A simple micro
model introduced here shows that these networks are unstable (or metastable) against facetin
leads to the formation of ridges between rounded areas and of angles in the equilibrium shape
(110) facet. [S0031-9007(96)00334-1]

PACS numbers: 68.35.Bs, 68.35.Md, 82.65.Dp
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The free energy per unit of area of a crystal surfa
depends rather strongly on the surface orientation. T
cally, especially at low temperatures, certain orientati
corresponding to high symmetry directions in the crys
lattice have low free energies and appear as large flat a
(facets) in the equilibrium crystal shape (ECS).

Orientations tilted over a small angle with respect t
facet are called vicinals and consist of steps separate
large terraces. The free energy of a vicinal is typica
expressed as an expansion in the step densityp sp ø 1d.

In this Letter we investigate the surface free energie
certain vicinals of missing-row (MR) reconstructeds110d
facets of metals such as Au and Pt. We will show t
these orientations are, in fact, not stable which lead
faceting, or in other words to the presence of sharp ed
in the ECS [1].

Figure 1 shows a typical pattern of steps found
vicinal orientations of Au and Pts110d surfaces [2,3] (area
of equal contrast denote terraces of the same heig
Instead of an array of parallel steps, as found ordina
on such surfaces, one sees a pattern of zigzagging s
which repeatedly touch each other at a collection
contact points. We call this pattern anetworkof steps,
since we can think of it as two arrays of roughly para
F
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FIG. 1. STM images of vicinals of Aus110d (courtesy of
M. S. Hoogeman, L. Kuipers, and J. W. M. Frenken, AMOL
Amsterdam). The area shown is of190 nm 3 120 nm at
T ­ 550 K, with a miscut angle of 0.07 deg.
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steps, making on average anglesf and 2f, with the
vertical direction in Fig. 1.

Why is the surface forming this pattern? The explan
tion [3] is related to the large energy difference betwe
two different types of steps which can be generated on
surface: the clockwise (CW) steps and the anticlockw
(ACW) steps, illustrated in the examples of Fig. 2. Sca
ning tunneling microscopy (STM) observations at roo
temperature show that ACW steps appear very rarely
the surface and CW steps, which cost lower energy, p
vail [2,3]. In Fig. 2(a) we show two possibilities for th
microscopic configurations of steps: on the left side
typical crossing pattern as observed in STM experime
on the right side two pieces of isolated steps, com
close to each other in the given example. Figure 2
shows the cross section of the surface along the segm
AB: going from A to B one meets a CW up step and
CW down step, with a change in the reconstruction s
as shown in the figure. In the configuration on the rig
side of Fig. 2(a), the pointsC andD belong to the same
terrace, and therefore belong to the same reconstru
state. Only a combination of a CW and an ACW st
matches this requirement [Fig. 2(c)]. The situation wh
four terraces meet in a single point is favored, since o
FIG. 2. (a) Top view of the surface with two possible ste
configurations (see text). The thin lines are the top rows
the reconstruction, while thick lines denote clockwise (solid)
anticlockwise (dashed) steps. (b), (c) Cross sections along
segmentsAB andCD of (a).
© 1996 The American Physical Society 4191
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low energy CW steps are involved. In fact, the comb
nation of a CW and an ACW step, as in Fig. 2(c), c
also be avoided connecting, e.g., the pointsE andF by a
domain wall between the two reconstructed phases. H
ever, such domain walls are energetically costly and the
fore the crossing (in which one could say the domain w
is reduced to a single point) is preferred.

We present here a theoretical estimate of the total f
energy of the network. First, we calculate the free ene
of a single isolated step under an anglef with the y axis
(see Fig. 3). We introducedx and dy, the energies per
unit of length of step segments along thex and y axes,
denoting the directions perpendicular (f001g) and parallel
(f11̄0g) to the MRs. Only step segments in the6x
directions and the1y direction are allowed (i.e., we forbid
anticlockwise step segments), which will have length2a
and ay

p
2, respectively. In this approximation the ste

free energy becomes identical to the surface free energ
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FIG. 3. (a) Example of microscopic configuration of a ste
(b) Step free energy per unit of projected length onto t
x direction.

a one dimensional solid-on-solid model (see, for instan
Ref. [4]). In the present case we find a step free ene
per unit of length of the following form:
fssfd ­
lnzsfd

2b
j sinfj 1

∑
dy 1

p
2

b
ln

µ
2 coshs2bdxd 2 fzsfd 1 1yzsfdg

2 sinhs2bdxd

∂∏
cosf , (1)
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whereb ­ 1yskBT d and

zsfd ­
coshs2bdxdtsfd 1

p
1 1 sinh2s2bdxd t2sfd

1 1 tsfd
,

(2)

with tsfd ­ j tanfjy2
p

2. The limiting value for the free
energy of a step running perpendicular to the MRs
simply fsspy2d ­ dx: such steps are perfectly straight.

It is convenient to considerfssfdyj sinfj, the step free
energy per unit of projected length along thex direction.
This quantity is shown in Fig. 3(b): it has a local max
mum with a cusp atf ­ py2. For steps slightly inclined
with respect to this orientation it decreases, since s
steps have a larger entropy. Obviouslyfssfdyj sinfj di-
verges forf ! 0. The function reaches its minimum
an anglef0 satisfying

tsf0d ­

q
fcoshs2bdxd 2 e2bdy y

p
2 sinhs2bdxdg2 2 1

e2bdy y
p

2 sinhs2bdxd
.

(3)

Note that the quantity under the square root may bec
negative; this happens at temperatures above the roug
ing temperature (at small values ofbdx and bdy) when
the solid-on-solid approximation for the step free ene
fssfd is not positive definite and the simple theory co
sidered here breaks down. Equation (3) gives an exp
relationship between the anglef0, the step energies pe
unit lengthdx anddy and temperature. This relationsh
may be used to determine the parametersdx anddy from
measured values off0 at different temperatures.

To calculate the total free energy as a function of
orientation we use the simple geometric construction
is

ch

Fig. 4; we suppose that a miscut along thef11̄0g direction
is generated by a pattern of crossing steps forming an
f1 andf2 with the y axis. The parametersp andq are
fixed and denote the tangents of the tilting angles of
surface along thef11̄0g andf001g directions. The dashed
inclined lines indicate hypothetical parallel isolated ste
that would generate the same macroscopic orienta
as the network;1yq and 1yp are the average distance
between these steps along thex and they direction. To
each pair of crossing steps we associate an interaction
energye, which keeps account of both short and lo
range interactions between them.

The free energy per unit of projected area reads

f̃sp, q, f1, f2d ­ f0 1
1

2A
fl1fssf1d 1 l2fssf2d 1 eg ,

(4)

where f0 is the free energy per unit area of thes110d
facet, while l1 and l2 are the lengths of the two side
e
n-

t

f FIG. 4. Schematic view of the network of crossing ste



VOLUME 76, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 27 MAY 1996

ng

,

to

-
t

on
h
th
o

o

re
th
e

d

o

nce
m
i

in
in

y

.

a
c

n

na-
se

by

on
r-
er
rat-

ng
the
do-
in-
lly

gy
in
ns
A

hed

e-
in

ui-

l

of the dashed triangle, of areaA, shown in Fig. 4. The
following relations hold:2A ­ l1l2 sinsf1 2 f2d, l1 ­
coscyfp cossf1 2 cdg, andl2 ­ coscyfp cossf2 2 cdg,
wherec is the angle shown in Fig. 4 (q ­ p tanc).

The actual free energy can be found by minimizi
the free energy (4) with respect tof1 and f2; using the
preceding relations forA, l1, and l2 one can show that
to lowest orders inp and q and for c , py2 2 f0,
this amounts to minimizingfssfdyj sinfj. Therefore the
minimum of (4) is atf1 ø 2f2 ­ f0 1 Osp, qd, where
f0 is the angle given by (3). Substituting this back in
(4) and expanding to lowest orders inp andq we find

fsp, qd ­ f0 1
fssf0d
sinf0

p 1
e

2

µ
p2

tanf0
2 tanf0q2

∂
.

(5)

The term linear inp represents the contribution of nonin
teracting steps. The interaction terms are quadratic in
step densities, differently from usual step-step interacti
which lead to terms cubic in the step densities [5]. T
origin of the quadratic term can be understood easily:
number of step crossings per unit area is simply prop
tional to the product of the densities,p 6 q tanf0, of the
two types of steps.e is the interaction free energy of tw
crossing steps and depends obviously on the anglesf1 and
f2; however, to lowest orderf1 ­ 2f2 ­ f0, so the an-
gle dependence ofe can be neglected. In addition, the
are long range interactions between parallel steps, but
will only contribute to terms of cubic or higher order in th
step density expansion of the free energy [5].

For c . py2 2 f0 the expression (4) is minimize
by a single array of steps (sof1 ­ f and l2 ­ 0) and
the free energy takes the usual form [5]

fsp, qd ­ f0 1 fssfd
p

p2 1 q2 1 Ossssp2 1 q2d3y2ddd .
(6)

Notice that the expression (5) for the free energy
the step network is a nonconvex function ofp and
q. This leads to instabilities and to the disappeara
of certain ranges of orientations from the equilibriu
crystal shape. Our results imply that the network
unstable irrespective of the sign ofe. A priori either
sign could be expected: the increase in horizontal k
length at a step crossing compared to an ordinary k
yields a positive contribution toe, whereas forf0 , 45±

the elastic interaction between crossing steps usuall
negative [6]. The two possibilities fore give rise to two
different types of faceting, which we discuss separately

(1) e . 0.—In this case the instability is along theq
direction, as a function of the parameterp the free energy
is stable. The instability can be understood as follow
a positive amount of free energy is associated with e
pair of crossing steps, therefore the total free energy
be reduced by decreasing the density of crossings.
applying the Maxwell construction to Eqs. (5) and (6) o
finds that the system separates into two orientations
he
s

e
e
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f

FIG. 5. (a) The network of crossing steps, and (b) a combi
tion of two step arrays of different orientation, after the pha
separation, predicted by (5) fore . 0, has occurred. The1
and 2 indicate the opposite reconstruction phases induced
the clockwise steps.

slopessp, p tanf0d andsp, 2p tanf0d joining at a ridge,
as depicted in Fig. 5(b).

We recall that two clockwise steps ending in a comm
point [as the steps shown in Fig. 5(b)] induce a diffe
ent reconstruction order in either the lower or the upp
terrace: they must be accompanied by a boundary sepa
ing two different reconstruction phases. It suffices havi
boundaries every other couple of steps, as shown in
figure. Furthermore, as in the case of crossings, the
main boundary can be avoided by having four steps jo
ing in the same lattice point. This too is schematica
illustrated in Fig. 5(b).

The equilibrium shape of thes110d facetcan be found
by applying the Wulff construction to the step free ener
as a function of the orientation [1]. The result is shown
Fig. 6. Because of the instability of steps of orientatio
close tof ­ py2, the facet shape shows sharp cusps.
typical arrangement of steps around this facet is sketc
in Fig. 6(b). Notice the vertical ridges extending from
the cusps.

There is no contradiction between the instability d
scribed here, and the observation of networks of steps
the STM experiments. Crystals hardly ever assume eq
s

k
k

is

s:
ch
an
By
e
of

FIG. 6. Top view of thes110d facet calculated from the mode
for the same parameters as in Fig. 3: (a)e . 0 (solid line) and
truncation of this shape by edges fore , 0 (dashed lines).
Arrangement of the surrounding steps fore . 0 in the stable
phase (b), in the metastable phase (c), and fore , 0 (d).
4193
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librium shapes. In many cases, though, unstable surfa
will facet after a certain amount of time; in the prese
case this may be extremely long. In fact, once the n
work has been formed, the process of disentangling it i
stable orientations as the ones shown in Fig. 5(b) may
quire the investment of a large amount of free energy
go through very unfavorable states, and it may be di
cult to observe it experimentally without a careful lon
annealing of the surface. For describing the surface f
energy and the shape of the metastable surface one
use Eq. (5) again. A typical arrangement of steps arou
the (110) facet in this situation is shown in Fig. 6(c).
this case the shape profile along they axis of the crys-
tal for vicinal orientations is expected to be of the typ
zs yd , s y 2 y0d2, due to the term proportional top2 in
the surface free energy. A free energy expansion w
a term cubic in the step density would produce a sha
profile with an exponent 3y2, the so-called Pokrovski
Talapov exponent (see, for instance, [1]).

Thermodynamically the metastability encountered h
is highly unusual. In, e.g., a homogeneous gas-liq
system a free energy that is a concave function of den
always leads to instability due to spinodal decompositi
In our system this is impeded by topological constrain
on the steps, requiring concerted mass transportation
relatively large distances for the decomposition of
network into stable surfaces. Therefore even a noncon
free energy can be metastable.

(2) e , 0.—In this case orientations with a larg
density of step crossings are favored, which will give ri
to ridges connecting the (110) facet either to other fac
into which one then could say the crossing steps conde
or to rounded areas, in case the entropic repulsion betw
steps is strong enough to restore a convex free energy
larger values ofp. In either case the vicinal orientation
are really unstable, as there is no free energy bar
against the contraction of the network to a state
higher step density. The same phenomena, occurrin
a simple model giving rise to a negative crossing ener
are described in Ref. [7]. In Fig. 6(a) the dashed lin
show the truncation of the equilibrium shape of thes110d
facet by ridges connecting the facet to rounded areas,
Fig. 6(d) shows the expected arrangement of steps aro
the truncated facet. Notice that in this case there
ridges between rounded regions covered by networks
steps and regions covered by noncrossing step arrays.

In conclusion, we studied the typical pattern of ste
observed in STM experiments on Aus110d and Pts110d
surfaces. The free energy of vicinal orientations w
calculated from a simple, yet quite realistic, model.
this model step segments under positive and nega
angles with they axis cannot be simply joined togethe
because this would give rise to a mismatch in t
reconstruction order. As a consequence of this, slo
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surfaces show a tendency to form networks of cross
steps, which can avoid the reconstruction mismat
However, these networks turn out to be unstable (or
least metastable) with respect to faceting. This leads
a cusped equilibrium shape for thes110d facet and to
the formation of ridges in the equilibrium crystal shap
between rounded parts of the crystal and, in the c
of negative free energies for step crossings, betw
the s110d facet and the surrounding region. The mod
produces detailed predictions for the equilibrium sha
of the s110d facet, as well as for the preferred ste
directions as a function of microscopic step energ
and temperature. These predictions could be chec
experimentally by studying equilibrium crystal shapes a
average orientations of steps in networks.

Small gold crystallites in thermal equilibrium with
their vapor were studied by Heyraud and Métois [8], b
the range of temperatures investigated (T ­ 1000 ±C) is
above the roughening temperature of thes110d facet: only
the s111d and s100d facets were observed. We hope th
our work will stimulate new experimental investigation o
the equilibrium shapes of MR reconstructed surfaces
lower temperatures, below the roughening temperature
the s110d facet.

In this Letter we restricted ourselves to the ran
of vicinal orientations around thes110d facet. In a
recent paper Vilfan [9] discussed the influence of lo
range interactions, which become important for a high
density of steps. However, he does not take into acco
the instabilities arising from the quadratic terms in t
expressions for the surface free energy.

We are grateful to J. W. M. Frenken, M. S. Hoogema
and E. Tosatti for stimulating discussions.
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