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A new formulation of the Lagrangian equations for the evolution of the Rayleigh-Taylor instabilit
inviscid incompressible fluids is presented. A set of exact coupled-mode equations which g
the evolution of the velocity field and the nonlinear motion of the surface is derived. Un
the traditional Eulerian mode expansion, which requires an infinitely growing number of mo
at the nonlinear stage, the present expansion converges very rapidly. The use of the form
for analyzing the nonlinear stage of the instability is demonstrated by analytical and nume
solutions. [S0031-9007(96)00298-0]

PACS numbers: 52.35.Py, 52.35.Mw
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The Rayleigh-Taylor (RT) and Richtmyer-Meshko
(RM) instabilities occur in many fields of physics: a
trophysics, nuclear collisions, atmospheric physics, g
physics, and various configurations of magnetically a
inertially confined fusion experiments [1].

The instability occurs when a light fluid supports
heavier one against gravity, or pushes it in a const
acceleration (RT instability [2]), or after a shock h
passed through the interface between two fluids (R
instability [3]). Initially, random perturbations at th
interface grow exponentially in time. In the nonline
stage of the instability, the interface is strongly distorte
Round “bubbles” of light fluid enter the heavy fluid an
narrow “spikes” of heavy fluid penetrate the lighter on
Eventually the “bubbles-spikes” structure breaks do
and a turbulent mixing of the two fluids occurs [4,5
The present work concentrates on the linear and nonlin
stages of the instability before turbulence takes over.

Linear [2,3,6] and nonlinear [7,8] theories, as w
as analyses of full scale numerical simulations [5] a
experiments [9], rely on the expansion of the interfa
and the velocity field in Fourier modes. However, it
well known that this expansion converges only at the v
early stage when amplitudes of the modes are smaller
10% of the wavelength [8,10].

Kull [10] attempted to solve, numerically, the nonline
fluid equations by expanding the velocity potential and
interface in terms of Fourier modes. He has found th
during time evolution, the convergence of the series
comes increasingly worse until the “Fourier ansatz cea
to be an appropriate representation.” The divergence
the expansion occurs as modes amplitudes approach
of their wavelengths.

In perturbation expansions [7,8], the nonlinear coup
mode equations are solved by an iterative process sta
with the linear solution. Also the perturbation expansi
converges only at the very beginning of the nonline
stage when mode amplitudes are smaller than 10% of
wavelengths [8].

The purpose of the present work was to find an alt
native theoretical framework and mode expansion wh
0031-9007y96y76(22)y4167(4)$10.00
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do not suffer from the shortcomings described above,
can describe also the nonlinear stage of the instabi
In the rest of the Letter I will show that Lagrangian fo
mulation of the problem naturally suggests the approp
ate mode expansion, and that the resulting mode-coup
equations do not lead to the divergence problem enco
tered in the Eulerian formulation [7,8,10]. In simple cas
the solutions may be represented by a perturbation
pansion which converges very rapidly. More complicat
problems are treated by a direct numerical solution of
mode coupling equations. The method may be viewed
an extension of Ott’s treatment of RT instability in a th
layer [11,12].

Lagrangian formulation of the RT instability.—I shall
start with formulation of the Lagrangian equations for t
evolution of RT and RM instabilities at the free surfac
of inviscid incompressible fluid. Surprisingly, such
formulation does not exist, explicitly, in the literature
Consider an incompressible fluid which is supported
a massless fluid. Denote the initial position of a flu
element by$r0. At later times, the location of the elemen
depends on$r0. Denote thex, y, andz components of$r0

by j, h, and a. For incompressible fluid, the Jacobia
of the transformation fromj, h, anda to x, y, andz is
constant, i.e.,

s$rj 3 $rhd ? $ra ­ const. (1)

(Derivatives of $r with respect toj, h, a, and t are de-
noted by subscripts.) For irrotational motion, the mat
$= $y (where $y is the Eulerian velocity) is symmetric. Con
sequently, the relation$rj ? $= $y ? $rh 2 $rh ? $= $y ? $rj ­ 0
and similar relations for thej, a and h, a elements
should hold. Using the chain rule for derivatives, the
relations are converted to a set of three differential eq
tions which involve only Lagrangian variables:

$rht ? $ra 2 $rat ? $rh ­ 0, $rjt ? $rh 2 $rht ? $rj ­ 0 ,

$rjt ? $ra 2 $rat ? $rj ­ 0 . (2)

[Equations (2) may be generalized to include also
case of nonvanishing vorticity. This is done by usin
the symmetry of the matrix=sd $yydtd, viscosity may be
© 1996 The American Physical Society 4167
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included as source terms which break the symmetry of
matrix =sd $yydtd].

The above equations [(1), (2)] should be supplemen
by boundary conditions. Assuming periodicity in thej, h

variables and demanding that the fluid velocity will vani
as a ! ` supply part of the conditions. We still hav
to determine the boundary conditions at the fluid surfa
At t ­ 0 the surface is at$r ­ sj, h, 0d. Its location
at later times is denoted by$Rsj, h, td [i.e., $Rsj, h, td ;
$rsj, h, 0, td]. The equation of motion of a fluid elemen
of mass densityr which is at the surface isr $Rtt ­
f $=Ps$r , tdg$r­ $Rsj,h,td 1 rgẑ. Line integrating this equation
along a closed rectangular contour with two sides para
to the surface (d $R ­ $Rjdj or d $R ­ $Rhdh), within and
out of the fluid, taking into account the continuity o
pressure across the surface of the fluid one gets
boundary conditions

$Rj ? $Rtt ­ g $Rj ? ẑ, $Rh ? $Rtt ­ g $Rh ? ẑ (3)

(g is the gravitational acceleration). Equations (1) and
together with the boundary conditions ata ­ 0 [Eqs. (3)]
and ata ! `, and the periodicity conditions in thej, h

variables, uniquely determine the motion of the fluid.
Coupled mode equations.—In the following I shall

limit the treatment to systems in which no motion occu
in the y direction. In this case$r ­ sx, h, zd and $rj ­
sxj , 0, zjd.

I assume that the displacement of a fluid elem
xsj, a, td 2 j andzsj, a, td 2 a may be expanded in a
Fourier series, i.e.,xsj, a, td ­ j 1

P
k Xksa, tdeikj and

zsj, a, td ­ a 1
P

k Zksa, tdeikj and use the expansio
in Eqs. (1) and (2). The result is as follows:

ÙZ0
k 1 ik ÙXk ­ 2

X
k0

ik0f ÙXk0Z0
k2k0 1 Xk0 ÙZ0

k2k0

2 ÙZ0
kX 0

k2k0 2 Zk0 ÙX 0
k2k0g ,

ÙX 0
k 2 ik ÙZk ­

X
k0

ik0f2 ÙZk0Z0
k2k0 1 Zk0 ÙZ0

k2k0

(4)

2 ÙXk0X 0
k2k0 1 Xk0 ÙX 0

k2k0g .

Similarly, Eq. (3) yields

Ẍks0, td 2 gikZks0, td ­ 2
X
k0

isk 2 k0dXk2k0s0, tdẌk0s0, td

2
X
k0

isk 2 k0dZk2k0s0, tdZ̈k0 s0, td .

(5)

In the above equations the derivatives ofZk and Xk

with respect tot are denoted by a dot and with re
spect toa by a prime. One has to solve these equ
tions with the requirement that, asa ! `, the velocity
field vanishes, i.e., lima!`

ÙXksa, td ­ lima!`
ÙZksa, td ­

0. Next, I will present solutions of these equations in t
linear and nonlinear regimes.

Analytical solutions.—The solution of Eq. (4), for
X0sa, td and Z0sa, td is ÙX0sa, td ­ 0 and Z0sa, td ­
4168
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k0 2ik0Xk0sa, tdZ2k0 sa, td. An exact solution in
the casek fi 0 was not obtained, however, linearizin
Eqs. (4) one can immediately see that a solution w
vanishing ÙXk , ÙZk at a ! ` is possible only if ata ­ 0
(i.e., at the interface)ÙXk and ÙZk are related byÙZks0, td ­
iskyjkjd ÙXks0, td. Using this result yields the lowest-orde
nonlinear approximation for the solution of Eqs. (4) a
(5). In this approximation, Eq. (5) is reduced to a set
nonlinear ordinary differential equations of the form

Ẍks0, td 2
X
k0

G2
k,k0 Xk0s0, td ­ 0 , (6)

whereGk,k0 depends on the amplitudesXk and velocities
ÙXk of all the modes in the system.

Note that Eq. (6) has the same form as the stand
linear equation for RT instability [6], but with the linea
growth rateg2 ­ kg, replaced by an effective nonlinea
Hermitian “growth matrix”G

2
k,k0 which couples between

modes and depends on the amplitudes and velocities o
the modes in the system. The explicit form of the mat
G2 is G2 ­ A21B where the elements of the matricesA
andB are

Ak,k0 ­

∑
dsk, k0d 2 isk 2 k0d

µ
1 2

sk 2 k0d
jsk 2 k0dj

k0

jk0j

∂
3 Xk2k0 1 2jkj jk0jXkX2k0

∏
, (7)

Bk,k0 ­ dsk 2 k0d
∑

gjkj 2 jkj
X
k00

jk00j s2 ÙXk00 ÙX2k00 d
∏

.

(8)
In systems in which only the lowestN harmonics of the
basic modesk ­ 2pyLd have nonvanishing amplitude
Xk , the matrix A21 (and therefore alsoG2 ­ A21B)
does not couple theseN modes to higher harmonics
Namely, Eq. (6) does not allow generation of ne
modes in the system. For example an initial sinusoi
perturbation with an amplitudex0 and velocityy0 and a
wave numberk will evolve as a single Lagrangian mode
i.e., xsj, 0, td ­ j 1 2Xks0, td cosskjd and zsj, 0, td ­
22iZks0, td sinskjd 2 2ikXks0, tdZks0, td. A single
Lagrangian modeeikj is comprised of many Eulerian
modeseiqx , each of which has the amplitudeaqsk, td ­R

e2ikjeiqxj≠xy≠jjdj ­
R

e2ikjeiqj12iqXks0,td cosskjdj1 1

2kXks0, td sinskjdjdj. For a small Lagrangian mod
amplitudekXk ø 1, one gets that the Eulerian and La
grangian modes coincide, limkXk!0 aqsk, td ­ dsk 2 qd;
the larger the amplitude of the Lagrangian mode, a lar
number of Eulerian modes are present.

Solving Eq. (6), using the relations betweenXk andZk,
substituting in the above formulas forxsj, 0, td, zsj, 0, td
we can now plot the surfacezsx, td at various times. In
Fig. 1(a) I show the evolution of the interface in a case w
gravitational accelerationg ­ 1. The system is initiated
with a single mode withk ­ 1, x0 ­ 0.005, andy0 ­ 0
(line A corresponds tot ­ 4.2825 and B tot ­ 4.96). At
late times the surface has a falling down spike atkj ­
py2 and a rising bubble with a tip atkj ­ 3py2.
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FIG. 1. Analytical results: (a) The surfacezsx, td at various
times. (b) Bubble velocity as a function of time.

Higher orders in the perturbation expansion are
tained by iterating the zero order result in Eqs. (4). F
example, in the first order, for a single mode, one gets

Zks0, td ­
1
3

i
k
jkj

Xks0, td

3

∑
3 2 3kXks0, td 1 k2X2

k s0, td 1 k3X3
k s0, td

1 2 kXks0, td 2 k2X2
k s0, td 1 k3X3

k s0, td

∏
.

[Strictly speaking, in the first orderZks0, td is a polyno-
mial of Xks0, td; the right hand side of the above relatio
is a Padde approximant of this polynomial.] As we sh
see, this first order result is sufficient for the descript
of the bubble’s velocity. In Fig. 1(b), the bubble veloci
is plotted as a function of time (line A). For comparison
have added on this plot also the velocity predicted by
Layzer model [13] (line B) and by second and third ord
Eulerian perturbation expansion [7] (lines C and D), a
the lowest order in the present method, obtained by u
the solution of Eq. (6) (line E). Equation (6) describes
bubble’s velocity correctly at timest , 5. The Layzer
model [13] is not capable of describing the whole int
face; nevertheless its prediction for the velocity of t
bubble’s top is known to be accurate. Also the first or
in the present approach (line A) describes correctly
velocity of the bubble in the linear stage and at saturat

Direct numerical solution.—More detailed results fo
more complicated cases may be obtained by a nume
solution of Eqs. (4) and (5) by discretizing the variab
a and t. In contrast to the conventional Eulerian mo
expansion which requires an infinitely growing numb
of modes [8,10], in the present method a bubble-sp
structure is described by few modes. Also, since
discretization of the equations in the direction parallel
the interface is obtained by mode expansion and no
a spatial grid, the numerical solution of Eqs. (4) and
does not suffer from the problem of mesh distortion wh
is typical of Lagrangian codes [14].
-
r

l

e
r

FIG. 2. Numerical results: (a) Evolution of the interface fro
t ­ 0 to t ­ 7.8 in steps ofDt ­ 0.2. (b) Thez component
of the velocity of fluid elements on the interface [i.e.,Ùzsj, 0, td],
(same example as in Fig. 1).

Figures 2 and 3 show the results of the numerical so
tion for the same example which was treated, analytica
in the previous section. The numerical solution requir
a grid of 60 points in thea direction and 10 modes. Fig
ure 2(a) shows the evolution of the interface (fromt ­ 0
to t ­ 7.8 in steps ofDt ­ 0.2). Figure 2(b) shows the
z component of the velocity of fluid elements which a
on the interface [i.e.,Ùzsj, 0, td], for various values of ini-
tial positions (j). The upper line approaches the valuep

gy3k; it corresponds toÙzs2p , 0, td, namely, the velocity
of a fluid element at the bubble’s top. The lower line a
proaches a constant accelerationg; it corresponds to a fluid
element which started atj ­ p, namely, a fluid elemen
at the spike’s tip.

At this point we may compare the results to other n
merical simulations. Baker, Meiron, and Orszag [15] ha
g

r
e
.

al

e
e

y
)
FIG. 3. Numerical results: (a) Positions of fluid elements
the interfacefxsj, 0, tdg for various values of initial positions
(j). (b) Mode amplitudes as function of time (same case a
Fig. 1).
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ds
used the vortex technique and Menikoff and Zemach
have used conformal maps to solve the fluid equati
Their results agree with each other. The example c
sidered in the present work corresponds to the exam
considered in section (IVA) of Ref. [16]. Their calcul
tion breaks down att ­ 6.8 due to narrowing and elon
gation of the spike. In Fig. 2(a) I have added the sh
of the interface at times 5, 6, and 6.8 obtained by d
tizing Fig. 1 of Ref. [16]; the agreement between the
sults of the present work and those of Ref. [16] is go
In Refs. [16] and [15] it was found that, before reach
the free fall stage, the spike overshoots to an acce
tion larger thang. This phenomenon is explained by
gradient of pressure at the line of symmetry of the sp
Also in the present example, a careful examination of
spike’s motion shows that the spike acceleration reac
to the value of1.2g at t ø 5 before stabilizing at the fre
fall valueg.

Ott’s solution [11] for the RT instability in a thin
layer was limited to timest , tp when elements of fluid
cross, and the interface becomes multivalued. Note
unlike the case of a thin layer, in the present wo
incompressibility [Eq. (1) inr space or equivalently th
first of Eqs. (4) ink space] does not allow crossing
fluid elements. Indeed, as is clearly seen in Fig. 2
even at saturation, the spike has a round single va
tip. This point is better seen in Fig. 3(a) where t
positions of fluid elements on the interfacefxsj, 0, tdg
are plotted as functions of time. Note that fluid eleme
which are near the spike [namely near the linexsj, 0, td ­
p ] approach each other very closely but never cro
Figure 3(b) shows the evolution of the Lagrangian mo
[i.e., Zks0, td for k ­ 1, . . . , 10]. At saturation st ­ 8d
the normalized amplitudes are 1.000, 0.2686, 0.11
0.0544, 0.0291, 0.0149, 0.0086, 0.0037, 0.0025,
0.0002; namely, only the first six modes have signific
amplitudes of more than 1% of the first mode amplitud

It is well known that Lagrangian codes, based
spacial meshes, are limited by mesh distortions [1
Actually even for a single bubble-spike structure a p
Lagrangian calculation cannot be carried from the lin
stage into saturation. Remeshing is necessary in o
to overcome unacceptably high truncation errors du
mesh distortions. The results presented here are b
on a pure Lagrangian calculation; however, instead
spacial grid, the discretization in the direction parallel
the interface was obtained by a Fourier series expan
As a result, instead of following fluid elements whi
undergo extreme distortions [Fig. 3(a)], one follows
smooth evolution of mode amplitudes [Fig. 3(b)]. Th
feature allows us to carry a pure Lagrangian calcula
without remeshing.

To summarize, in this work, a new theoretical fram
work for the analysis of RT instability was develope
The main result of this approach is the set of Lagrang
coupled mode equations [Eqs. (5) and (4)] which gove
the evolution of the velocity field and of the interfac
4170
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The analytical solution, for the case where the instabi
is triggered by a single initial mode, shows that pertu
bative solutions of these equations converge very rapi
Thus, unlike the traditional Eulerian mode expansion
may be used for the analysis of RT instability also in t
nonlinear stage. The direct numerical solution of the co
pled mode equations demonstrates the advantages o
Lagrangian mode picture also for numerical calculation

The solutions derived in the present work were limit
to two dimensional motion of a single fluid. Note, how
ever, that the basic formulation [Eqs. (1) and (2) togeth
with the boundary conditions (3)] is three dimensional.
cases where no motion occurs in they direction (i.e., 2D
motion), the extension of the formulation to the case
two fluids is simple: one uses two sets of Lagrangi
variables, Eqs. (1) and (2) hold within each fluid, a
the boundary condition (3) is replaced by the conditi
that the quantitys $Rjyj $Rjjd ? sr $Rtt 2 rg ? ẑd is continu-
ous across the interface between the fluids.
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