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Lagrangian Formalism for the Rayleigh-Taylor Instability
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A new formulation of the Lagrangian equations for the evolution of the Rayleigh-Taylor instability in
inviscid incompressible fluids is presented. A set of exact coupled-mode equations which govern
the evolution of the velocity field and the nonlinear motion of the surface is derived. Unlike
the traditional Eulerian mode expansion, which requires an infinitely growing number of modes
at the nonlinear stage, the present expansion converges very rapidly. The use of the formalism
for analyzing the nonlinear stage of the instability is demonstrated by analytical and numerical
solutions. [S0031-9007(96)00298-0]

PACS numbers: 52.35.Py, 52.35.Mw

The Rayleigh-Taylor (RT) and Richtmyer-Meshkov do not suffer from the shortcomings described above, and
(RM) instabilities occur in many fields of physics: as- can describe also the nonlinear stage of the instability.
trophysics, nuclear collisions, atmospheric physics, geoln the rest of the Letter | will show that Lagrangian for-
physics, and various configurations of magnetically andnulation of the problem naturally suggests the appropri-
inertially confined fusion experiments [1]. ate mode expansion, and that the resulting mode-coupling

The instability occurs when a light fluid supports aequations do not lead to the divergence problem encoun-
heavier one against gravity, or pushes it in a constartered in the Eulerian formulation [7,8,10]. In simple cases
acceleration (RT instability [2]), or after a shock hasthe solutions may be represented by a perturbation ex-
passed through the interface between two fluids (RMpansion which converges very rapidly. More complicated
instability [3]). Initially, random perturbations at the problems are treated by a direct numerical solution of the
interface grow exponentially in time. In the nonlinear mode coupling equations. The method may be viewed as
stage of the instability, the interface is strongly distorted.an extension of Ott’s treatment of RT instability in a thin
Round “bubbles” of light fluid enter the heavy fluid and layer [11,12].
narrow “spikes” of heavy fluid penetrate the lighter one. Lagrangian formulation of the RT instability=1 shall
Eventually the “bubbles-spikes” structure breaks dowrstart with formulation of the Lagrangian equations for the
and a turbulent mixing of the two fluids occurs [4,5]. evolution of RT and RM instabilities at the free surface
The present work concentrates on the linear and nonlineaf inviscid incompressible fluid. Surprisingly, such a
stages of the instability before turbulence takes over.  formulation does not exist, explicitly, in the literature.

Linear [2,3,6] and nonlinear [7,8] theories, as well Consider an incompressible fluid which is supported by
as analyses of full scale numerical simulations [5] anda massless fluid. Denote the initial position of a fluid
experiments [9], rely on the expansion of the interfaceelement byr,. At later times, the location of the element
and the velocity field in Fourier modes. However, it is depends orry. Denote thex, y, andz components ofy
well known that this expansion converges only at the venby &, n, anda. For incompressible fluid, the Jacobian
early stage when amplitudes of the modes are smaller thaof the transformation frong, », anda to x, y, andz is
10% of the wavelength [8,10]. constant, i.e.,

Kull [10] attempted to solve, numerically, the nonlinear
fluid equations by expanding the velocity potential and the L
interface in terms of Fourier modes. He has found that{Derivatives ofr with respect to¢, n, «, ands are de-
during time evolution, the convergence of the series beQoted by subscripts.)  For irrotational motion, the matrix
comes increasingly worse until the “Fourier ansatz cease%? (Whereu is the Eulerian velocity) is symmetric. Con-
to be an appropriate representation.” The divergence steduently, the relation; - Vv - ry — ryy - Vo - 7, = 0
the expansion occurs as modes amplitudes approach 1089d similar relations for thef,« and 7, a elements
of their wavelengths. ShOL!|d hold. Using the chain rule for derlvatlve_s, these

In perturbation expansions [7,8], the nonlinear coupled?'at'ons_ are converted to a set (_)f threg differential equa-
mode equations are solved by an iterative process startiffnS which involve only Lagrangian variables:

(F¢ X ) + Fq = cONSt @)

with the linear solution. Also the.pe_rturbation expansion Fot " Fa — Far = Ty = 0, Feo " Ty — Fyr - Fe =0,
converges only at the very beginning of the nonlinear . - .

stage when mode amplitudes are smaller than 10% of the Fér " Ta = Tar " T¢ = 0. (2)
wavelengths [8]. [Equations (2) may be generalized to include also the

The purpose of the present work was to find an altercase of nonvanishing vorticity. This is done by using
native theoretical framework and mode expansion whiclthe symmetry of the matri¥(dv /dt), viscosity may be
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included as source terms which break the symmetry of the- > ;. 2ik’Xy(a, t)Z—(a,t).  An exact solution in
matrix V(dv /d1)]. the casek # 0 was not obtained, however, linearizing
The above equations [(1), (2)] should be supplemente&qgs. (4) one can immediately see that a solution with
by boundary conditions. Assuming periodicity in then  vanishingX;, Z; at « — = is possible only if ato = 0
variables and demanding that the fluid velocity will vanish(i.e., at the interface); andZ; are related byZ;(0,¢) =
as @ — « supply part of the conditions. We still have j(k/|k|)X,(0, ). Using this result yields the lowest-order
to determine the boundary conditions at the fluid surfacenonlinear approximation for the solution of Egs. (4) and
At t = 0 the surface is at = (£,7,0). Its location  (5). In this approximation, Eq. (5) is reduced to a set of

at later times is denoted by(¢, ,1) [i.e., R(£,m,1) =  nonlinear ordinary differential equations of the form

F(£,7,0,1)]. The equation of motion of a fluid element . )

of mass densityp which is at the surface ipR, = Xe(0,1) = D TEpXu(0,0) = 0, (6)
k/

[VP(7, )i~ . + pgZ. Line integrating this equation hereI'« v depends on the amplitudég and velocities
along a closed rectangular contour with two sides paralle}g X

S~ N - « of all the modes in the system.
to the surface?(R = Redg OrdR = Rydn), W'th'.n qnd Note that Eq. (6) has the same form as the standard
out of the fluid, taking into account the continuity of lin

ressure across the surface of the fluid one aets th ear equation for RT instability [6], but Wﬁth the Ii_near
Eoundary conditions 9 rowth ratey? = kg, replaced by an effective nonlinear

R . . . . Hermitian “growth matrix” F,f,k, which couples between
R¢ Ry = gR¢ - 2, R, - R; = gRy, -2 (3) modes and depends on the amplitudes and velocities of all
(g is the gravitational acceleration). Equations (1) and (Z}hze _moges m:t?e system. The explicit form of the matrix
together with the boundary conditionsat= 0 [Egs. (3)] 1~ is I'" = A™'B where the elements of the matrices
and ata — o, and the periodicity conditions in thg, , ~ andB are
variables, uniquely determine the motion of the fluid. _ N i < (k= k) k_’)
Coupled mode equations:In the following | shall Arw [B(k,k) itk — k)1 Ik — k)] K]
limit the treatment to systems in which no motion occurs
in the y direction. In this case = (x,n,z) andrg = X Xe—w + 2|k| Ik’IXkX_k/}, @
(x£,0,2¢). ..
| assume that the displacement of a fluid element Byw = 8(k — k')[glkl - |k|Z|kN|(2Xk”Xk”):|-
x(&,a,t) — £ andz(£, a,t) — a may be expanded in a K

Fourier series, i.ex(¢,a,1) = £ + >, Xi(a,1)e*¢ and (8)
2(& a,t) = a + X, Zi(a, e and use the expansion In systems in which only the lowesf harmonics of the
in Egs. (1) and (2). The result is as follows: basic mode(k = 27 /L) have nonvanishing amplitudes
) ) ) ) X;, the matrix A~! (and therefore alsd> = A~!B)
Zh + ikXy = = D ik [XoZ) 0 + XuZj_p does not couple thes&y modes to higher harmonics.
k! . . Namely, Eq. (6) does not allow generation of new
— Zi X — ZiXipl, modes in the system. For example an initial sinusoidal
. . . . (4) perturbation with an amplitude, and velocityvy and a
X, — ikZy = Z ik'[=ZpwZj—o + ZiZj—po wave numbelk will evolve as a single Lagrangian mode,
k! . . i.e., x(£,0,t) = & + 2X;(0,7)cogké) and z(£,0,1) =
- Xk/X]/(_k/ + Xk’X]i—k/]' —2iZ;(0, 1) sin(k &) — 2ikX(0,1)Z(0, 7). A single
Similarly, Eq. (3) yields Lagrangian mode:™*¢ is comprised of many Eulerian

modese’*, each of which has the amplitudg (k, 1) =
X(0,0) = gikZ(0.0) = = D itk = KNXp—w(0.0X0(0.1)  [e ™ Eei|ox/ag|dE = [e e eiat PRaN 0NN 4
[ 2kX; (0, 1) sin(ké)|ldé. For a small Lagrangian mode
. / N amplitude kX; < 1, one gets that the Eulerian and La-
- %l(k ~ K)Ze(0,1)Z(0,1). grangian modes coincide, lig—o a,(k,1) = 8(k — q);
(5) the larger the amplitude of the Lagrangian mode, a larger
number of Eulerian modes are present.
In the above equations the derivatives Bf and X; Solving Eq. (6), using the relations betwe¥pandZz;,
with respect tor are denoted by a dot and with re- substituting in the above formulas faf¢, 0, ¢), z(£,0, t)
spect toa by a prime. One has to solve these equawe can now plot the surfacg(x, ) at various times. In
tions with the requirement that, as — <, the velocity  Fig. 1(a) | show the evolution of the interface in a case with
field vanishes, i.e., i@ Xy (e, ) = lim,—» Zy (@, 1) =  gravitational acceleratiop = 1. The system is initiated
0. Next, | will present solutions of these equations in thewith a single mode withkk = 1, xo = 0.005, andvy = 0
linear and nonlinear regimes. (line A corresponds to = 4.2825 and B tor = 4.96). At
Analytical solutions—The solution of Eq. (4), for late times the surface has a falling down spiket&t=
Xo(a,t) and Zy(a,t) is Xo(a,t) =0 and Zo(a,t) = /2 and a rising bubble with a tip &t& = 37 /2.
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FIG. 1. Analytical results: (a) The surfacéx,?) at various  FIG. 2. Numerical results: (a) Evolution of the interface from
times. (b) Bubble velocity as a function of time. t =0tot = 7.8 in steps ofAr = 0.2. (b) Thez component

of the velocity of flu?d el_ements on the interface [i.&(£,0,t)],
Higher orders in the perturbation expansion are Ob_(same example as in Fig. 1).

tained by iterating the zero order result in Egs. (4). For Figures 2 and 3 show the results of the numerical solu-
example, in the first order, for a single mode, one gets tion for the same example which was treated, analytically,
1k in the previous section. The numerical solution required
Zy(0,1) = gika(O, 1) a grid of 60 points in ther direction and 10 modes. Fig-
ure 2(a) shows the evolution of the interface (frors 0
3 — 3kX.(0,1) + K2X2(0,1) + K3X2(0,1) to+t = 7.8 in steps ofA+ = 0.2). Figure 2(b) shows the
[ 1 — kX, (0, 1) — k2X2(0,1) + k3X2(0,1) } z component of t.he.velocity of fluid _elements Which are
on the interface [i.e;(£,0, t)], for various values of ini-
[Strictly speaking, in the first order,(0,¢) is a polyno- tial positions €). The upper line approaches the value of
mial of X (0, 7); the right hand side of the above relation /g/3k; it corresponds ta(2,0, 1), namely, the velocity
is a Padde approximant of this polynomial.] As we shallof a fluid element at the bubble’s top. The lower line ap-
see, this first order result is sufficient for the descriptionproaches a constant acceleratigiit corresponds to a fluid
of the bubble’s velocity. In Fig. 1(b), the bubble velocity element which started @ = 7, namely, a fluid element
is plotted as a function of time (line A). For comparison | at the spike’s tip.
have added on this plot also the velocity predicted by the At this point we may compare the results to other nu-
Layzer model [13] (line B) and by second and third ordermerical simulations. Baker, Meiron, and Orszag [15] have
Eulerian perturbation expansion [7] (lines C and D), and
the lowest order in the present method, obtained by using 1

the solution of Eq. (6) (line E). Equation (6) describes the | 10 E 3
bubble’s velocity correctly at times < 5. The Layzer S —— B - b ]
model [13] is not capable of describing the whole inter- 1\ B 7
face; nevertheless its prediction for the velocity of the  5.5= ol
bubble’s top is known to be accurate. Also the first order %10 = —
in the present approach (line A) describes correctly the 5 £ - 2
velocity of the bubble in the linear stage and at saturation. x E L

Direct numerical solution—More detailed results for 45 o [
more complicated cases may be obtained by a numerical ém"__
solution of Eqgs. (4) and (5) by discretizing the variables 4 =
a andr. In contrast to the conventional Eulerian mode -
expansion which requires an infinitely growing number 3.5 i
of modes [8,10], in the present method a bubble-spike 2
structure is described by few modes. Also, since the 10

discretization of the equations in the direction parallel to time
the m;gerfacsj lsthobtalned_byI mo|d$ exp?r:zsmn 2nd ndot 5b¥|G_ 3. Numerical results: (a) Positions of fluid elements on
a spatial grid, the numerical solution o 95- ( ,) an ( )the interface[x(&, 0, ¢)] for various values of initial positions
does not suffer from the problem of mesh distortion which(g). (b) Mode amplitudes as function of time (same case as in
is typical of Lagrangian codes [14]. Fig. 1).

time
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used the vortex technique and Menikoff and Zemach [16]The analytical solution, for the case where the instability
have used conformal maps to solve the fluid equationsgs triggered by a single initial mode, shows that pertur-
Their results agree with each other. The example conbative solutions of these equations converge very rapidly.
sidered in the present work corresponds to the exampl€&hus, unlike the traditional Eulerian mode expansion, it
considered in section (IVA) of Ref. [16]. Their calcula- may be used for the analysis of RT instability also in the
tion breaks down at = 6.8 due to narrowing and elon- nonlinear stage. The direct numerical solution of the cou-
gation of the spike. In Fig. 2(a) | have added the shapgled mode equations demonstrates the advantages of the
of the interface at times 5, 6, and 6.8 obtained by digi-Lagrangian mode picture also for numerical calculations.
tizing Fig. 1 of Ref. [16]; the agreement between the re- The solutions derived in the present work were limited
sults of the present work and those of Ref. [16] is goodto two dimensional motion of a single fluid. Note, how-
In Refs. [16] and [15] it was found that, before reachingever, that the basic formulation [Egs. (1) and (2) together
the free fall stage, the spike overshoots to an acceleravith the boundary conditions (3)] is three dimensional. In
tion larger thang. This phenomenon is explained by a cases where no motion occurs in thelirection (i.e., 2D
gradient of pressure at the line of symmetry of the spikemotion), the extension of the formulation to the case of
Also in the present example, a careful examination of théwo fluids is simple: one uses two sets of Lagrangian
spike’s motion shows that the spike acceleration reachegriables, Egs. (1) and (2) hold within each fluid, and
to the value ofl.2¢ ats ~ 5 before stabilizing at the free the boundary condition (3) is replaced by the condition
fall valueg. that the quantityR:/|R¢|) - (pR, — pg - 2) is continu-

Ott’s solution [11] for the RT instability in a thin ous across the interface between the fluids.
layer was limited to times < ™ when elements of fluid Helpful discussions with Zeev Zinamon, Dov Shvarts,
cross, and the interface becomes multivalued. Note thaGideon Erez, Ethan Gurevitz, Uri Along, and Dror Ofer
unlike the case of a thin layer, in the present work,are gratefully acknowledged.
incompressibility [Eq. (1) inr space or equivalently the
first of Egs. (4) ink space] does not allow crossing of
fluid elements. Indeed, as is clearly seen in Fig. 2(a),
even at saturation, the spike has a round single valued *Electronic address: giora@bgumail.bgu.ac.il
tip. This point is better seen in Fig. 3(a) where the  Or ghazak@bgumail.bgu.ac.il
positions of fluid elements on the interfa¢e(¢,0,1)] Fax: 972-7-554848
are plotted as functions of time. Note that fluid elements [} A sample of references for the occurrence of the RT

. . . and RM instabilities in various fields of physics ma
which are near the spike [namely near the lit€, 0, 1) = be found in the introduction of B.A. Rem?ngton, S.V)./

7] approach each other very closely but never cross. Weber, M. M. Marinak, S.W. Haan, J.D. Kilkenny, R.J.
Figure 3(b) shows the evolution of the Lagrangian modes  yaliace, and G. Dimonte, Phys. Plasnza®41 (1994).
[i.e., Z(0,7) for k = 1,...,10]. At saturation(r = 8) [2] Lord Rayleigh, Scientific PapergCambridge University
the normalized amplitudes are 1.000, 0.2686, 0.1126, Press, Cambridge, 1900), Vol. Il, p. 200; G.I. Taylor,
0.0544, 0.0291, 0.0149, 0.0086, 0.0037, 0.0025, and Proc. R. Soc. London &01, 192 (1950).
0.0002; namely, only the first six modes have significant [3] R.D. Richtmyer, Commun. Pure Appl. Matii3, 297
amplitudes of more than 1% of the first mode amplitude. (1960); E.E. Maeshkov, lzv. Akad. Nauk SSR Mekh.

It is well known that Lagrangian codes, based on _ Zhidk. Gaza5, 151 (1960). .
spacial meshes, are limited by mesh distortions [14]. [4] go(rlggg)‘”ew’ see D.H. Sharp, Physica (AmsterdaaD,
L agrangian calculation cannot be carried from the inear %) D:L Youngs, Phys. Flids A3, 1312 (1991): D.L

. . . - . Youngs, Laser Part. Beanl®, 725 (1994).

stage into saturation. Remeshing is necessary in ordefg

. ) S. ChandrasekhaHydrodynamic and Hydrodynamic Sta-
to overcome unacceptably high truncation errors due to" * pjjity (Oxford Univ. Press, Oxford, 1961), Chap. X.

mesh distortions. The results presented here are basef}] j.w. Jacobs and I. Catton, J. Fluid Medi87, 329 (1988).
on a pure Lagrangian calculation; however, instead of a[8] S.W. Haan, Phys. Fluids B, 2349 (1991).

spacial grid, the discretization in the direction parallel to [9] G. Dimonte and B. Remington, Phys. Rev. Létf, 1806
the interface was obtained by a Fourier series expansion. (1993).

As a result, instead of following fluid elements which [10] H.J. Kull, Phys. Rev. A33, 1957 (1986).

undergo extreme distortions [Fig. 3(a)], one follows thelll] Edward Ott, Phys. Rev. Let29, 1429 (1972). _
smooth evolution of mode amplitudes [Fig. 3(b)]. This [12] W. Manheimer, D. Colombant, and E. Ott, Phys. Fluids

feature allows us to carry a pure Lagrangian calculatiorh3] égﬁj?_iggfdz\-stm hys. 122, 1 (1955)
without remeshing. yZer, pnys. :

. : . . [14] J.A. Zukaset al., Impact DynamicgJohn Wiley, New
To summarize, in this work, a new theoretical frame- York, 1982), Chap. 10.

work for the analysis of RT instability was developed.[15] G R. Baker, D.I. Meiron, and S.A. Orszag, Phys. Fluids
The main result of this approach is the set of Lagrangian ~ 23 1485 (1980).

coupled mode equations [Egs. (5) and (4)] which governgi6] R. Menikoff and C. Zemach, J. Comput. Phy&l, 28
the evolution of the velocity field and of the interface. (1983).
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