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Stokes phenomenon is investigated in the complex semiclassical theory of chaotic tunneling,
and a rule for locating contributing complex paths out of a complicated set of candidates is
proposed. The proposal is based upon discovery of a tree structure hidden in entangled tunneling
paths: The candidates are ordered along the tree, andprineiple of exponential dominance
(PED) is extended to prune noncontributing paths. This rule enables construction of semiclassical
tunneling wave functions systematically. A phenomenon for which PED plays a crucial role is also
demonstrated. [S0031-9007(96)00018-X]

PACS numbers: 05.45.+b

An important and difficult problem inherent in the WKB very problematic. Indeed it has been shown that an
theory is to construct the global solution by connecting lo-enormous number of contributing complex orbits are
cal solutions separated by the classical turning points associated with the corresponding complex caustics in the
which the WKB solution becomes singular. This is calledsemiclassical theory of chaotic tunneling, where the term
the connection problem. One of the efficient methods tdchaotic tunneling” has been introduced by the authors to
cope with it is using the complex plane along which twospecify tunneling phenomena with characteristic features
WKB solutions separated by a turning point are connectegvhich are attributable to the chaotic structures of classical
[1-3]. In the complex WKB theory, a central subject is trajectories in the complex regime [8]. Here we encounter
how to deal with theéstokes phenomenavhich is the dis- a serious problem of how to deal with the Stokes
continuous change of the number of contributing solutionphenomenon appearing in complicated circumstances.
across a certain boundary line, calle@@kes linein the  One cannot, therefore, skip the problem, although it
complex plane. More generally, if an asymptotic form of aseemingly plays only a technical role in conventional
certain function given by the integral form or an asymptotictheories of tunneling in completely integrable systems.
solution of an ordinary differential equation is expressed as Our aim in the present Letter is to propose a work-
two exponentials, ing hypothesis for the treatment of the Stokes phenom-
u(z, k) =~ ai(z, k) exdikwy ()] + a_(z, k) explikw_(z)] ~€non in chaotic systems by taking quantum maps as

typical examples. The precise determination of the Stokes
[Imw.(z) < Imw_(2)], (1) line is beyond the conventional WKB theory. How-
wherek is some large parameter, then there will be a disever, on the basis of the arguments taking account of
continuous change in the multiplier-(z, k) over several full asymptotic expansion [5,6], there is a possible gen-
regions in the complex plane separated by the Stokeseralization of how to locate the Stokes lines. Such a
lines [4,5]. rule is called theprinciple of exponential dominance

The original explanation for the Stokes phenomenor(PED) and is written explicitly as follows: “The sub-
given by Stokes himself is based on the argument takingominant contribution appears (or disappears) when the
into account how the full asymptotic series can bedominant contribution becomes exponentially maximal as
resummed around the Stokes line [4]. The most intuitivecompared with the subdominant one. Alternatively stated,
understanding for it is that the number of steepest descettie Stokes line should be located where[¥m(z) —
solutions changes as the integral contour is deformed.(z)] becomes maximal under the conditidn| =
with the argument of the complex variable Recent const.” We adopt this here as a guiding principle to
remarkable progress on the Stokes phenomenon is thebpe with the Stokes phenomenon in chaotic systems. In
this change is not discontinuous as has been believed féact, using a coherent state path integral method, Adachi
a long time, but smooth and, moreover, universal [6].  showed that the PED works well at least in the very ini-

The complex WKB method plays a crucial role in the tial stage of wave-packet propagation [9]. The problem
description of purely quantum phenomenon [7], like theis, however, that we have to overcome several difficulties
tunneling effect. However, if the degree of freedom isprior to applying the PED to chaotic systems.
more than one, dynamics of the system is not in general To be concrete, we introduce the model system which
integrable, which makes the complex semiclassical theorwe use for studying the stokes phenomenon in chaotic
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systems. The model is the kicked rotor described by the
Hamiltonian

H = Hy(p) + V(@)D 8(t — n), ()
where
p:  p"
Ho(p) = — —"— + wp, V() =Ksind. (3)
2 p" + pp

If we set pp # 0, w # 0, and n = 6, the model is
the modified kicked rotor with which we examined an
idealized situation of chaotic tunneling [8], while it
becomes the standard form of a kicked rotor (standard
map) forpp = w = 0. In the present Letter we examine
both cases.

We investigate the tunneling across the momengpm
space. The semiclassical wave function in the momentum
representation at time step is given as a sum over
classical trajectories whose initial momentwmnand final

EEEEEEE

momentump, both take real values, FIG. 1. Typical example of candidate trajectories forming the
set M (thick lines) and caustics (black circles). The thin
Y(p(t,60) = ZAj(p(t, 0o)) contour lines superposed are{lpiz, £ + in)} = const lines.
j The pair of branches connected by a broken line is the proper

i T pair. The inset is the tree structure hidden behind complicatedly

X exp{— Si(p(t,60) — i,u—}, (4) distributed branches in the figure. Tracing the proper pairs, one

h 2 can recognize the presence of the tree. The number in circles
where the indexu denotes the Maslov index. As we fix indicates the generation of the branch. A modified kicked rotor
the initial momentum ap, = const, the final momentum (pp =5, w =2, andn = 6) is used.
is described only as a function of the complex initial
angledy = & + in(é,n € R)asp(t,0y). The candidate function of initial angled, and defined by
of classical t_rgjectories contributing to Eq. (4) is _dgc_:ided ap(t, 0o) 9%, B
by the conditionp(z, y) = p,, and thus all the initial — = 7 =0, 5)
. . ) o 96y lg,=0F  060; lo,=6;

angles of the candidate trajectories contributing to Eq. (4) y
at variousp, form a setM satisfying Inp(z,60) = 0. A wheref, denotes the position of a caustic under consider-
typical example of the se¥ is shown in Fig. 1 by thick ation. The wave function constructed with the associated
lines. In addition to the seM, the contours satisfying pair of branches is given as
Imp(z, 69) = const are also drawn by thin lines. The set i
M is composed of a very complicated set of branches ¥(p(t,60)) = A(p(t,6o)) eXF(g S(p(, 90)))
with various scales, each of which is disconnected from )
others and looks like a “petal.” ¢, ) is moved along + A(p(z. 6! ex;(LS 0! ) 6
one such petal, Rer, 6,) ranges from—x to «, and (p(z. 80)) h (p(1.60)). (6)
each petal contributes to the semiclassical wave functiofnereg, and its partned), give the same final momentum
at an arbitrary fixed value op,. This is the reason ,  and Maslov indices are omitted for brevity. For these

why we called each petal the branch. This example iy exponentials extracted locally, we compute steepest
obtained for the modified kicked rotor, but the 8dtfor  ,ccent lines around’&k for the imaginary part of the

the standard kicked rot'or'also has essentially the sam@¢arence of two exponents,
structure composed of similar petals. B ,
The main subject we discuss hereafter is how to extract 8ImS(p(z,60)) = IM[S(0o) — S(0p)]. (7)
the contributing part out of the complicated set of brancheJhere exist three steepest ascent lines from one caustic,
forming M by applying the PED. The key is to note the and the region around the caustic is separated into three
fact that the branches always appear pairwise although thdyy these boundary lines. We identify such boundary lines
do not make contact with each other. This fact means thatith Stokes lines, just on which the subdominant expo-
their connections occur via complex caustics, which areential may switch from contributing to noncontributing
indicated by black circles in Fig. 1. or vice versa. One of the three regions bordered by the
Given a caustic and associated pair of branches we céatokes lines should be removed as noncontributing. Here,
locate Stokes lines bordering a region to be removed asowever, arise several difficulties. The origin of these dif-
noncontributing. We first describe how the PED mayficulties comes from the fact that the PDE is a local prin-
be applied at the caustic, which is now expressed as eiple applicable only close to the caustics.
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The first difficulty is that the caustic often has a very The ordering of complex paths together with the
large imaginary part ofp,, and we have to extend the extension hypothesis for Stokes lines provides us with
locally determined Stokes line globally until it intersectsa working hypothesis to extract the contributing part out
with the branch under consideration. Next, from theof the complex branchesystematically: (1) According
observation of the behavior of complex classical pathgo the procedure described above, reorder the branches
close to the caustic, we cannot in principle identify whichto form a tree structure, and decide the generation of
of the three regions should be removed, because we hatiee branches. (2) Consider a proper pair and decide
no information on how the integral contour is deformed sathe extended Stokes lines around the associated caustic.
as to pass through a saddle point, i.e., a complex classicAimong the three regions separated by Stokes lines we
path. The third difficulty is as follows: Even though we remove the region containing the unphysical part of the
could identify the region to be removed as noncontributingoranch of higher-order generation, i.e., the part along
by any local criterion, a branch judged as contributingwhich —ImS(p;) diverges to the positive infinity (i.e.,
around a caustic may be included in the region judgede’s/?| — «) as|p| — «. We show in Fig. 2 the removed
as noncontributing around another caustic and vice versaggions (shaded regions) together with the Stokes lines.
and a contradiction occurs as to which of the judgment§he part of the branches included in the shaded region
should dominate. Such a contradiction is quite serious iis removed as noncontributing. (3) All the branches
the chaotic tunneling problem in which a large number ofbelonging to the higher-order generations of the removed
branches are connected in a complicated manner. branch part should also be removed.

The first difficulty is rather technical, and it is always We have thus a “pruned tree” from which the noncon-
possible to extend the Stokes line globally starting from dributing branches are removed. The semiclassical wave
caustic in a reasonable way [10], but the latter two, whicHunction is constructed by summing all the contributions
are mutually connected, are an essential problem, whicfrom the branches of the pruned tree according to Eq. (4).
will be discussed below in considerable detail. The unphysical role of the pruned branches was checked

To unravel the entanglement among the branches arfdom the observation that the semiclassical wave function
decide which region to remove, it is necessary to finddeviates explosively from the quantum wave function if
the order of connection among the branches. Indeed, the contributions from the pruned branches are included
surprising fact is that there is a natural order hidden in thén the semiclassical sum.
complicated set of branches, and it provides a basis to treat Our method described above works surprisingly well
such a complicated Stokes problem in chaotic systems. as shown in Fig. 3(a): The semiclassical formula (4)

The basis of the ordering is the “pairing rule,” that is, reproduces complicated tunneling tails quite well. If the
for a given caustic a pair of branches connected via iposition of some Stokes line for a pair of branches shifts
can always be extracted: considering the lihéin the a little bit to the right, then the interference around
(£, ) space satisfying Rer, £ + in) = Rep(z, 0y), the
pair of branches inM with which € extending fromeff
in opposite directions first intersects is called the “proper -
pair” associated with the caustit, . Picking up all the 0.85 .
caustics and the proper pairs associated with them, all
branches are reordered to form a tree structure with the
real branch as the common root. In Fig. 1 we show how
the branches are paired with respect to caustics, where
two branches forming a proper pair are connected by a
broken line indicatingf in Fig. 1. The inserted diagram 5
is the tree structure constructed from major branches seet (.83
in Fig. 1.

It seems possible that descendants of any two branche:
bifurcated in an earlier stage of the tree structure are con-
nected via a caustic in a later stage. If suchisthe case, the¢ 0.82
branches are entangled to form a structure like a rhizome
rather than a tree. However, we could not encounter such
manifestations empirically [10]. The presence of such a
tree structure allows us to define the generation of the
branch: Let the real branch be the Oth order generation,
and pick up all the partners, each of which forms a proper

pairwith the Oth ord_erbranch. T_hese partners are assign%?a 2. Stokes lines drawn at typical caustics displayed in
as the first generation. Repeating the same procedure Big. 1. The part of the branch inside the shaded zone

cursively, we can decide the generation of all the brancheggether with the higher-order generations following it should
starting from the real branch as the common root. be removed as noncontributing.
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(b) FIG. 3. (a) Tunneling tail of quantum and semiclas-
Stokes line for A sical wave functions on a logarithmic scale. The left-
L L g most represents the quantum wave function, and the

: second is the semiclassical one where the PED is cor-
rectly operated. The interference on the shoulder, in-
dicated by arrows, is successfully reproduced. The
third is also the semiclassical one, but the Stokes line
for the branch giving significant contribution around
the shoulder is virtually shifted to the left. The inter-
1 ference pattern on the shoulder disappears. The fourth
is also the semiclassical one, but the same Stokes line
is virtually shifted to the right. An arrow inserted
shows the hump due to such an incorrect operation
1 of PED. (b) Two semiclassical contributions giving
Stokes line § dominant contribution to the anomalous tunneling tail,
es lne for B together with their superposition. The broken lines
e show the two individual contributiond and B. The
solid line is their superposition. The dashed lines with
02 04 06 08 1 12 dots represent the Stokes lines determined by PED.
p/2m p/om

the shoulder disappears while the correct quantum wave In summary, we have proposed a practical method to
function certainly shows such an interference. On thaleal with the Stokes phenomenon appearing in chaotic sys-
other hand, as also shown in Fig. 3(a), if the same Stokeems, which can successfully be applied to the chaotic tun-
line shifts to the left, a strange hump at a shoulder oheling problem. The method is based upon the presence
plateau is generated and it must be unphysical. of a conspicuous tree structure hidden in a complicated set
In the deep tunneling regime far from the classicallyof tunneling branches. We believe that such a remarkable
accessible domain, the PED plays a further importanteature is generic in complex classical dynamics and can
role in describing some anomalous features of the chaotibe utilized in order to unravel the entanglement among
tunneling tail. Let us focus on the deep tunneling regimecomplex branches. Indeed, we confirmed that our method
in Fig. 3(@). In both gquantum and semiclassical waveworks quite well for several kinds of quantum map systems
functions we notice that the tunneling amplitude increasescluding modified kicked rotors, standard kicked rotors,
as we go deeper into the tunneling region, while simpleand so on [10]. In spite of its success, theoretical justifi-
tunneling phenomena never show such a strange behaviaation for this practical method is lacking, and its success
This increase abruptly stops and then the amplitude begingquires further explanation.
to decay rapidly. One of the authors (A. S.) would like to thank M. Mat-
The mechanism of this anomalous behavior can be ursumoto for providing us with the graphic library Close-
derstood by extracting two semiclassical branches givingyiew which considerably reduces our labor in searching
the most dominant contributions around this region.  for complex branches.
Figure 3(b) shows two individual semiclassical contribu-
tions together with their superposition. The dashed lines
with dots represent the position of the Stokes lines which
are determined by PED. The dominant contribution comes
from branch A, which forms a plateau followed by an 1] 5. Heading,An Introduction to Phase-Integral Methods
abrupt decrease. The key to understanding the anoma- = (Metheun, London, 1962).
lous behavior is that the Stokes line cuts braflafter [2] N. Froman and P.O. FromanJWKB Approximation
the associated amplitude begins to increase steeply. Such (North-Holland, Amsterdam, 1965).
an increase is led to an exponential explosion and seem$§3] M. V. Berry and K. E. Mount, Rep. Prog. Phy85, 315
as if it is unphysical; however, the anomaly cannot be ex-  (1972).
plained without it. Indeed, the steep increase along brancH4l G.G. Stokes, Trans. Cambridge Philos. Sdd), 106
B actually manifests itself in a remarkable increase of the (1864);11, 412 (1871). . . .
summed amplitude, which stops at the Stokes line and[®! R:B: Dingle, Asymptotic Expansions: Their Deprivation
takes place with a rapid decay coming from branth and Interpretation(Academic Press, London, 1973).
. . . _[6] M.V. Berry, Proc. R. Soc. London 422 7 (1989).
Such behawor explalps e>§actly the anomalous _behawo [7] R. Balian and C. Bloch, Ann. Phys. (N.Y8B, 514 (1974);
observed in the tunneling tail. Branéhcan be considered A. Voros, Ann. Inst. Henri Poincar@9, 211 (1983).
the subdominant contributor, and it is really surprising that [8] A. Shudo and K. S. Ikeda, Phys. Rev. Létt, 682 (1995).
the feature of subdominance is visible as an anomalous bef9] S. Adachi, Ann. Phys. (N.Y.195 45 (1989).
havior of the tunneling tail. [10] A. Shudo and K. S. lkeda (to be published).
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