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Stokes Phenomenon in Chaotic Systems: Pruning Trees of Complex Path
with Principle of Exponential Dominance
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Stokes phenomenon is investigated in the complex semiclassical theory of chaotic tun
and a rule for locating contributing complex paths out of a complicated set of candida
proposed. The proposal is based upon discovery of a tree structure hidden in entangled tu
paths: The candidates are ordered along the tree, and theprinciple of exponential dominanc
(PED) is extended to prune noncontributing paths. This rule enables construction of semic
tunneling wave functions systematically. A phenomenon for which PED plays a crucial role i
demonstrated. [S0031-9007(96)00018-X]

PACS numbers: 05.45.+b
B
lo
s a
led
s to
wo
te
is

on

f a
tic

d a

dis
l
es

on
kin
be

tive
ce
me

th
d f

he
the

is
era
or

an
are

the
erm
s to
ures
ical

nter
es
ces.

it
nal
.
rk-
om-

as
kes

w-
t of
en-
h a
e

b-
the

l as
ted,

to
. In
achi
ini-
lem
lties

hich
otic
An important and difficult problem inherent in the WK
theory is to construct the global solution by connecting
cal solutions separated by the classical turning point
which the WKB solution becomes singular. This is cal
the connection problem. One of the efficient method
cope with it is using the complex plane along which t
WKB solutions separated by a turning point are connec
[1–3]. In the complex WKB theory, a central subject
how to deal with theStokes phenomenonwhich is the dis-
continuous change of the number of contributing soluti
across a certain boundary line, called aStokes line,in the
complex plane. More generally, if an asymptotic form o
certain function given by the integral form or an asympto
solution of an ordinary differential equation is expresse
two exponentials,

usz, kd ø a1sz, kd expfikw1szdg 1 a2sz, kd expfikw2szdg

fImw1szd , Imw2szdg , (1)

wherek is some large parameter, then there will be a
continuous change in the multipliera6sz, kd over severa
regions in the complexz plane separated by the Stok
lines [4,5].

The original explanation for the Stokes phenomen
given by Stokes himself is based on the argument ta
into account how the full asymptotic series can
resummed around the Stokes line [4]. The most intui
understanding for it is that the number of steepest des
solutions changes as the integral contour is defor
with the argument of the complex variablez. Recent
remarkable progress on the Stokes phenomenon is
this change is not discontinuous as has been believe
a long time, but smooth and, moreover, universal [6].

The complex WKB method plays a crucial role in t
description of purely quantum phenomenon [7], like
tunneling effect. However, if the degree of freedom
more than one, dynamics of the system is not in gen
integrable, which makes the complex semiclassical the
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very problematic. Indeed it has been shown that
enormous number of contributing complex orbits
associated with the corresponding complex caustics in
semiclassical theory of chaotic tunneling, where the t
“chaotic tunneling” has been introduced by the author
specify tunneling phenomena with characteristic feat
which are attributable to the chaotic structures of class
trajectories in the complex regime [8]. Here we encou
a serious problem of how to deal with the Stok
phenomenon appearing in complicated circumstan
One cannot, therefore, skip the problem, although
seemingly plays only a technical role in conventio
theories of tunneling in completely integrable systems

Our aim in the present Letter is to propose a wo
ing hypothesis for the treatment of the Stokes phen
enon in chaotic systems by taking quantum maps
typical examples. The precise determination of the Sto
line is beyond the conventional WKB theory. Ho
ever, on the basis of the arguments taking accoun
full asymptotic expansion [5,6], there is a possible g
eralization of how to locate the Stokes lines. Suc
rule is called theprinciple of exponential dominanc
(PED) and is written explicitly as follows: “The su
dominant contribution appears (or disappears) when
dominant contribution becomes exponentially maxima
compared with the subdominant one. Alternatively sta
the Stokes line should be located where Imfw2szd 2

w1szdg becomes maximal under the conditionjzj ­
const.” We adopt this here as a guiding principle
cope with the Stokes phenomenon in chaotic systems
fact, using a coherent state path integral method, Ad
showed that the PED works well at least in the very
tial stage of wave-packet propagation [9]. The prob
is, however, that we have to overcome several difficu
prior to applying the PED to chaotic systems.

To be concrete, we introduce the model system w
we use for studying the stokes phenomenon in cha
© 1996 The American Physical Society 4151
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systems. The model is the kicked rotor described by
Hamiltonian

H ­ H0sp̂d 1 V sûd
X
n

dst 2 nd , (2)

where

H0spd ­
p2

2
pn

pn 1 pn
D

1 vp, V sud ­ K sinu . (3)

If we set pD fi 0, v fi 0, and n ­ 6, the model is
the modified kicked rotor with which we examined
idealized situation of chaotic tunneling [8], while
becomes the standard form of a kicked rotor (stand
map) forpD ­ v ­ 0. In the present Letter we examin
both cases.

We investigate the tunneling across the momentumspd
space. The semiclassical wave function in the momen
representation at time stept is given as a sum ove
classical trajectories whose initial momentump0 and final
momentumpt both take real values,

cssspst, u0dddd ­
X

j

Ajssspst, u0dddd

3 exp

∑
i
"

Sjssspst, u0dddd 2 im
p

2

∏
, (4)

where the indexm denotes the Maslov index. As we fi
the initial momentum asp0 ­ const, the final momentum
is described only as a function of the complex init
angleu0 ­ j 1 ihsj, h [ Rd aspst, u0d. The candidate
of classical trajectories contributing to Eq. (4) is decid
by the conditionpst, u0d ­ pt, and thus all the initial
angles of the candidate trajectories contributing to Eq.
at variouspt form a setM satisfying Impst, u0d ­ 0. A
typical example of the setM is shown in Fig. 1 by thick
lines. In addition to the setM, the contours satisfying
Impst, u0d ­ const are also drawn by thin lines. The s
M is composed of a very complicated set of branc
with various scales, each of which is disconnected fr
others and looks like a “petal.” Ifsj, hd is moved along
one such petal, Repst, u0d ranges from2` to `, and
each petal contributes to the semiclassical wave func
at an arbitrary fixed value ofpt. This is the reason
why we called each petal the branch. This example
obtained for the modified kicked rotor, but the setM for
the standard kicked rotor also has essentially the s
structure composed of similar petals.

The main subject we discuss hereafter is how to ext
the contributing part out of the complicated set of branc
forming M by applying the PED. The key is to note th
fact that the branches always appear pairwise although
do not make contact with each other. This fact means
their connections occur via complex caustics, which
indicated by black circles in Fig. 1.

Given a caustic and associated pair of branches we
locate Stokes lines bordering a region to be removed
noncontributing. We first describe how the PED m
be applied at the caustic, which is now expressed a
4152
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FIG. 1. Typical example of candidate trajectories forming
set M (thick lines) and caustics (black circles). The th
contour lines superposed are Imhpst, j 1 ihdj ­ const lines.
The pair of branches connected by a broken line is the pr
pair. The inset is the tree structure hidden behind complicat
distributed branches in the figure. Tracing the proper pairs,
can recognize the presence of the tree. The number in c
indicates the generation of the branch. A modified kicked r
spD ­ 5, v ­ 2, andn ­ 6) is used.

function of initial angleu0 and defined by

≠pst, u0d
≠u0

Ç
u0­u

p
0

­
≠2St

≠u
2
0

Ç
u0­u

p
0

­ 0 , (5)

whereu
p
0 denotes the position of a caustic under consi

ation. The wave function constructed with the associ
pair of branches is given as

cssspst, u0dddd ­ Assspst, u0dddd exp

µ
i
"

Sssspst, u0dddd
∂

1 Assspst, u0
0dddd exp

µ
i
"

Sssspst, u0
0dddd

∂
, (6)

whereu0 and its partneru0
0 give the same final momentu

pt, and Maslov indices are omitted for brevity. For the
two exponentials extracted locally, we compute stee
ascent lines aroundup

0 for the imaginary part of th
difference of two exponents,

dImSssspst, u0dddd ; ImfSsu0d 2 Ssu0
0dg . (7)

There exist three steepest ascent lines from one ca
and the region around the caustic is separated into
by these boundary lines. We identify such boundary l
with Stokes lines, just on which the subdominant ex
nential may switch from contributing to noncontributi
or vice versa. One of the three regions bordered by
Stokes lines should be removed as noncontributing. H
however, arise several difficulties. The origin of these
ficulties comes from the fact that the PDE is a local p
ciple applicable only close to the caustics.
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The first difficulty is that the caustic often has a ve
large imaginary part ofpt , and we have to extend th
locally determined Stokes line globally until it intersec
with the branch under consideration. Next, from
observation of the behavior of complex classical pa
close to the caustic, we cannot in principle identify wh
of the three regions should be removed, because we
no information on how the integral contour is deformed
as to pass through a saddle point, i.e., a complex clas
path. The third difficulty is as follows: Even though w
could identify the region to be removed as noncontribu
by any local criterion, a branch judged as contribut
around a caustic may be included in the region jud
as noncontributing around another caustic and vice ve
and a contradiction occurs as to which of the judgme
should dominate. Such a contradiction is quite seriou
the chaotic tunneling problem in which a large numbe
branches are connected in a complicated manner.

The first difficulty is rather technical, and it is alwa
possible to extend the Stokes line globally starting from
caustic in a reasonable way [10], but the latter two, wh
are mutually connected, are an essential problem, w
will be discussed below in considerable detail.

To unravel the entanglement among the branches
decide which region to remove, it is necessary to fi
the order of connection among the branches. Indee
surprising fact is that there is a natural order hidden in
complicated set of branches, and it provides a basis to
such a complicated Stokes problem in chaotic system

The basis of the ordering is the “pairing rule,” that
for a given caustic a pair of branches connected vi
can always be extracted: considering the line, in the
sj, hd space satisfying Repst, j 1 ihd ­ Repst, u

p
0 d, the

pair of branches inM with which , extending fromu
p
0

in opposite directions first intersects is called the “pro
pair” associated with the causticup

0 . Picking up all the
caustics and the proper pairs associated with them
branches are reordered to form a tree structure with
real branch as the common root. In Fig. 1 we show h
the branches are paired with respect to caustics, w
two branches forming a proper pair are connected b
broken line indicating, in Fig. 1. The inserted diagram
is the tree structure constructed from major branches
in Fig. 1.

It seems possible that descendants of any two bran
bifurcated in an earlier stage of the tree structure are
nected via a caustic in a later stage. If such is the case
branches are entangled to form a structure like a rhiz
rather than a tree. However, we could not encounter s
manifestations empirically [10]. The presence of suc
tree structure allows us to define the generation of
branch: Let the real branch be the 0th order genera
and pick up all the partners, each of which forms a pro
pair with the 0th order branch. These partners are assi
as the first generation. Repeating the same procedur
cursively, we can decide the generation of all the branc
starting from the real branch as the common root.
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The ordering of complex paths together with t
extension hypothesis for Stokes lines provides us w
a working hypothesis to extract the contributing part o
of the complex branchessystematically: (1) According
to the procedure described above, reorder the bran
to form a tree structure, and decide the generation
the branches. (2) Consider a proper pair and dec
the extended Stokes lines around the associated cau
Among the three regions separated by Stokes lines
remove the region containing the unphysical part of
branch of higher-order generation, i.e., the part alo
which 2ImSsptd diverges to the positive infinity (i.e.
jeiSy"j ! `) asjpj ! `. We show in Fig. 2 the remove
regions (shaded regions) together with the Stokes lin
The part of the branches included in the shaded reg
is removed as noncontributing. (3) All the branch
belonging to the higher-order generations of the remo
branch part should also be removed.

We have thus a “pruned tree” from which the nonco
tributing branches are removed. The semiclassical w
function is constructed by summing all the contributio
from the branches of the pruned tree according to Eq.
The unphysical role of the pruned branches was chec
from the observation that the semiclassical wave funct
deviates explosively from the quantum wave function
the contributions from the pruned branches are inclu
in the semiclassical sum.

Our method described above works surprisingly w
as shown in Fig. 3(a): The semiclassical formula
reproduces complicated tunneling tails quite well. If t
position of some Stokes line for a pair of branches sh
a little bit to the right, then the interference aroun
r
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FIG. 2. Stokes lines drawn at typical caustics displayed
Fig. 1. The part of the branch inside the shaded zo
together with the higher-order generations following it shou
be removed as noncontributing.
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FIG. 3. (a) Tunneling tail of quantum and semicla
sical wave functions on a logarithmic scale. The le
most represents the quantum wave function, and
second is the semiclassical one where the PED is
rectly operated. The interference on the shoulder,
dicated by arrows, is successfully reproduced. T
third is also the semiclassical one, but the Stokes l
for the branch giving significant contribution aroun
the shoulder is virtually shifted to the left. The inte
ference pattern on the shoulder disappears. The fo
is also the semiclassical one, but the same Stokes
is virtually shifted to the right. An arrow inserte
shows the hump due to such an incorrect operat
of PED. (b) Two semiclassical contributions givin
dominant contribution to the anomalous tunneling ta
together with their superposition. The broken lin
show the two individual contributionsA andB. The
solid line is their superposition. The dashed lines w
dots represent the Stokes lines determined by PED
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the shoulder disappears while the correct quantum w
function certainly shows such an interference. On
other hand, as also shown in Fig. 3(a), if the same Sto
line shifts to the left, a strange hump at a shoulder
plateau is generated and it must be unphysical.

In the deep tunneling regime far from the classica
accessible domain, the PED plays a further impor
role in describing some anomalous features of the cha
tunneling tail. Let us focus on the deep tunneling reg
in Fig. 3(a). In both quantum and semiclassical wa
functions we notice that the tunneling amplitude increa
as we go deeper into the tunneling region, while sim
tunneling phenomena never show such a strange beha
This increase abruptly stops and then the amplitude be
to decay rapidly.

The mechanism of this anomalous behavior can be
derstood by extracting two semiclassical branches giv
the most dominant contributions around thispt region.
Figure 3(b) shows two individual semiclassical contrib
tions together with their superposition. The dashed li
with dots represent the position of the Stokes lines wh
are determined by PED. The dominant contribution com
from branchA, which forms a plateau followed by a
abrupt decrease. The key to understanding the ano
lous behavior is that the Stokes line cuts branchB after
the associated amplitude begins to increase steeply.
an increase is led to an exponential explosion and se
as if it is unphysical; however, the anomaly cannot be
plained without it. Indeed, the steep increase along bra
B actually manifests itself in a remarkable increase of
summed amplitude, which stops at the Stokes line
takes place with a rapid decay coming from branchA.
Such behavior explains exactly the anomalous beha
observed in the tunneling tail. BranchB can be considere
the subdominant contributor, and it is really surprising t
the feature of subdominance is visible as an anomalou
havior of the tunneling tail.
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In summary, we have proposed a practical method
deal with the Stokes phenomenon appearing in chaotic
tems, which can successfully be applied to the chaotic
neling problem. The method is based upon the prese
of a conspicuous tree structure hidden in a complicated
of tunneling branches. We believe that such a remarka
feature is generic in complex classical dynamics and
be utilized in order to unravel the entanglement amo
complex branches. Indeed, we confirmed that our met
works quite well for several kinds of quantum map syste
including modified kicked rotors, standard kicked roto
and so on [10]. In spite of its success, theoretical jus
cation for this practical method is lacking, and its succ
requires further explanation.

One of the authors (A. S.) would like to thank M. Ma
sumoto for providing us with the graphic library Clos
View which considerably reduces our labor in search
for complex branches.
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