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Two-Loop QCD Corrections to b — ¢ Transitions at Zero Recoil
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Complete two-loop QCD corrections o — ¢ transitions are presented in the limit of zero recoil.
Vector and axial-vector coefficients,y are calculated analytically in the limit of equal beauty and
charm masses, and a series appoximation is obtained for the general mass;gdsecrucial for the
determination of the absolute value of the Cabibbo-Kobayashi-Maskawa matrix el&menthe two-
loop effects enhance the one-loop corrections by 22%, removing a major theoretical uncertainty in the
value of [V,,|. Including two-loop QCD effects and previously neglected electroweak corrections we
find |V,,| = 0.0383 = 0.0021(stat) = 0.0025(syst) = 0.0011(theory). [S0031-9007(96)00333-X]

PACS numbers: 13.20.He, 12.15.Hh, 12.38.Bx

Elements of the Cabibbo-Kobayashi-Maskawa (CKM) dl'(B — D'lp) _ F(mg, mpe, W)V 2 F2(w)

matrix are fundamental input parameters of the standard dw
model. Their precise measurements have been the subject % <1 +%n &) )
of vast experimental efforts and will remain prominent is- T mp

sues in forthcoming projects, most notably Biéactories. where w is the product of the four-velocities of the
The values of CKM matrix elements determine the side and D* mesons, andf is a known (see, e.g., [9])
of the unitarity triangle, and their precise knowledge is esfunction which depends on masses of observable particles
sential for the understanding of the origin@P violation,  (rather than on quark masses). HQET offers a model-
a major puzzle of the standard model. independent value of the hadronic matrix element for the

One of the directly measurable CKM parameters isdecayB — D*Iv at zero recoil F (1), up to perturbative
the absolute value of.,. The experimental value can corrections, to be subsequently discussed. This point
be extracted from decays @& mesons produced on the is not directly accessible in the experiment due to the
Y (4S) resonance (ARGUS [1] and CLEO CollaborationsVvanishing phase space. Fortunatél,,|>F2(1) can be
[2]) or on the Z resonance (ALEPH [3] and DELPHI deduced by extrapolating the measured values at nonzero
Collaborations [4]). recoil, and, given the theoretical prediction fgF(1),

|V.,] can be obtained either from the total width of the value of|V,,| can be obtained. The last factor in
semileptonicB decays or from the zero-recoil extrapola- Eq. (2) approximates the electroweak corrections [14]. In
tion of the exclusive decay spectrum®f— D*/7, where addition, there are long distance QED corrections which
[ is an electron or muon (see [5] for a recent review). Thelifferentiate between decays of neutral and charged
merits of both methods and theoretical uncertainties havaesons. Their difference is given at the rate level by
been discussed in Ref. [6]. The inclusive approach hasn approximate factarl + 7«) (see [15] and references
the advantage of larger experimental statistics; the inhettherein). It represents an enhancement of Biedecay
ent theoretical error is mainly due to inaccurate knowledgéate due to the final state interaction between the lepton
of the quark masses which enter the decay width formulaand the charged>* meson. To my knowledge, the
This theoretical uncertainty already dominates the exper@bsolute corrections have not been reliably evaluated and
imental error, and it is not obvious that it can be signif-are not being included in the present paper.
icantly improved (see, however, a discussion in Ref. [7] The Lorentz structure of thé — ¢ decay vertex is
and references therein; also, determinatior}\of,| from I'y, = yu.(1 — vs). The vector and axial-vector parts are
the lepton spectrum in inclusivB decays has been dis- modified in different ways by the QCD corrections; at
cussed in Ref. [8]). zero recoil they are parametrized by two functiong 4

The exclusive method, on the other hand, benefits from _ _
recent advances [6,9] in the heavy quark effective theor Vi VY Yu¥s T NAYRYS- ®)

(HQET) [10-13]. It has been used to obtain the latest ' the decays — D"l only the axial part is relevant.
experimental result [4] ny is needed, e.g., for the decah — DIiv. Both

functions 4y can be expanded in power series in the
V.| = 0.0385 % 0.0021(stat) strong coupling CO”Sti’;t’ o

- Qs &s Y2 3
+ 0.0025(syst) = 0.0017(theory). (1)  MAav =1+ Crmay + <7T> Crnay + Olag).

(4)
The exclusive method can be summarized as follows: Th&he one-loop QCD corrections are formally identical to
recoil spectrum of th& meson decay is QED effects calculated in the context of muon decay [19].
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For the heavy quark decays they give [13,20]

(1) 32—-96
=-—=>"——1In1 =68 -2
ma = =55 In(l - 8) -2, g )

(1 32—-96 3
el L - O
with 6 =1 — m./my.
The prediction of HQET foB — D* transition is free
from 1/m,, . corrections [16] by virtue of Luke’s theorem
[17]. The form factor’F (1) can be written as

F1) = na(l + S1/m2). (6)

The mass correction$;,> of order l/mé have been
examined [6,18]. They are estimated [18] to decrease th (c) (d)
form factor by(5.5 *= 2.5)%, and their error is responsible

for approximately half of the theoretical uncertainty in the

value of|V,,| quoted in Eq. (1). ‘m\\

The large remaining theoretical uncertainty is due to § et §
the unknown two-loop perturbative QCD corrections. The ®

latter have been the subject of vigorous controversy ovel

the last few years. In the absence of an exact calculation (e) (f)

a renormalization group analysis has been performed [21} s ¢ Two-loop QCD corrections to the — ¢ transitions
but its validity has been questioned in view of the smallyt zero recoil. Symbol® mark places where the virtuay
size of the logarithm of the mass ratia, /m. [22,23]. boson can possibly couple to the quark line. One-particle

The need for a full two-loop calculation ofA2 has been reducible diagrams are not displayed; they correspond to the
. renormalization of the quark wave function.

emphasized by many authors [21-24]. The purpose of

this paper is to provide this correction. o _
A calculation of QCD (or even QED) two-loop correc- b andc quarks. We neglect the top quark; its impact is

tions to a fermion decay is in general very difficult. A full suppressed by a factermj, /m?.

calculation has never been done, neither for the muon nor Among the eight coefficient functions in Eq. (v

for a quark. However, it is at present possible to performare already known [25]. They correspond to our diagram

such an analysis at least at the zero recoil point. The adf) in Fig. 1 with a massless fermion in the loop. In

vantage of this particular kinematical point is twofold: thethe MS scheme (withu = \/m;,m,), adopted also in the

four-momenta of the decaying and final quarks are paralpresent work, they read

SN
[\SR-

lel; and, because of the phase-space suppression, there is . 572 — 8 44
no real radiation. Ny = ﬂ[T In(1 — 8) + B}’
These two features of the zero-recoil configuration 1 T2—s
allow an exact analytic solution in the case of equal 1,3 = —[ In(1 — &) + 2} (8)
massesm;, and m.; in the general mass case one can 24 6

construct an approximate solution in the form of a powerThe remaining six functions can be calculated exactly
series in the relative mass differenée In addition, in the case of equal masses, and m.. In this limit
the solution has a very useful symmetry with respecthe momenta of the leptons in the final state vanish
to the exchangen, — m.. This nontrivial symmetry, and the vertex function becomes a two-point function
valid only at zero recoil, helps to extract maximum With a zero momentum insertion. Such propagatorlike
information from the approximating series by acceleratingPn-shell functions are known; a systematic method of
its convergence. their evaluation has been worked out in Refs. [26,27];
The two-loop QCD diagrams relevant to this calcula-the underlying idea is the integration by parts method

tion are shown in Fig. 1. Itis convenient to divide up the[28]. This method has greatly simplified the two-loop
functions nf}/ into parts proportional to various $8) QED calc_:ulanon ofg — 2 [29’30]' _In Ref. [29] the
factors (an overall factof; has been factored out), computation of tvyo—loop functions with a low number of
@ - o zero momentum insertions has'been auto_mated. For'the
Nayv = Crmyy + (Cq — 2Cp)nA,V purpose of the present calculation a new implementation
L " of the recurrence algorithm [31] was necessary; this is
T TrNLmLy + TrRMAy - (") because of the necessity of computing two-loop functions
For a general SW) groupC4 = N, Cr = (N*> — 1)/  with a large number of zero momentum insertions.
2N, Tr = 1/2. Ny denotes the number of the light quark In order to go beyond the:, = m,. limit we use the
flavors whose masses can be neglected. The last tervariable § as an expansion parameter. In the real world

contains contributions of the massive quark loops, withn, andm. are far from being equal; for the purpose of
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this work we takem; = 4.8 GeV andm,. = 1.44 GeV introduce a variable invariant with respectitg — m.,

which yields 8 = 0.7. Coefficients of the expansion of p = §%/(1 — ). The answer is expected [21,33—-35] to

nay in & are two-point on-shell functions which can be contain terms linear and quadratic in(In— &§). In the

computed using recurrence relations. In order to ensureariable p the radius of convergence of their expansions

good numerical accuracy we have computed ten terms iis |p| = 4 and corresponds ths| = 2(~2 — 1) which

the 6 expansion for all diagrams in Fig. 1. The analyticis less than the origindls| = 1. However, the physical

computation of the resulting integrals was feasible thankgoint 6 = 0.7 corresponds t@ = 1.633... which is well

only to the latest achievements in symbolic manipulatiorinside the convergence circle and, more important, is

programs [32]. positive, whereas the cut starts @at= —4. Therefore,
The results we obtained are symmetric with respecat the point of interest the series is alternating and the

to the exchangen, — m., or 8§ — —8/(1 — §). The accuracy can be estimated reliably. We obtain accuracy

resulting fact that terms with odd powers @& can better than 1 per mille even without terms with 5th and

be obtained from the earlier terms provides a strondiigher powers op.

consistency check of our procedures. On the other Forthe axial-vector functiomf) we find

hand, it is possible to rewrite the series expansion in

a manifestly symmetric form. For this purpose V\(e

143 1 1 1 29 55 1 3
ap_ 183 1 5 1 5,1 Jr<_+_2__2 + 2 >
4 127 T2 - O T elge T T T g™ N2t 3540
2( 2509 121 2) 3< 43 67 2) 4< 17933 143 2)
- + —— 77 +p — T + pl = + T
17280 ' 8640 22680 967630 50803200 11612160

P _ 38 1 5 (ﬂ_Lﬂ2>+ 2<_2+L72>+ 3<ﬂ_LW2>
4 144 " 6 P\576 ~ 24 P 7648 " 360 P \37800 ~ 2520

N 4<_ 649 1 772>
P\" 672000 © 15120

w_ 15 2 5 (@ _ ﬂ772> . 2<_ﬁ . ﬁﬁ) . 3<_255313 . £772>
T8 3 72 144 P\ 144 7 576 75600 576

1957573 1
+pH o — 2). 9
p( 3175200 16 " ©)

For the corrections to the vector current we find

3717 3 1 3 107 1 41 31

AF 2 2 2 2 3 2
7 =0———7T——7T|2+—f + ol —— + — 7 + 9 — T
v (576 64 16 : 32 (3)> ( 5760 288 ) ( 10080 46 080 >

4< 13927 169 2)
pl— + T
16934400 1290240

F_ (55_3_iﬂz>+ 2<_£+LW2>+ 3<£_L72>+ 4<_ 7531 1 772>
v =P\576 ~ 72 P\"4320 " 360 P \33600 ~ 2520 P\ 6048000 © 15120

n‘l}l = p<197 - E77'2> + pz<—E + 277'2> + p3<—@ + £7TZ> + p4<— 93227 + L772>. (20)

72 48 720 192 1008 192 151200 = 16

We note that all QCD contributions tey vanish ! my and m.. For the coupling constant renormalization
at m, = m. (p = 0), in consequence of vector current we used the minimal subtraction schemdS) condi-
conservation. tion with the renormalization scale at the geometric mean

So far we have not discussed the renormalization promassu = ,/m,m.. It must be noted that the symmetry
cedure which led to the results in Egs. (9) and (10). Fom, — m. is, in general, valid only for the unrenormalized
the external quark legs we used the two-loop quark waveiagrams. If the coupling constant were normalized at a
function renormalization constant computed in [36]. Van-scale w which changed undew;, — m., the final result
ishing of the terms independent of in Eqg. (10) serves (9) and (10) would not be symmetric.
as an independent check of the complicated expressions Numerically, the two-loop corrections evaluate to
given in [36]. The diagrams (b1) and (b3) require mass () _
counterterms. For these we adopted the on-shell condi- 7 ~— 0.586(2)Cr = 0.909(2) (Ca = 2Cr)
tion. Our results are therefore in terms of the pole masses + 0.145TxN;, — 0.155(4)Tr = —0.944(5),
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2 = 03952)Cr — 0.168(2) (C4 — 2CF) rections, and to Kirill Melnikov and Dan Pirjol for helpful
discussions. | thank Professor J.H. Kiihn for his interest
— 0.010Tg Ny + 0.107(2)Tr = 0.509(5). (11)

in this work and support. This research was supported by
It is interesting to compare these results with an estimaterant No. BMET 056KA93P.

based on the subset of corrections of ordéiB, with
Bo =11 — %nf. With ny = 4 one gets [25]
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