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Can Classical and Quantum Variables have a
Consistent Mutual Interaction?

In a recent Letter [1], Anderson presents what
describes as “a mathematically consistent scheme
coupling ‘classical’ and quantum variables.” (The auth
puts “classical” in quotes because “the classical varia
evolve to become correlated with the state of the quan
variables. Because this correlation may be with differ
states in a quantum superposition, the classical varia
need not have a definite value but may take a distribu
of values depending on the quantum state”.) It is
purpose of the present Comment to show that couplin
system which is described classically to a system wh
is described quantum mechanically leads formally
physical inconsistencies, that is, results that are physic
impossible.

As an illustration, I choose a particularly simple exa
ple: the behavior of two coupled similar linear oscillato
one described classically and the other quantum mech
cally. The Hamiltonian of the combined system is giv
by H ­ Hq 1 Hcl 1 H 0, where
Hq ­ s1y2d"vsq2 1 p2d, Hcl ­ s1y2d"vsQ2 1 P2d ,

and H 0 ­ "GsqQ 1 pPd .
Here,q andp are the dimensionless coordinate and m
mentum, respectively, of the quantum oscillator, obey
the commutation rulefq, pg ­ i; Q and P are the cor-
responding coordinates of the classical oscillator obey
the Poisson bracket relationshiphQ, Pj ­ 1. Hq, Hcl, and
H 0 are, respectively, the quantum-oscillator Hamiltoni
the classical-oscillator Hamiltonian (where" has only di-
mensional significance) and the interaction Hamilton
(chosen to be of the rotating-wave type for simplicit
The following are the Heisenberg equations for the qu
tum oscillator and Hamilton’s equations for the classi
oscillator:

Ùq ­ vp 1 GP, Ùp ­ 2vq 2 GQ ,

ÙQ ­ vP 1 Gp, ÙP ­ 2vQ 2 Gq .
The solution is given by

qstd ­ qs0dstd cosGt 1 Ps0dstd sinGt ,

pstd ­ ps0dstd cosGt 2 Qs0dstd sinGt ,

Qstd ­ Qs0dstd cosGt 1 ps0dstd sinGt ,

Pstd ­ Ps0dstd cosGt 2 qs0dstd sinGt ,
where the superscripts0d indicates the behavior of th
variable in the case of the free, or uncoupled, oscilla
sG ­ 0d. Thus,

qs0dstd ­ qs0d cosvt 1 ps0d sinvt ,

ps0dstd ­ ps0d cosvt 2 qs0d sinvt ,
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and similarly forQs0dstd andPs0dstd. The expressions fo
the energy of each oscillator are

Hq ­ H
s0d
q cos2 Gt 1 H

s0d
cl sin2 Gt 1 K s0d sin2Gt ,

Hcl ­ H
s0d
cl cos2 Gt 1 H

s0d
q sin2 Gt 2 K s0d sin2Gt ,

where K s0d ­ s1y2d"vsqs0dPs0d 2 Qs0dps0dd. The time
derivatives ofHq andHcl are given by

ÙHq ­ Gs2H
s0d
q sin2Gt 1 H

s0d
cl sin2Gt 1 2K s0d cos2Gtd ,

ÙHcl ­ Gs2H
s0d
cl sin2Gt 1 H

s0d
q sin2Gt 2 2K s0d cos2Gtd .

Consider now initial conditions where both the classi
and quantum oscillators are in their respective grou
states. This means thatQs0d ­ Ps0d ­ 0, and kHs0d

q l ­
s1y2d"v, so that

k ÙHql ­ 2s1y2d"vG sin2Gt ,

ÙHcl ­ s1y2d"vG sin2Gt .

Although both oscillators are initially in their groun
states and the coupling energy is zero, the quantum
cillator begins toloseenergy while the classical oscillato
begins togain energy. The mathematical—or formal—
reason for this physical impossibility is that the classi
oscillator sees the zero-point energy of the quantum
cillator as available energy that can be tapped, and
quantum oscillator sees the zero energy of the class
oscillator as a lower energy level to which it can desce
In other words, to the classical oscillator, zero-point o
cillations appear to be oscillations that can do work. H
both oscillators been treated quantum mechanically,
zero-point energies would have canceled each other.

One can consider the interaction between dissimilar
more complex systems by means of perturbation the
[2], and come to the same conclusion: The mutual in
action of classical and quantum variables leads formall
physically impossible results when zero-point fluctuatio
(in effect—the uncertainty principle) cannot be ignored
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