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Multifractal Structure of Auroral Electrojet Index Data
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Using a multifractal approach, based on “singularity analysis,” we investigate the scaling properties
of the auroral electrojet index (AE) time series. The existence of a multifractal structure in the AE time
series is the signature of the occurrence of “intermittence,” which can be interpreted as an indication
of turbulence in magnetospheric dynamics. Furthermore, a simple modeP-thedel (a two-scale
Cantor set), is shown in order to investigate the underlying multiplicative nature of the signal. This set
displays many of the multifractal properties of the AE signal. [S0031-9007(96)00242-6]

PACS numbers: 94.30.Lr, 05.40.4j

The auroral electrojet index (AE), derived from high to the different local scaling properties of the data. In
latitude fluctuations of the magnetic field horizontal com-order to do this, first of all a “positive stationary measure”
ponent at Earth’s surface, is meant to estimate the totdlas to be defined on the data set [12,13]. Since the AE
maximum amplitude of the ionospheric current systemtime series power spectral density (PSD) is characterized
It was introduced by Sugiura and Davis [1] to monitor by power laws with spectral exponemt< 8 < 3 (see
the occurrence of auroral phenomena, and more generalig. 2), the AE signal is nonstationary with stationary
magnetospheric substorms. increments over a range of scales which is bounded above

The description and modeling of the AE index time
series and the study of their scaling properties are pow-
erful tools for understanding the nature of solar wind-
magnetosphere-ionosphere coupling and magnetospheric 1200
substorm dynamics.

To explain the high temporal variability of magnetic
substorms, which is evident in the AE time series (see
Fig. 1, top panel), many authors [2—7] investigated the
possible occurrence or not of low-dimensional chaos
in the magnetospheric response to solar wind input;
however, this is still an open question.

Nevertheless, Takalet al. [8—10] have clearly shown 200
the existence of scaling properties in AE index data
that suggest that the signal is self-affine, with scaling 0 1000 2000 3000 4000
exponentd =~ 0.5, up to a time of about 13(%£9) min. Time t [min]
Furthermore, this characteristic time is well in agreement
with the spectral break at=5.6 X 107> Hz previously 200
observed by Tsurutamit al. [11].

However, the irregularity of AE temporal evolution
may suggest a more complex nature of the analyzed phe- 100
nomenon than that characterized by the above mentionedg
simple fractal model. The AE time series “spotty” be- =
havior, evidenced when the signal increments are plotted &g
(see Fig. 1, bottom panel), can indeed be an indication of %
“intermittence,” and therefore “turbulence.” Furthermore, -100
intermittence involves an anomalous scaling with respect
to “time dilation.”
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This Letter proposes a multifractal approach to the AE -200
time series, based on the so-called “singularity analysis,” 0 1000 2000 3000 4000
with the aim of revealing the occurrence of intermittence Time t [min]
in the dynamics of magnetospheric substorms. FIG. 1. Sample of the original time series covering a period

The purpose of multifractal analysis is to reveal theof three days (top panel) and relative AE increments time series
existence of a hierarchy of scaling indices, which is dugbottom panel).
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and below [12]. It is important to stress that with the [16], are independent of moment order in the case of ho-

term “stationary” we mean that the data setg(r) is  mogeneous fractality.

statistically invariant by translation in time Therefore, We developed our analysis applying the multifractal

a new scalar stationary, non-negative field) has been approach to a set of AE-index data, covering the period

defined according to Meneveau and Sreenivasan [14], dsom 1.1.1975 to 19.2.1975, with 1-min time resolution,

the squared absolute value of the small scale differencesfor a total amount of ¥ points. Data comes from the
e(t) = loap(t; + A1) — oap(), 1) National Geophysical Data Center, Boulder, CO.

To evaluate the exponen , the partition function
where (1) is the original AE-data set, andlr is the P ) P

AR ~ I'(¢q,7) vs 7 has been fitted with a power law using
sampling interval. There are several methods to define g,o Levemberg-Marquardt nonlinear regression algorithm

stationary non-negative field. However, the peculiar prot; 71
cedurq does not affegt the results of singularity analysis as |, Figs. 3 and 4y(q) and D, are plotted as a function
Lavalleeet al. [15] pointed out. , of the moment ordeq. It is evident thaty(g) and q
Consequently, a positive measufg can be defined as 516 ot linearly dependent; this is the consequence of
du(t) = &dt ) an _underlying _muItifractaI structure in the A_E signal,
T{(e) ~’ as is also confirmed by the existence of a hierarchy of
where T is the total time length. According to Paladin dimensionD,.
et al. [13], a multifractal measure is characterized by the The existence of a multifractal nature of the AE signal

scaling features of its coarse-grained weight: in respect to time dilation is the signature of temporal
inhomogeneity, or, in other words, of intermittence [13].

pi(7) = [ du(r) = Z Ap(r'), 3) Th_e occurrence and the nature of intermittencg in the

: L=t=t 41 AE signal have been further analyzed by comparing the

- i D, curve with those proposed for two typical multi-
where 7 = 2" is the size of the segmentd;. The |jicative processes, tHe-model[14] and theLog-normal
presence of multifractality is shown by the anomalousyoge|[18]. These models were first introduced to ac-

scaling of the “partition functior’(¢, 7)" for small 7: count for the occurrence of intermittence in fully devel-
oped turbulence in ordinary fluid flows.
T(g.7) = > pi(n)? = 777, (4) The solid line in Fig. 4 is the nonlinear best fit of
A;

the D, data according to the-mode] which is formally
wherey(q) = (¢ — 1)D, and D, is a nonconstant func- equivalent to a “two-scale Cantour set” with = I, =
tion. The exponent®,, called “generalized dimension” 1/2 and represented by

A A D, = log,[p? + (1 — p)7]"/174), (5)
10t N wherep is a parameter, associated with the fragmentation
l ~ probability in the cascade process, ands the moment
0E -, . order.
_ The dash-dotted line represerdg behavior according
g = 2 to the log-normal model There is agreement between
{2 F 3 this model andD, data only if small values ofy are
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FIG. 2. Power spectral densitfPSD) or energy spectrum 100
relative to the period under analysis. The solid and dotted -
lines are power-law best fits. The dashed line is relative 12,0 Bt bbbt bt bl b e
to —5/3 power law predicted for the “inertial range” by 60 -40 20 00 20 40 60 80
Kolmogorov’s theory of fully developed turbulence in absence Moment order q

of “intermittence.” Two spectral breaks; and f,, identify
a frequency region where the dependence is nearly similar t61G. 3. Scaling exponenty(q) of the partition function
Kolmogorov's one. I'(g, 7) as a function of moment ordex
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Legendre transformation:

a= D @) =ga-e). A
In Fig. 5 we report thesingularity spectrumjy(«)
derived for the AE index data set (pointed curve). The
solid line represents a nonlinear best fit if an analytical
expression for thé-modelis used, which can be derived
from that of a general two-scale Cantor set with equal
scaleg/; = I, = 1/2) but unequal weights [19],

‘ _ _log, p + (n/m — 1log,(1 — p)
ll|nl||||l||||||||||||||||n|l||||||‘|‘“r|||||||||||l|||||||||| n/m

-4.0 -2.0 0.0 2.0 4.0 6.0 B (n/m _ 1) |Og2(n/m _ 1) _ (n/m) |ng(n/m)

q fla) = =

FIG. 4. Plot ofgeneralized dimension8,. The solid line is (12)
the nonlinear best fit of the data by tiemodel(see text). eliminating n/m. Once again there is good agreement
The dash-dotted line represents the behavior olLthgnormal  patween theory and data.
model The multifractal approach in respect to time dilation
has evidenced the existence of different local scaling
properties in the AE-time series. This is a consequence of
temporal inhomogeneity that is related to the intermittent
character of the signal.
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considered. On the contrary, the experimeiigl curve
and theP-modelbest fit are fairly well in agreement.

The agreement betweed, data andP-modelpredic- Th ; bet th ltifractal struct f
tion must be interpreted as the evidence for partial mixin € comparison between the mutiiractal structure o
The AE signal and that of two typical multiplicative pro-

during the cascade and for an asymmetric breakdown i , . . ; ; .
9 y cesses, introduced in order to explain the intermittence in

]E?(;er;r?ﬁem gg;[]zlaitr;(()er;? [)OeC:tS;t. nged%?;aums?gzii;\;zgﬁ tgg f[urbulence, has _clearly_ shown that the nature of the signal
gives is analogou's to intermittent turbule_nce. Itis important to
stress that intermittent turbulence involves a different en-
p = 0.746 = 0.002. (6) ergy distribution in space and time from the prediction
ch Kolmogorov's theory for ordinary turbulence. More-
over the multifractal structure of the AE index seems to
be analogous to the-modelprediction.

This parameter can be used to evaluate the intermitten
coefficientu:

dD _
M:—%jhﬂ=mmwu—m]l 12

— 0.400 = 0.002. @)

In the case of homogeneous turbulence, Kolmogorov’'s
theory (via Taylor's hypothesis) predicts A # law,
with 8 = 5/3, in theinertial range of energy spectrum. 08
When intermittence is considered the expongmhust be

1.0

corrected as follows: § 06
B=p+ L =a. ®)
where u is the intermittence coefficient. From this we 0.4
obtain
a = 1.800 = 0.001, 9 02

L N L R AR R R LR R AR NR S RN RARR RRRAE RARR

which is well in agreement with the PSD power-law .
exponent when the intermediate rafgg, f>],

-5 -3
73 X107 < f < 2.5 X107 Hz, (10) FIG. 5. Multifractal or singularity spectrumas derived from
is considered (see Fig. 2). Legendre transformation. The solid line is a nonlinear regres-

Anoth to ch terize th ltifractality is qi sion best fit of the data making use of an analytical expres-
nother way 1o characterize the muitiractality IS gIVen g for atwo-scale Cantor sewith equal scales but unequal

by the so-calleanultifractal or singularity spectruny(e),  weights P-mode). The dashed line is the diagonal which in-
which can be directly evaluated from th€q) curve by a  dicates the homogeneous fractal locus.
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