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Exponential Growth of the Energy of a Wave in a 1D Vibrating Cavity: Application to the
Quantum Vacuum
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The wave equation in a one—dimensional cavity is equivalent to the motionaskless particles
in a two-dimensional space-time billiard. This allows us to consider, in a simple way, the case of a
cavity with one or two oscillating walls. It is shown that a set of continuous families of frequencies
of the oscillating walls leads to an exponential growth of the energy of a wave. For such cases, the
wave energy is localized in narrow space regions moving at the wave velocity. As a consequence
the electromagnetic vacuum fluctuations inside the cavity increase exponentially and the possibility to
observe experimentally photon creation from the vacuum could be reconsidered.

PACS numbers: 42.50.Lc, 03.40.Kf, 03.50.—z, 03.65.Ge

It is well known since Casimir's work that the fluctua- (A 3, Ko, —A 9, Ky) in the two-dimensional space-
tions of the electromagnetic field inside a perfectly reflecttime through any surface surrounding(xo, 7o)
ing cavity generate a measurable attractive force. How{f 9 g = fag — gaf).
ever, only few results are known for the case when one For clarity and without loss of generality, let
of the walls, or mirrors, oscillates. The standard methodis consider the case of only one moving mirror
for solving this problem has been developed by Moore [1with the simple time-dependent boundary conditions
and consists in finding a functiaR(z) satisfying A0,1) = A(L(z),1) = 0.

R(: + L(t)) = R(t — L)) + 2, (1) With these Dirichlet boundary conditions, we obtain

where L(z) is the distance between the moving and theA(xo. %) = A°(xo, 70)
fixed mirror. 1 rn t .

Few analytical solutions are known and it is only  + Y /0 molt) dt +j;) [1 + LO)]pr()dry, (4)
recently that Law [2] gave one for an almost sinusoidal
movement of the mirror. In this special case, he hasvhere A%x, 1) is the (free) d’Alembert’s solution, and
shown that the quantum energy density shrank into twqu; and u( are functions to be defined later.
packets and that energy increased quadratically with the The timest,;, are the intersections [when they exist,
time. Atthe same time, Dittricet al. [3] have found the otherwiset,;; = 0, see Fig. 1(a)] of the downward light
generic time behavior for the energy. cone, with apex at(xo, o), with the right [k = L(z)]

A completely different approach which has a trans-and left ¢ = 0) boundaries. It is clear from (4) that
parent geometric interpretation is presented here. Thiknowledge ofu(z) is sufficient to construct the solution
method permits one to predict the time energy behavioA(x, 7o). These functionsuo(r) = —d,A(x,)],—o and
for any kind of motion for thetwo mirrors. Although
the problem under consideration could be applied to any

physical situation described by the wave equation (elas- b T t14
. ) . . . t Aoq tol LI
toacoustic, string, etc.), we will derive our results with the G Mgtk sl o
example of the electromagnetic field. Let us consider the ek & /t tc ’
electromagnetic vector potentidlx, r) which obeys I | ' ~
(=97 + A, 1) = 0. 2) \ s
We have set the wave velocity= 1. We introduce the e
one-dimensional free forward propagator, i i
1 (a)
Ko(x — x0,7) = == O(7 — |x — xol), . .
2 FIG. 1. (a) The waveA(xy, ) is constructed from itsx

where 7 = ¢t — t, and O(¢) is the Heaviside function. derivatives on mirrors betweef0,#] and [0,7,] and from
This propagator satisfies d’Alembert’s solution, which is relevant only in the grey dark
part. The dashed lines represent geodesics. The pale grey
(=02 + 02)Ko(x — x0,7) = 8(x — x0)8(r). (3) rectangle corresponds to one family of positions of the fixed
.. . mirror leading to exponential growth of energy. (b) The two

Generalizing t'he Korringa-Kohn-Rostoker method [4]_ periodic trajectories corresponding to the fixed points of (7)
for a space-time boundary, Egs.(2) and (3) permitand (8) forp = 1; the other trajectories will converge on the
us to write A(xg,#9) as the flux of the vectorj =  solid line.
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wi(t) =[1 — L(1)] d,A(x, 1)1, are defined on the teger) are those of a fixed cavity [see Fig. 1(b)]. Clearly,
surface of the fixed and moving mirror, respectively; inthese two points exist only i, < p(T/2) < Liax-
the electromagnetic case, the two integrals in (4) represehinder this condition, the system exhibits a very singular
the time integrals of the magnetic field, i.e., the surfacebehavior: Starting at = 0 with wo # 0, the energy &)
current, in the proper frame of each mirrdrié the mirror ~ will inexorably increase because it will be attracted by the
velocity, |L| < 1). hyperbolic asymptote, leading to an exponential dilatation
Differentiating (4) on each boundary, we obtain of w (while its time support decreases in the same way).
Indeed, let? be thenth bounce on the fixed mirror of
wolto) = —(9x + 9)A, )li=0x=1, » (5) the pT-periodic trajectory and denote bythe dispersion
pr(to) = (9 — A, ))i=0x=L(ty) 10 » of the wave packet around*!; from (7), on one hand,
unlessty — t, = L(t,) andry — t; = L(ty) have a solu- ggg Z?aTetTﬁaaufea_zﬁsle:”:? Tirz’tc(;thﬁ fhiztt')‘ir}d' we
o i i ; n+1f¢ = kltp)pnlt, b
tion, in which case (5) is replaced by in the asymptotic regime wherg = ¢, + pT/2.

rolto) = —pr(t,), (6a) The wave energy densitf(xo, 19) is obtained from (4)
wi(to) = —[1 — L(to)]/[l i i(to)],uo(h)- (6b) and (6) in terms of the functiopy only as
When Eqg. (5) holdsu; and u( represent, respectively, e(xo, 10) = %(|axA|2 + 19,47

the influence on each mirror of the right and left traveling

initial wave packets (which are functions of + ¢, [ 2

respective|y)_ = Z [/u’O(tO - X()) + Iu’O(tO + X())].
Equations (6) and (5) have a classical interpretationyn this resonant case, for increasing time, the localization

The wave packet evolution can be viewed as the evolutiogf the peam on the periodic trajectory [corresponding

of two beams of massless, noninteracting partides/ing 1o the fixed point o = 0,7.)] induces a localization

atr =0, one to the right, one to the left with the wave of energy on this trajectory; hence the contribution to
velocity. We associate with these particles a scalar valug(y 1) is significant only if z, + xo(modr’) is in the

u, the momentunor the energy They are “launched” neighborhood of..
from the segment0,L(0)] with an initial momentum  The total energyE(s) is transformed to an integral
w that they will keep until the first contact on the ¢ M% over time fromz, — L(zo) to ty + L(zy). Since
mirrors: Theseu are given by (5). Moreover, each ray M(Z) dt appears in the energy, the rati(:"™')/E(t")
of the beam carries a number of particles equal to thigangs to k(£5); this leads toan exponent?al increcase
initial momentum. The particles rebound elastically ong¢ energy with the time (the same result was found
each mirror. Equation (6a) corresponds to momentuny, 5 different way in [3]). More precisely, the energy
conseryation on the fixed boundary and the multiplicativg,creases in geometric progression step by step, each time
factor in (6b) is the result of the Doppler effect. We ihe (localized) wave packet hits the moving mirror (see
are now able to construct the functiopsfknowledge of  Fig 2) |t is worthwhile to note that in the massless-
A(x,1) is useless because of the gauge invariance]. Wgarticle interpretation the energy of the wave is the sum of
can rewrite (6) as the energy of each particle which increases by a faetor
tni1 = K(tp) fhn (7 at each coIIisior_1 on the mov_ing mirror. This interpre.tation
where k(1) = [1 — L(y)]/[1 + ()] and w, is the is also convenient for finding the force on the mirrors.

) . - This enhances the analogy between the two views.
value of uo on the fixed mirror at the:th collision at ay

i _ is obtained b ing th i Let us consider the quantum case. Following Moore
ime 1,5 1,+1(2,) is obtained by solving the equations [1], all physical quantities are deduced from the derivative

the1 =ty + L(1p), of a functionR(z) defined by (1), i.e.[l + L()IR(r +
(8 L) =1[1 - L®IR( — L(1): This is exactly (6) if

_ , . , we identify R(r) to wo(z). Fulling and Davies [6] have
where, is the time at which the particles of the samejntroduced a general functiof defined by

th =1, — L(tp),

ray impinge on the moving mirror. Equations (7) and (8) ¥ 3R\ 5
define an area-preserving mapping [5]. Umf =+ — _<_> + T R
As an illustration, let us now consider a simple pe- R 2\R 2

riodic motion of the mirror (e.g., sinusoidal). We take in order to write the regularized density energy of vacuum
particular interest in two hyperbolic fixed points of the as

mapping (7) and (8) given byup = 0,¢, modpT) and

(uo = 0,t. modpT). The first corresponds to@ntrac- (Too)eg = ~Lf (10 + x0) + f(to = x0)].

tionin u anddilatationin  and conversely for the second. which is similar to thee(xo, #;) we found in the classi-
The corresponding periodic “trajectories” of perip@ (T cal case. Thus, when= ¢", R, R, andR are multiplied

is the period of the mirror oscillations anda positive in- by «, 2, and x>, respectively, and thus energy density
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on the fixed wall duringpT') then the mapping (7) and (8)
can have an even number of hyperbolic fixed points. Half
of these points attracts all the other trajectories and leads
to localization; wheng = 1 these points always exist.
For the simplest case of two oscillating mirrors, i.e., a
one-dimensional shaken cavity, the condition of reso-
nance is rewrittenLy — 2a < (p/q)T/2 < Ly + 2«,
where L, is the length of the cavity anda is the
displacement.

In fact, for any general periodic motion of the mirrors,
it is possible to find a set of continuous frequencies
leading to exponential growth and localization of energy
both for classical case and for quantum fluctuations
of vacuum. The behavior of nonrelativistic massive
particles in a one-dimensional billiard (the so-called Fermi
— accelerator) does not present such resonances, neither in
; 05 3 == class'ical nor quantum mechanics [7,8]. .

: . This localization of the vacuum fluctuations has been

FIG. 2. Trajectories of massless particles corresponding to thebserved by Slusher for the squeezed states of light
mapping (6) for a resonating case; for clarity, we representsee the review article [9]). The exponential growth

(right-hand part) only particles corresponding to the left . L s
traveling initial wave packet. Concentration of particles on oneOf the energy gives a new motivation for reconsidering

periodic trajectory show the localization of energy. The left-the experimental situation already regarded in [10] for
hand part shows (solid line) the energy associated with each observing the photon creation from vacuum. Indeed,
particle. The dashed line represents the energy of the wave (ehe approach we have presented here may now make
particles). experiments more feasible for a number of reasons. First,
imperfections of mirrors can be estimated; in addition,
we can treat more general motions of the two mirrors.
increases with a geometric ratid; owing to the localiza- Moreover, and perhaps most importantly, the oscillation
tion of energy, or more precisely, of the vacuum fluctua-frequency can be lower than natural frequency of the static
tions (in a wave packet oscillating between mirrors), thecavity (7 > 1) and the resonance width can be calculated.
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can also be taken into account by imposing the mixed
Neumann-Dirichlet boundary conditions on the field to
obtain an equation similar to (4). The same result could
be obtained in a simpler way by considering a loss of the[1] G. Moore, J. Math. PhysL1, 2679 (1970).
massless particles at each bounce. In summary, the be2] C. Law, Phys. Rev. Lett73, 1931 (1994).
havior of the energy in a cavity is related to the existence[3] P.D.J. Dittrich, P. Duclos, and FSeba, Phys. Rev. B9,
of periodic trajectories in a space-time billiard. 3535 (1994).
The situation described in [2] deals only with the [4] M. Berry, Ann. Phys131, 163 (1981).
limiting case T = Ly, i.€., k =1 and p = 2. The 5] I Perciyal and_ D. _Richardslntroduction to Dynamics
two 2T-periodic trajectories (the second one is just a _ (Cambridge University Press, London, 1982).
translation ofr" of the first one), hitting the moving mirror (€] gés':‘(’i'g@%)and P. Davies, Proc. R. Soc. London348
. . . y .
at its maximum Sgparatlon whei(r;,) » 0, .attra_lct all [7] A.J. Lichtenberg and M.A. Lieberman, iRegular and
the'other trajectories. When the Iocgllzatlon is almost ™ * gy hastic Motion Applied Mathematical Sciences Vol.
achieved, one can show that the mapping (7) and (8) leads  3g (springer-Verlag, New York, 1983).
to a quadratic energy growth. [8] G. Chu and J.V. José, J. Stat. Phg8, 153 (1992).
The resonance condition can be generalized: If[9] R. Slusher and B. Yurke, Sci. An258 No. 5, 50 (1988).
Liuin < (p/q)T/2 < Lnax (g is the number of bounces [10] E. Yablonovitch, Phys. Rev. Letf2, 1742 (1989).

410



