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Exponential Growth of the Energy of a Wave in a 1D Vibrating Cavity: Application to the
Quantum Vacuum

O. Méplan and C. Gignoux
Institut des Sciences Nucléaires, IN2P3-CNRSyUJF G, 38026 Grenoble, France.

(Received 16 March 1995)

The wave equation in a one–dimensional cavity is equivalent to the motion ofmassless particles
in a two-dimensional space-time billiard. This allows us to consider, in a simple way, the case of a
cavity with one or two oscillating walls. It is shown that a set of continuous families of frequencies
of the oscillating walls leads to an exponential growth of the energy of a wave. For such cases, the
wave energy is localized in narrow space regions moving at the wave velocity. As a consequence
the electromagnetic vacuum fluctuations inside the cavity increase exponentially and the possibility to
observe experimentally photon creation from the vacuum could be reconsidered.

PACS numbers: 42.50.Lc, 03.40.Kf, 03.50.–z, 03.65.Ge
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It is well known since Casimir’s work that the fluctua
tions of the electromagnetic field inside a perfectly reflec
ing cavity generate a measurable attractive force. Ho
ever, only few results are known for the case when o
of the walls, or mirrors, oscillates. The standard meth
for solving this problem has been developed by Moore [
and consists in finding a functionRszd satisfying

Rssst 1 Lstdddd ­ Rssst 2 Lstdddd 1 2 , (1)

where Lstd is the distance between the moving and th
fixed mirror.

Few analytical solutions are known and it is onl
recently that Law [2] gave one for an almost sinusoid
movement of the mirror. In this special case, he h
shown that the quantum energy density shrank into t
packets and that energy increased quadratically with
time. At the same time, Dittrichet al. [3] have found the
generic time behavior for the energy.

A completely different approach which has a tran
parent geometric interpretation is presented here. T
method permits one to predict the time energy behav
for any kind of motion for thetwo mirrors. Although
the problem under consideration could be applied to a
physical situation described by the wave equation (el
toacoustic, string, etc.), we will derive our results with th
example of the electromagnetic field. Let us consider t
electromagnetic vector potentialAsx, td which obeys

s2≠2
t 1 ≠2

xdAsx, td ­ 0 . (2)

We have set the wave velocityc ­ 1. We introduce the
one-dimensional free forward propagator,

K0sx 2 x0, td ­ 2
1
2

Qst 2 jx 2 x0jd ,

where t ­ t 2 t0 and Qstd is the Heaviside function.
This propagator satisfies

s2≠2
t 1 ≠2

xdK0sx 2 x0, td ­ dsx 2 x0ddstd . (3)

Generalizing the Korringa-Kohn-Rostoker method [4
for a space-time boundary, Eqs. (2) and (3) perm
us to write Asx0, t0d as the flux of the vectorj ­
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sA ≠
$

x K0, 2A
$

≠t K0d in the two-dimensional space
time through any surface surroundingsx0, t0d
(f ≠

$
g ­ f≠g 2 g≠f).

For clarity and without loss of generality, le
us consider the case of only one moving mirro
with the simple time-dependent boundary conditio
As0, td ; AsssLstd, tddd ; 0.

With these Dirichlet boundary conditions, we obtain

Asx0, t0d ­ A0sx0, t0d

1
1
2

(Z t1

0
m0std dt 1

Z tr

0
f1 1 ÙLstdgmLstd dt

)
, (4)

where A0sx0, t0d is the (free) d’Alembert’s solution, and
mL andm0 are functions to be defined later.

The timestryl are the intersections [when they exis
otherwisetryl ­ 0, see Fig. 1(a)] of the downward ligh
cone, with apex atsx0, t0d, with the right [x ­ Lstd]
and left (x ­ 0) boundaries. It is clear from (4) tha
knowledge ofmstd is sufficient to construct the solution
Asx0, t0d. These functions,m0std ­ 2≠xAsx, tdcx­0 and

FIG. 1. (a) The waveAsx0, t0d is constructed from itsx
derivatives on mirrors betweenf0, tlg and f0, tr g and from
d’Alembert’s solution, which is relevant only in the grey dar
part. The dashed lines represent geodesics. The pale g
rectangle corresponds to one family of positions of the fix
mirror leading to exponential growth of energy. (b) The tw
periodic trajectories corresponding to the fixed points of (
and (8) forp ­ 1; the other trajectories will converge on the
solid line.
© 1996 The American Physical Society
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mLstd ­ f1 2 ÙLstdg ≠xAsx, tdcx­Lstd, are defined on the
surface of the fixed and moving mirror, respectively;
the electromagnetic case, the two integrals in (4) repres
the time integrals of the magnetic field, i.e., the surfa
current, in the proper frame of each mirror (ÙL is the mirror
velocity, j ÙLj , 1).

Differentiating (4) on each boundary, we obtain

m0st0d ­ 2s≠x 1 ≠tdAsx, tdct­0,x­t0 ,

mLst0d ­ s≠x 2 ≠tdAsx, tdct­0,x­Lst0d2t0 ,
(5)

unlesst0 2 tr ­ Lstr d and t0 2 tl ­ Lst0d have a solu-
tion, in which case (5) is replaced by

m0st0d ­ 2mLstrd , (6a)

mLst0d ­ 2f1 2 ÙLst0dgyf1 1 ÙLst0dgm0st1d . (6b)

When Eq. (5) holds,mL and m0 represent, respectively
the influence on each mirror of the right and left travelin
initial wave packets (which are functions ofx 7 t,
respectively).

Equations (6) and (5) have a classical interpretati
The wave packet evolution can be viewed as the evolut
of two beams of massless, noninteracting particlesleaving
at t ­ 0, one to the right, one to the left with the wav
velocity. We associate with these particles a scalar va
m, the momentumor the energy. They are “launched”
from the segmentf0, Ls0dg with an initial momentum
m that they will keep until the first contact on th
mirrors: Thesem are given by (5). Moreover, each ra
of the beam carries a number of particles equal to t
initial momentum. The particles rebound elastically
each mirror. Equation (6a) corresponds to moment
conservation on the fixed boundary and the multiplicat
factor in (6b) is the result of the Doppler effect. W
are now able to construct the functionsm [knowledge of
Asx, td is useless because of the gauge invariance].
can rewrite (6) as

mn11 ­ kstbdmn , (7)

where kstbd ­ f1 2 ÙLstbdgyf1 1 ÙLstbdg and mn is the
value of m0 on the fixed mirror at thenth collision at
time tn; tn11stnd is obtained by solving the equations

tn11 ­ tb 1 Lstbd ,

tn ­ tb 2 Lstbd ,
(8)

where tb is the time at which the particles of the sam
ray impinge on the moving mirror. Equations (7) and (
define an area-preserving mapping [5].

As an illustration, let us now consider a simple p
riodic motion of the mirror (e.g., sinusoidal). We tak
particular interest in two hyperbolic fixed points of th
mapping (7) and (8) given by (m0 ­ 0, td modpT ) and
(m0 ­ 0, tc modpT ). The first corresponds to acontrac-
tion in m anddilatation in t and conversely for the second
The corresponding periodic “trajectories” of periodpT (T
is the period of the mirror oscillations andp a positive in-
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teger) are those of a fixed cavity [see Fig. 1(b)]. Clear
these two points exist only ifLmin , psTy2d , Lmax.
Under this condition, the system exhibits a very singu
behavior: Starting att ­ 0 with m0 fi 0, the energy (m)
will inexorably increase because it will be attracted by t
hyperbolic asymptote, leading to an exponential dilatati
of m (while its time support decreases in the same wa
Indeed, lettn

c be thenth bounce on the fixed mirror of
the pT -periodic trajectory and denote byt the dispersion
of the wave packet aroundtn11

c ; from (7), on one hand,
and from the area-preserving map, on the other hand,
can state thatmn11stn11

c 1 td ­ kstc
bdmnftn

c 1 kstc
b dtg

in the asymptotic regime wheretc
b ­ tc 1 pTy2.

The wave energy densityesx0, t0d is obtained from (4)
and (6) in terms of the functionm0 only as

esx0, t0d ­
1
2

sj≠xAj2 1 j≠tAj2d

­
1
4

fm2
0st0 2 x0d 1 m2

0st0 1 x0dg.

In this resonant case, for increasing time, the localizat
of the beam on the periodic trajectory [correspondi
to the fixed point (m0 ­ 0, tc)] induces a localization
of energy on this trajectory; hence the contribution
esx0, t0d is significant only if t0 6 x0(modT ) is in the
neighborhood oftc.

The total energyEst0d is transformed to an integra
of m

2
0 over time from t0 2 Lst0d to t0 1 Lst0d. Since

m
2
0 dt appears in the energy, the ratioEstn11

c dyEstn
c d

tends to kstc
bd; this leads toan exponential increase

of energy with the time (the same result was foun
in a different way in [3]). More precisely, the energ
increases in geometric progression step by step, each
the (localized) wave packet hits the moving mirror (s
Fig. 2). It is worthwhile to note that in the massles
particle interpretation the energy of the wave is the sum
the energy of each particle which increases by a factok

at each collision on the moving mirror. This interpretatio
is also convenient for finding the force on the mirror
This enhances the analogy between the two views.

Let us consider the quantum case. Following Moo
[1], all physical quantities are deduced from the derivati
of a functionRszd defined by (1), i.e.,f1 1 ÙLstdg ÙRssst 1

Lstdddd ­ f1 2 ÙLstdg ÙRssst 2 Lstdddd: This is exactly (6) if
we identify ÙRstd to m0std. Fulling and Davies [6] have
introduced a general functionf defined by

24pf ­

...
R
ÙR

2
3
2

√
R̈
ÙR

!2

1
p2

2
ÙR2

in order to write the regularized density energy of vacuu
as

kT00 lreg ­ 2ffst0 1 x0d 1 fst0 2 x0dg ,

which is similar to theesx0, t0d we found in the classi-
cal case. Thus, whent . tn

c , ÙR, R̈, and
...
R are multiplied

by k, k2, and k3, respectively, and thus energy densi
409
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FIG. 2. Trajectories of massless particles corresponding to
mapping (6) for a resonating case; for clarity, we represe
(right-hand part) only particles corresponding to the le
traveling initial wave packet. Concentration of particles on o
periodic trajectory show the localization of energy. The lef
hand part shows (solid line) the energym0 associated with each
particle. The dashed line represents the energy of the wave
particles).

increases with a geometric ratiok2; owing to the localiza-
tion of energy, or more precisely, of the vacuum fluctu
tions (in a wave packet oscillating between mirrors), th
energy increases with a ratiok.

The correspondence between waves and massless
ticles permits us to generalize immediately to the situ
tion of two vibrating mirrors. The quality of the mirrors
can also be taken into account by imposing the mix
Neumann-Dirichlet boundary conditions on the field
obtain an equation similar to (4). The same result cou
be obtained in a simpler way by considering a loss of t
massless particles at each bounce. In summary, the
havior of the energy in a cavity is related to the existen
of periodic trajectories in a space-time billiard.

The situation described in [2] deals only with th
limiting case T ­ Lmax, i.e., k ­ 1 and p ­ 2. The
two 2T -periodic trajectories (the second one is just
translation ofT of the first one), hitting the moving mirror
at its maximum separation whereÙLstc

bd ­ 0, attract all
the other trajectories. When the localization is almo
achieved, one can show that the mapping (7) and (8) le
to a quadratic energy growth.

The resonance condition can be generalized:
Lmin , spyqdTy2 , Lmax (q is the number of bounces
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on the fixed wall duringpT ) then the mapping (7) and (8)
can have an even number of hyperbolic fixed points. H
of these points attracts all the other trajectories and le
to localization; whenq ­ 1 these points always exist
For the simplest case of two oscillating mirrors, i.e.,
one-dimensional shaken cavity, the condition of res
nance is rewrittenL0 2 2a , spyqdTy2 , L0 1 2a,
where L0 is the length of the cavity and2a is the
displacement.

In fact, for any general periodic motion of the mirrors
it is possible to find a set of continuous frequenci
leading to exponential growth and localization of energ
both for classical case and for quantum fluctuatio
of vacuum. The behavior of nonrelativistic massiv
particles in a one-dimensional billiard (the so-called Fer
accelerator) does not present such resonances, neithe
classical nor quantum mechanics [7,8].

This localization of the vacuum fluctuations has be
observed by Slusher for the squeezed states of li
(see the review article [9]). The exponential growt
of the energy gives a new motivation for reconsiderin
the experimental situation already regarded in [10] f
observing the photon creation from vacuum. Indee
the approach we have presented here may now m
experiments more feasible for a number of reasons. Fi
imperfections of mirrors can be estimated; in additio
we can treat more general motions of the two mirror
Moreover, and perhaps most importantly, the oscillati
frequency can be lower than natural frequency of the sta
cavity (q ¿ 1) and the resonance width can be calculate
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