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We reveal the fractal nature of patterns arising in random sequential adsorption of particles
continuum power-law size distribution,PsRd , Ra21, R # Rmax. We find that the patterns becom
more and more ordered asa increases, and that the Apollonian packing is obtained at thea ! ` limit.
We introduce the entropy production rate as a quantitative criteria of regularity and observe a tran
from an irregular regime of the pattern formation to a regular one. We develop a scaling theor
relates kinetic and structural properties of the system. [S0031-9007(96)00267-0]

PACS numbers: 81.10.Aj, 02.50.–r, 05.40.+j, 61.43.–j
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A variety of physical, chemical, and biological prob
lems can be modeled by random sequential addit
(RSA) processes [1,2]. Examples include adhesion
proteins and colloidal particles onto surfaces, polym
chain reactions, car parking, etc. The structure of d
ordered media, e.g., noncrystalline and granular mat
als, is also studied within the RSA-type model approac
(cf. [3,4]). In the simplest form, RSA processes can
formulated as sequential addition of objects that can
overlap and, once inserted, cannot move or leave
structure.

Geometric and kinetic characteristics of RSA proces
with identical objects are fairly well known [1,2]. In
contrast, adsorption of mixtures has been addresse
a very few studies [5–10]. If a mixture contains
small number of different sizes, geometric and kine
characteristics are primarily determined by the small
size. In some applications, e.g., for adsorption of la
spheres, or in modeling the structures of the coal grin
and ceramic or metallic powders, the size distribution m
spread for several decades [3,11]. Therefore, before
smallest size will finally win, an interesting intermedia
asymptotics arises. To address this intermediate regi
we consider acontinuousdistribution with sizes ranging
from zero up to some maximal size which we set equa
unity. For definiteness, we choose a power-law form

PsRd ­

Ω
aRa21 for R # 1 ,
0 for R . 1 ,

(1)

for the rate of adsorption of particles with radii in th
interval sR, R 1 dRd (a . 0 due to the normalization
requirement). In the present Letter we show that R
of particles with the size distribution (1) gives rise
fractal structures with a fractal dimension that depends
the exponenta. We also show that in the largea limit
highly regular structures arise which tend to the famo
Apollonian packing asa °! `.

Let Fstd be the fraction of uncovered area at tim
t, and CsR, td is the probability that a disk of radius
0031-9007y96y76(21)y4058(4)$10.00
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R can be placed onto the surface, with a center
some arbitrary point. The definition ofFstd andCsR, td
impliesCs0, td ­ Fstd and

dF

dt
­ 2

Z `

0
dRPsRdCsR, tdVdRd . (2)

Equation (2) is written for the general case of adsorpti
onto a d-dimensional substrate, andVd denotes the
volume of thed-dimensional unit ball.

For the size distribution (1), one can assume a scal
behavior for the functionCsR, td, i.e.,

CsR, td ­ SuFsssRySstdddd . (3)

Here Sstd , t2n is a typical gap between neighborin
adsorbed particles, and the scaling description sho
be relevant in the scaling regime,t ¿ 1 and R ø 1
with RySstd finite. Without loss of generality we can
set Fs0d ­ 1 and thus we getFstd ­ Sustd. Therefore,
the scaling assumption forCsR, td implies Fstd , t2z

with z ­ un. Expressing Eq. (2) in the scaling form
yieldsn ­ sa 1 dd21 andz . aVd

R`

0 dx xa1d21Fsxd.
Hence ford ­ 1 we haven ­ s1 1 ad21 in agreement
with the exact result of Ref. [10], where it was justifie
that for the power-law distribution (1) the scaling behavi
does appear in 1D.

Now we relate the geometric (fractal) properties of t
arising patterns with the kinetics. LetnsRd be a number
of adsorbed particles per unit area, with radii ranging fro
R to R 1 dR. Clearly,

nsRd ­
Z `

0
dt PsRdCsR, td , Ra211sz21dyn . (4)

We can determine the fractal dimensionDf of the pore
space by introducing a cutoff sizee, and calculating the
number of particles per unit volume,Nsed, with radii
greater thane. When this number behaves as a pow
law at small sizes limit, i.e.,

Nsed ­
Z `

e
dR nsRd , e2Df , (5)
© 1996 The American Physical Society
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one concludes that the fractal dimension isDf (see,
e.g., [12]). Notice that the porosity, i.e., the fraction
uncovered area, behaves ased2Df . Combining Eqs. (4)
and (5), we arrive at the following result for the fract
dimension:

Df ­ d 2 zsd 1 ad . (6)

Equation (6) shows that the fractal dimension of arisi
patterns is intimately related to the exponentz, which
describes the pattern formation kinetics. Similar relatio
between kinetics exponents and spatial properties of
patterns were observed for other pattern formation mod
[13,14]. The exact result forz in 1D [10] completely
solves the problem for the one-dimensional systems.

For d $ 2 we could neither find the exact value of th
exponentz nor strictly prove the existence of scaling. T
check the validity of the scaling theory, we performe
numerical study of the 2D adsorption process. For ev
value of a, we generated106 disks, and then compute
the fractal dimension from the relationNsed , e2Df [12–
14]. Typical patterns for small and large values ofa are
shown in Figs. 1 and 2, respectively. Figure 3 gives
fractal dimension as a function of the exponenta. We
also present the value of fractal dimension, calcula
from the scaling relation of Eq. (6), where numeric
results for the kinetic exponentz were used. Figure 3
indicates that the scaling theory works fairly well in th
whole range ofa.

The lack of evident spatial correlations at smalla

(see Fig. 1) suggests that a mean-field theory (MFT)
provide a reasonable approximation in this region. W
develop a MFT similar to the one of Refs. [13,14] an

FIG. 1. A typical pattern fora ­ 0.1. Only a small part of
the total number of disks is shown.
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derived the following equation for the scaling functio
Fsxd:

FsRtnd ­ exp

Ω
2

Z t

0
dt

Z `

0
drPsrd

3 VdfsR 1 rdd 2 rdgFsrtn d
æ

. (7)

The ansatzFsxd ­ exps2A1x 2 · · · 2 Adxdd solves
Eq. (7) in arbitrary dimension. In particular, in 2D th
coefficientsA1 andA2 are determined from

A1 ­ 2psa 1 2da
Z `

0
xae2A1x2A2x2

dx ,

A2 ­
p

2
sa 1 2da

Z `

0
xa21e2A1x2A2x2

dx .
(8)

Solving Eq. (8) and then insertingFsxd ­ e2A1x2A2x2

into the expression z ­ ap
R`

0 dxxa11Fsxd, de-
rived previously, one findsz and Df . In particular,
Df ­ 2 2 pa 2 sp3y2 1 py2da2 1 · · · in the smalla
limit. Mean-field results are given in Fig. 3. Figure
indicates that the MFT works quite well for smalla, and
it can be shown that MFT becomes exact at thea ! 0
limit. It is failed, however, for largea, where the spatial
correlations seem to be very important and the aris
patterns strongly resemble the regular structures (
Fig. 2).

To quantify the increasing regularity of the structure
we introduce an entropy,SN , characterizing the degre
of order ofN-particle patterns. IfCksNd denotes such a
pattern andpsCkd denotes the probability of that pattern

FIG. 2. The same as in Fig. 1;a ­ 50.
4059
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he
FIG. 3. The fractal dimensionDf versusa. Inset: kinetic exponentz versusa. The mean-field results are obtained from t
numerical solution of Eq. (8).
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one can define the Shannon entropy [15,16]:

SN ­ 2
X
Ck

psCkd log2 psCkd . (9)

As it follows from Eq. (9),SN ­ 0 for a regular pattern,
since only one definite configuration with the probabili
p ­ 1 contributes to the entropy.SN rapidly increases
with an increasing number of possible configuration
i.e., with decreasing order. The closely related va
dSN ydN . SN11 2 SN gives the entropy production rat
and characterizes the regularity of the pattern format
process.

To find the entropy production rate, we first compu
the conditional entropySN fCksN 2 1dg of the N disks
for the given patternCksN 2 1d of N 2 1 disks. The
conditional entropy is determined and calculated as f
lows: TheN th disk added to the patternCksN 2 1d can
be treated as a point in the configurationsx, y, Rd space,
wherex and y are coordinates of the disk center, andR
the disk radius. We divided the continuous configurati
space into sufficiently small discrete cells and enumera
these cells (for computations, we used,107 cells). Then,
we introduced the probabilitiespi that the next disk comes
to theith cell for the given configurationCksN 2 1d, and
calculated the conditional entropy asSN fCksN 2 1dg ­
2

P
i pi log2 pi. The probabilitiespi can be determined

numerically for any given configurationCksN 2 1d of
N 2 1 disks. Namely,pi ­ AiR

a21
i y

P
j AjRa21

j , where
Ai ­ 0 if the disk corresponding to theith cell over-
laps with some disk in the patternCksN 2 1d; otherwise,
Ai ­ 1.

The definitions of the conditional and full entropy the
allows us to find the entropy production rate,SN11 2 SN ,
4060
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by performing the averaging of the conditional entrop
SN fCksN 2 1dg over all possible configurationsCksN 2

1d of N 2 1 disks. In practice, the averaging wa
performed over a number of (,102) Monte Carlo runs.

To compare the entropy production rate for differe
values ofa, we plot dSN ydN as a function of the free
areaF (see Fig. 4). Figure 4 shows the striking behavi
of the entropy production rate at very largea. At the
beginning of the process of pattern formation (i.e.,
F ø 1), it decreases slowly in the same manner as
small a, but at F ø 0.55 a sharp decay to a (small
plateau value is observed. One can interpret such typ
behavior as a transition from a regime of “low regularity
to a regime of “high regularity” in the pattern formatio
process. The threshold value,F ø 0.55, is close to the
jamming density,F` ­ 0.542 . . ., of the ordinary RSA
of identical disks on a plane. The transition can
understood as follows: At the first “nonregular” stage
the process, random patterns mainly composed of di
with R ­ 1 arise. After the jamming limit is achieved
the rule “insert the disk of maximal possible radius
starts to work [as it follows from Eq. (1) in the limit
a °! `], and much more regular patterns are produc
This transition corresponds to the sharp decrease of
entropy production rate observed in Fig. 4.

Now we argue that the fractal dimension of the patter
arising at the limita ! ` tends to that of the famous
Apollonian packing, the oldest known fractal constructio
(see [17]). To realize this we notice that in accordan
with the rule “insert the disk of the maximal size” tha
works at F , F`, every new added disk touches (a
least) three other ones. Therefore, after some time,
entire free area will be scattered into a finite numb
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FIG. 4. The entropy production rate versus the uncovered areaF for different values ofa.
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(say L) of curvilinear triangles, confined by disks o
radii sal , bl, cld, l ­ 1, . . . , L. Contribution to the free
area from the other curvilinear polygons (confined b
4, 5, etc., touching disks) is negligible if time is larg
enough. Filling of these uncovered curvilinear triangle
is performed in the very same way as in the Apollonia
packing, namely, every next disk placed touches fro
the inside the three outer touching disks. The frac
dimension of the pore space, obtained by the Apolloni
filling, does not depend on the starting setsal , bl, cld and
equals toDA ­ 1.305 . . . [17]. Thus, we conclude that
the fractal dimension of the patterns arising ata ! `

coincides with that of the Apollonian packing.
In summary, we have investigated the adsorption

netics and spatial properties of the arising patterns
a random sequential adsorption of particles with powe
law size distribution. We have developed a scaling a
proach and verified scaling description by comparing w
exact results in one dimension and numerical results
two dimensions. We have found that arising patter
have the fractal dimensionDf that sensitively depends
on the power-law exponent of the particle size dist
bution and is intimately related to the kinetic expone
of the time-dependent coverage. We have deduced
when a increases from0 to `, Df decreases from 2 to
DA ­ 1.305 . . . of the Apollonian packing. We have ob
served that the regularity of patterns increases with
creasinga, and introduce the entropy production rate as
quantitative criteria of the regularity.
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