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We reveal the fractal nature of patterns arising in random sequential adsorption of particles with
continuum power-law size distributio®(R) ~ R*~!, R = R,... We find that the patterns become
more and more ordered asincreases, and that the Apollonian packing is obtained arthe o limit.

We introduce the entropy production rate as a quantitative criteria of regularity and observe a transition
from an irregular regime of the pattern formation to a regular one. We develop a scaling theory that
relates kinetic and structural properties of the system. [S0031-9007(96)00267-0]

PACS numbers: 81.10.Aj, 02.50.—r, 05.40.+j, 61.43.—

A variety of physical, chemical, and biological prob- R can be placed onto the surface, with a center at
lems can be modeled by random sequential additiosome arbitrary point. The definition @ () andV(R, 1)
(RSA) processes [1,2]. Examples include adhesion ofmpliesW¥(0,¢) = ®(r) and
proteins and colloidal particles onto surfaces, polymer dP
chain reactions, car parking, etc. The structure of dis- o
ordered media, e.g., noncrystalline and granular materi- !
als, is also studied within the RSA-type model approacheEquation (2) is written for the general case of adsorption
(cf. [3,4]). In the simplest form, RSA processes can beonto a d-dimensional substrate, anfl, denotes the
formulated as sequential addition of objects that cannotolume of thed-dimensional unit ball.
overlap and, once inserted, cannot move or leave the For the size distribution (1), one can assume a scaling
structure. behavior for the functionl'(R, ¢), i.e.,

_Ge_omet.ric and'kinetic chargcteristics of RSA processes W(R,1) = S'F(R/S(1)) . 3)
with identical objects are fairly well known [1,2]. In _ . _ _
contrast, adsorption of mixtures has been addressed fdere S(z) ~ ¢~ is a typical gap between neighboring
a very few studies [5—10]. If a mixture contains aadsorbed particles, and the scaling description should
small number of different sizes, geometric and kineticPe relevant in the scaling regime,> 1 and R <1
characteristics are primarily determined by the smalleswith R/S(z) finite. Without loss of generality we can
size. In some applications, e.g., for adsorption of latexs€tF(0) = 1 and thus we ge® () = §°(r). Therefore,
spheres, or in modeling the structures of the coal grindghe scaling assumption fo¥' (R, 7) implies (1) ~ 7+
and ceramic or metallic powders, the size distribution mayVith z = 6v. Expressing Eq. (2) in the scaling form
spread for several decades [3,11]. Therefore, before théelds v = (a + d)™' andz = a Qg [ dx x* "7 F(x).
smallest size will finally win, an interesting intermediate Hence ford = 1 we haver = (1 + )~ in agreement
asymptotics arises. To address this intermediate regimd/ith the exact result of Ref. [10], where it was justified
we consider acontinuousdistribution with sizes ranging that for the power-law distribution (1) the scaling behavior
from zero up to some maximal size which we set equal t¢loes appear in 1D.

unity. For definiteness, we choose a power-law form Now we relate the geometric (fractal) properties of the
arising patterns with the kinetics. LetR) be a number

P(R) = {aRa_l forkR =1, (1) of adsorbed particles per unit area, with radii ranging from
0 for R > 1, RtOR + dR. Clearly,

for the rate of adsorption of particles with radii in the * am1+(—1)/v
interval (R,R + dR) (a > 0 due to the normalization n(R) = ]0 dit P(R)W(R,1) ~ R - (4)
requirement). In the present Letter we show that RSA i , i
of particles with the size distribution (1) gives rise to We can determine the fractal dimensiony of the pore
fractal structures with a fractal dimension that depends ogPac€ by introducing a cutoff sizg and calculating the
the exponentr. We also show that in the large limit ~ number of particles per unit volumey(e), with radii
highly regular structures arise which tend to the famougreater thane. When this number behaves as a power
Apolionian packing agr — . law at small sizes limit, i.e.,

Let ®(r) be the fraction of uncovered area at time * D
t, and W(R,¢) is the probability that a disk of radius N(e) = ]6 dR n(R) ~ €7, ()

- —]deP(R)‘I’(R,I)Qde- (2)
0
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one concludes that the fractal dimension iy (see, derived the following equation for the scaling function
e.g., [12]). Notice that the porosity, i.e., the fraction of F(x):
uncovered area, behaves &5 ”s. Combining Egs. (4)

t <]
and (5), we arrive at the following result for the fractal F(gr;”) = exp{ — f de dpP(p)
dimension: 0 0

Dy —d—d+a). ©) X 0R + ) = oW o] ()

Equation (6) shows that the fractal dimension of arising The ansatzF
patterns is intimately relate_d to_thg expo.na.r,ltwhlch. Eq. (7) in arbitrary dimension. In particular, in 2D the
describes t'he pattern formation klnetlcs. Similar .relat'on%oefficientsAl andA, are determined from

between kinetics exponents and spatial properties of the
patterns were observed for other pattern formation models
[13,14]. The exact result for in 1D [10] completely
solves the problem for the one-dimensional systems.

Ford = 2 we could neither find the exact value of the o F a1 —A—Aon? (8)
exponent; nor strictly prove the existence of scaling. To Ay = 7(‘“ + 2)“f0 roe dx .
check the validity of the scaling theory, we performed
numerical study of the 2D adsorption process. For everyolving Eq. (8) and then inserting'(x) = e
value of a, we generated0°® disks, and then computed into the expression z = am [; dxx* "' F(x), de-
the fractal dimension from the relatioi(e) ~ e ?s [12—  rived previously, one finds and D;. In particular,
14]. Typical patterns for small and large valuescore Dy =2 — wa — (732 + 7/2)a? + --- in the smalla
shown in Figs. 1 and 2, respectively. Figure 3 gives thdimit. Mean-field results are given in Fig. 3. Figure 3
fractal dimension as a function of the exponent We indicates that the MFT works quite well for small and
also present the value of fractal dimension, calculatedt can be shown that MFT becomes exact at the» 0
from the scaling relation of Eq. (6), where numericallimit. It is failed, however, for larger, where the spatial
results for the kinetic exponent were used. Figure 3 correlations seem to be very important and the arising
indicates that the scaling theory works fairly well in the patterns strongly resemble the regular structures (see
whole range ofx. Fig. 2).

The lack of evident spatial correlations at small To quantify the increasing regularity of the structures,
(see Fig. 1) suggests that a mean-field theory (MFT) cawe introduce an entropy§y, characterizing the degree
provide a reasonable approximation in this region. Weof order of N-particle patterns. IIC(N) denotes such a
develop a MFT similar to the one of Refs. [13,14] andpattern andp(C;) denotes the probability of that pattern,

(x) = exp(—A1x — --- — Ayx?) solves

o

A =27(a + 2)a / x%e A A gy
0

7A1x7A2x2

FIG. 1. A typical pattern fore = 0.1. Only a small part of
the total number of disks is shown. FIG. 2. The same as in Fig. &, = 50.
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FIG. 3. The fractal dimensio®, versusa. Inset: kinetic exponent versusa. The mean-field results are obtained from the
numerical solution of Eq. (8).

one can define the Shannon entropy [15,16]: by performing the averaging of the conditional entropy
Sy[Cr(N — 1)] over all possible configuration§,(N —
Sy = — > p(Cu)log, p(Cy). (9) 1) of N — 1 disks. In practice, the averaging was
Ce performed over a number of{10%) Monte Carlo runs.
As it follows from Eq. (9),Sy = 0 for a regular pattern, To compare the entropy production rate for different

since only one definite configuration with the probability values of o, we plot dSy/dN as a function of the free
p = 1 contributes to the entropy.Sy rapidly increases area®d (see Fig. 4). Figure 4 shows the striking behavior
with an increasing number of possible configurationsof the entropy production rate at very large At the
i.e., with decreasing order. The closely related valuebeginning of the process of pattern formation (i.e., at
dSy/dN = Sy+1 — Sy gives the entropy production rate ® = 1), it decreases slowly in the same manner as for
and characterizes the regularity of the pattern formatiosmall «, but at ® = 0.55 a sharp decay to a (small)
process. plateau value is observed. One can interpret such type of
To find the entropy production rate, we first computebehavior as a transition from a regime of “low regularity”
the conditional entropySy[Cr(N — 1)] of the N disks to a regime of “high regularity” in the pattern formation
for the given patternCi(N — 1) of N — 1 disks. The process. The threshold valu®, = 0.55, is close to the
conditional entropy is determined and calculated as foljamming density,®.. = 0.542..., of the ordinary RSA
lows: The Nth disk added to the patter@i,(N — 1) can  of identical disks on a plane. The transition can be
be treated as a point in the configurationy, R) space, understood as follows: At the first “nonregular” stage of
wherex andy are coordinates of the disk center, aRd the process, random patterns mainly composed of disks
the disk radius. We divided the continuous configurationwith R = 1 arise. After the jamming limit is achieved,
space into sufficiently small discrete cells and enumeratethe rule “insert the disk of maximal possible radius”
these cells (for computations, we used0’ cells). Then, starts to work [as it follows from Eq. (1) in the limit
we introduced the probabilitigs; that the next disk comes « — o], and much more regular patterns are produced.
to theith cell for the given configuratiod’,(N — 1), and  This transition corresponds to the sharp decrease of the
calculated the conditional entropy &8s[Cx(N — 1)] =  entropy production rate observed in Fig. 4.
— > pilog, p;. The probabilitiesp; can be determined Now we argue that the fractal dimension of the patterns
numerically for any given configuratio@,(N — 1) of  arising at the limita — o tends to that of the famous
N — 1disks. Namelyp; = A,»R?_I/Z,- A‘,-R.,‘-“_l, where  Apollonian packing, the oldest known fractal construction
A; = 0 if the disk corresponding to théth cell over- (see [17]). To realize this we notice that in accordance
laps with some disk in the pattey (N — 1); otherwise, with the rule “insert the disk of the maximal size” that
A = 1. works at ® < &, every new added disk touches (at
The definitions of the conditional and full entropy then least) three other ones. Therefore, after some time, the
allows us to find the entropy production rafg,+; — S, entire free area will be scattered into a finite number

4060



VOLUME 76, NUMBER 21 PHYSICAL REVIEW LETTERS 20 My 1996

25

20

o

1 0.9 0.8 07 0.6 0.5 04 03 0.2 0.1

FIG. 4. The entropy production rate versus the uncovereddréa different values ofx.
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