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Synchronization Transitions in a Disordered Josephson Series Array
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We show that a current-biased series array of nonidentical Josephson junctions undergoes two
transitions as a function of the spread of natural frequencies. One transition corresponds to the
onset of partial synchronization, and the other corresponds to complete phase locking. In the limit
of weak coupling and disorder, the system can be mapped onto an exactly solvable model introduced
by Kuramoto and the transition points can be accurately predicted.

PACS numbers: 05.45.+b, 74.40.+k, 74.50.+r

Populations of coupled nonlinear oscillators can spon- .. . 1 o
taneously synchronize to a common frequency, despite LO + RO + C Q= Zkzl Pk (2)
differences in their natural frequencies. This remarkable -
phenomenon, known as collective synchronization, hawhereg; is the wave-function phase difference across the
been observed in many physical and biological systemgth Josephson junctiory; is the junction resistancd,
including relaxation oscillator circuits, networks of neu-is the junction critical currentQ is the charge on the
rons and cardiac pacemaker cells, chorusing crickets, aridad capacitor,/i is Planck’s constant divided bgr,
fireflies that flash in unison [1,2]. and ¢ is the elementary charge. The overdot denotes

In a pioneering study, Winfree [3] developed a mathe-differentiation with respect to time. The voltage drop
matical framework for studying large populations of limit- across thgth junction is (i/2e)¢;. Note that the all-
cycle oscillators, and he showed that the onset of synchrae-all coupling in Eq. (2) arises naturally from the circuit
nization is analogous to a thermodynamic phase transitioranalysis rather than from a mean-field approximation.
This observation was refined by Kuramoto [4] who pro- The key feature of the dynamics is the competition be-
posed and analyzed an exactly solvable mean-field modéleen the intrinsic disorder (i.e., variations in the junction
of coupled oscillators with distributed natural frequenciesresistances and critical currents) and the coupling between
The Kuramoto model has stimulated a great deal of theathe junctions mediated by the load. In the absence of
retical work [5—12], thanks to its analytical tractability, a load the junctions are dynamically uncoupled and (for
but it has not been used to describe any experimentdg > I;) the jth element executes voltage oscillations at
system. its bare frequency; = (2er;/i) (I3 — 17)"/2. With the

In this Letter we show that a series array of Josephsofbad, however, the nonlinear interactions cause the ele-
junctions provides a physical realization of the Kuramotoments to oscillate at shifted (dressed) frequengiag.
model. This connection allows us to give the first ana-n particular, junctions with different bare frequencies can
lytical treatment of mutual synchronization in a Joseph-oscillate at a common frequency. Typically this requires
son array for the realistic case where the junctions aréhe coupling to be large enough to overcome the intrin-
nonidentical. We find that the array displays two transi-sic spread in the natural frequencigs;}; the larger the
tions: the first corresponds to the onset of dynamical orcoupling, the greater the number of elements entrained
der, while the second coincides with total phase lockingo a common frequency. In the design of useful high-
and the quenching of fluctuations. We calculate that botlirequency voltage sources the goal is to achieoen-
of these transitions are experimentally accessible with explete frequency locking (and in addition, stable in-phase
isting technology. oscillations).

Consider a series array @¥ junctions, biased with  Figure 1 shows the results of simulations using typical
a constant curreniz and subject to a load with induc- parameter values for Josephson junctions. Shown is
tanceL, resistancer, and capacitanc€. For resistively the fraction of junctions locked to a single common
shunted junctions with negligible capacitance, the governfrequency as a function of the spreadn critical currents.
ing circuit equations are (Junctionsi and j are frequency locked ifp; — ¢,

ho . s . remains bounded as— «.) The critical currents were

2er; ¢+ 1jsing; + O =1, j= LN, (@) chosen to match a normalized parabolic distribution with
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FIG. 1. Fraction of junctions locked to a common frequency 10 i‘“\ i
as a function of the spreahl of critical currents (see textly = T S S A SRR T R
100, Iz = 1.5 mMA,R =50 Q,L =25 pH,C = 0.04 pF,I = 0.0 0.5 10 1‘5_1 20 25 3.0
0.5 mA, and for all junctionsy; = 0.5 Q). Circles correspond o(ps)

to numerical simulations of Egs. (1) and (2). The solid line G.2 P for th f th |
corresponds to Eq. (12) (see text). Power spectra for regimes/C- 2-  Power spectra for the ac component of the total array
@), (b), and (c) are shown in Fig.2. The inset showsvoltage, (7i/2e) (3. ¢ — (X ¢4)), where (---) indicates time

histograms for the bare (thin line) and dressed (thick line)average, for the three different regimes of Fig. 1. fajy
frequencies at the point = 0.06 mA. 0.005 mA. (b) A = 0.06 mA. (c) A = 0.14 mA.
mean] and full width2A do; de; @
3 - w;  (er;/R) (g — I;sing;) "
P(I) = ;5[0 = (1 = D). (3) i Benm s = 1sind) .
4A The anglesg; are natural in the sense that (in the

There are three different dynamical regimes. Decreasingncoupled limit) they undergo uniform rotation, while
the disorder from a large value there is a transition athe ¢; do not. Using the trigonometric relatiofy —

A = A. signaling the onset of frequency locking; for I;sing; = (I — 17)/(I — I;cosd;) obtained by inte-
A;p < A <A, there is partial frequency locking; for grating Eq. (4), Eq. (1) becomes

A < A; the frequency locking is complete. The inset ) 00

shows the distribution of bare and dressed frequencies at 0, = w; — ﬁ (Ip — I;co9;) . (5)

A = 0.06 where about half of the junctions are locked. © I — ] ' ‘

Figure 2 shows the corresponding power spectra foln the weak-coupling limit, and for identical junctions
the total voltage across the array, for representativ I, =1, r, =r, wj = w), Swift and co-workers have
points in the three regimes [labeled (a), (b), and (c) inshown how this system can be reduced using the method
Fig. 1]. One sees that the onset of order is signaleéf averaging [13,14]. The basic idea is that one can
by the birth of a sharp spike at the locking frequencyreplace the coupling terms on the right side by their
[compare Figs. 2(b) and 2(c)], while the complete-lockingtime average over one period, which generates higher
transition coincides with the quenching of low-frequencyorder corrections. The variabl@, meanwhile, can be
fluctuations [compare Figs. 2(a) and 2(b)]. We have als@jiminated by noting that the load equation (2) is just a
run these simulations including Johnson noiserpmnd  quasiperiodically driven linear oscillator, which can be
R for a temperature of K: Fig. 2 simply acquires a flat splved explicitly using the uncoupled solution of Eq. (5).

noise floor atl0~>. As shown in [14], the first-order averaged version of
We now show that the Josephson system can bggq. (5)is

mapped onto Kuramoto’s model, a connection which N

enables us to make quantitative predictions about the gj - w — LS Z sin; — 6; + a), (6)
observed dynamics. This can be done in the limit of N 4o

weak coupling and disorder by extending an averaging pare

procedure previously applied to identical junction arrays.

The first step is to introduce “natural angle&; defined K = NrwQerlp/h — ) %
by [(Lw? — 1/C)? + w2(R + Nr)?]\/2
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and Having established the connection with the Kuramoto
Lo®> - 1/C model, we are in a position to make quantitative predic-
Coxx (8) tions about the dynamical transitions in the Josephson ar-

T [(Lw? — 1/C2 + w?(R + Nr)2Ji2° .
(Lo /€) ™ )] . ray. For the parameter values used to generate Fig. 1, the
where —7/2 = o = 0. The same steps can be carriedqgrresponding Kuramoto parameters &re= 0.0601 and

out for the case of small disorder, with the result cosy = 0.3878. The solid line of Fig. 1 shows the pre-
) K & diction from Egs. (10) and (12), for the fraction of locked
0 = w; — N Z sin@; — 6, + a), (9)  junctions which agrees fairly well with the simulations.
k=1

We turn next to the possibility of experimental obser-
whereK and cos are given by thesameexpressions (7) vation of these transitions in Josephson arrays. Again the
and (8) provided the quantitids r, andw are replaced, connection with the Kuramoto model gives us substan-
respectively, by the mean values bf, r;, and w; (I, tial insight. The first consideration is that in the in-phase
7j, and @). In the small disorder regime that we are state should be an attractor when there is no disorder
considering@ = (2¢7/h) (I3 — I?)'/2. (w; = @). A linear stability analysis shows that this is

Equation (9) is the Kuramoto model [15]. A great dealstable if and only ifK cosa > 0. From Eq. (8) this re-
is known about the dynamics of this system in the lasge- quires thatl//LC < @. Second, in order to optimize
limit. A useful measure of the coherence of the array ighe sensitivity of the measurements, we want to maximize
the complex order parametete’? = (1/N)Y; e!%. For the power delivered to the load, which entails matching
a unimodal bare frequency distributigiiw), and in the the load and array resistances, Bo= N7. Third, for
largeN limit, o settles down to a constant value apid  superconductor-normal-superconductor junctions, fluctua-
rotates uniformlys = ¢. Sakaguchi and Kuramoto [6] tions in the critical currentg; are linked to those in the
showed that the quantities and () can be determined resistances;, such that the produdir; is fixed for all the
from the self-consistency relation junctions [16]. For a givem\ this increases the spread
)2 in {w;} and so increases the effective disorder. Fourth,
ogeld = Kg-|:i_] +f dé g(Q + Ko siné)e'® Cgsg] it is not practical to vary the level of disorder; rather,
—7/2 the most natural control parameter is the bias curfgnt
Of course, varyindgp affects simultaneously the coupling
where strengthk, the phase shiii, and the bare frequencias.
These can be determined according to the explicit for-
7/2  cost(1 — cost) mulas given above. Generally speaking,/aslecreases
J = [0 dg SIM& 6@+ —g@=wl.  foma large value, the trend is that the frequency spread
(11) decreases, whereas the effective coupling strekigthsy
first increases, goes through a maximum, and then drops
to zero at the point where the in-phase state loses stability,
atw = (LC)"1/2,

(10)

with u = Ko /siné. Specifically,o acts as an order pa-
rameter for the onset of frequency locking; the critica

point K = K. is where theos > 0 solution of Eq. (10) R . .
branches off of ther = 0 solution. The locking fre- Fifth, it is not practical to measure directly the number

quencyQ can be shifted from the mean bare frequenC)Pf frequency-locked junctions; hqwever, the transitions
@, as seen in Fig. 1 (inset). In the Kuramoto modelShould be observable by measuring the freqqe_ncy spec-
this effect is due to the nonzero value far as can be trum of the tota] vqltage across the'load. Specmcal!y, the
seen from the simple case without disorder: from Eq. (g)onset of order is signaled by the birth of a narrow line at

the in-phase solution i§; = (@ — K sina)t, so that the frequency() [compare Figs. 2(b) and 2(c)]. The strength
locking frequency is givi]en bR = & — stna Aq of this line is proportional to the Kuramoto order pa-

Meanwhile, the fractionf of locked oscillators is rameteror:
simpl 2 -2
Py QO+Ko Aqg = 2Ko B-Zi \/(LQZ —1/C)* + Q2R2. (13)
f= dw g(w) (12) ¢ -
QKo Thus,Aq is a good order parameter for determining the

so that the transition poinK; is the smallestk for  onset of coherence. On the other hadgd, shows no
which f = 1. In the special case whete = 0 andg(w)  dramatic change at the complete-locking transition, and it
is symmetric, further analytic progress is possible (sinceés better to monitor the broadband low-frequency part of
then() andJ = 0), but more typically Egs. (10) and (12) the voltage output, which is quenched at this transition
need to be solved numerically to determine the critica[compare Figs. 2(a) and 2(b)].

points. Note thatk. depends on the local properties of Figure 3 shows the results of simulations that take
g(w) near its mean, whil&; is sensitive to the outlying into account all of the above considerations. Figure 3(a)
values ofw;: in fact, in theN — <o limit this transition  plotsAq and, for comparison, Fig. 3(b) plots the fraction
exists only ifg(w) has finite support. of locked junctions. The junction critical currents were
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