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Synchronization Transitions in a Disordered Josephson Series Array
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We show that a current-biased series array of nonidentical Josephson junctions undergoes two
transitions as a function of the spread of natural frequencies. One transition corresponds to the
onset of partial synchronization, and the other corresponds to complete phase locking. In the limit
of weak coupling and disorder, the system can be mapped onto an exactly solvable model introduced
by Kuramoto and the transition points can be accurately predicted.
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Populations of coupled nonlinear oscillators can spo
taneously synchronize to a common frequency, des
differences in their natural frequencies. This remarka
phenomenon, known as collective synchronization, h
been observed in many physical and biological syste
including relaxation oscillator circuits, networks of ne
rons and cardiac pacemaker cells, chorusing crickets,
fireflies that flash in unison [1,2].

In a pioneering study, Winfree [3] developed a math
matical framework for studying large populations of limi
cycle oscillators, and he showed that the onset of synch
nization is analogous to a thermodynamic phase transit
This observation was refined by Kuramoto [4] who pr
posed and analyzed an exactly solvable mean-field mo
of coupled oscillators with distributed natural frequencie
The Kuramoto model has stimulated a great deal of th
retical work [5–12], thanks to its analytical tractability
but it has not been used to describe any experime
system.

In this Letter we show that a series array of Joseph
junctions provides a physical realization of the Kuramo
model. This connection allows us to give the first an
lytical treatment of mutual synchronization in a Josep
son array for the realistic case where the junctions
nonidentical. We find that the array displays two tran
tions: the first corresponds to the onset of dynamical
der, while the second coincides with total phase lock
and the quenching of fluctuations. We calculate that b
of these transitions are experimentally accessible with
isting technology.

Consider a series array ofN junctions, biased with
a constant currentIB and subject to a load with induc
tanceL, resistanceR, and capacitanceC. For resistively
shunted junctions with negligible capacitance, the gove
ing circuit equations are

h̄
2erj

Ùfj 1 Ij sinfj 1 ÙQ ­ IB, j ­ 1, . . . , N , (1)
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LQ̈ 1 R ÙQ 1
1
C

Q ­
h̄
2e

NX
k­1

Ùfk , (2)

wherefj is the wave-function phase difference across th
jth Josephson junction,rj is the junction resistance,Ij

is the junction critical current,Q is the charge on the
load capacitor,h̄ is Planck’s constant divided by2p,
and e is the elementary charge. The overdot denote
differentiation with respect to time. The voltage drop
across thejth junction is sh̄y2ed Ùfj. Note that the all-
to-all coupling in Eq. (2) arises naturally from the circui
analysis rather than from a mean-field approximation.

The key feature of the dynamics is the competition be
tween the intrinsic disorder (i.e., variations in the junctio
resistances and critical currents) and the coupling betwe
the junctions mediated by the load. In the absence
a load the junctions are dynamically uncoupled and (fo
IB . Ij) the jth element executes voltage oscillations a
its bare frequencyvj ­ s2erjyh̄d sI2

B 2 I2
j d1y2. With the

load, however, the nonlinear interactions cause the e
ments to oscillate at shifted (dressed) frequencieshṽjj.
In particular, junctions with different bare frequencies ca
oscillate at a common frequency. Typically this require
the coupling to be large enough to overcome the intrin
sic spread in the natural frequencieshvjj; the larger the
coupling, the greater the number of elements entrain
to a common frequency. In the design of useful high
frequency voltage sources the goal is to achievecom-
plete frequency locking (and in addition, stable in-phas
oscillations).

Figure 1 shows the results of simulations using typic
parameter values for Josephson junctions. Shown
the fraction of junctions locked to a single common
frequency as a function of the spreadD in critical currents.
(Junctions i and j are frequency locked iffj 2 fi

remains bounded ast ! `.) The critical currents were
chosen to match a normalized parabolic distribution wit
© 1996 The American Physical Society
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FIG. 1. Fraction of junctions locked to a common frequen
as a function of the spreadD of critical currents (see text);N ­
100, IB ­ 1.5 mA, R ­ 50 V, L ­ 25 pH, C ­ 0.04 pF, Ī ­
0.5 mA, and for all junctions,ri ­ 0.5 V. Circles correspond
to numerical simulations of Eqs. (1) and (2). The solid li
corresponds to Eq. (12) (see text). Power spectra for regi
(a), (b), and (c) are shown in Fig. 2. The inset sho
histograms for the bare (thin line) and dressed (thick lin
frequencies at the pointD ­ 0.06 mA.

meanĪ and full width2D

PsId ­
3

4D3
fD2 2 sI 2 Īd2g . (3)

There are three different dynamical regimes. Decreas
the disorder from a large value there is a transition
D ­ Dc signaling the onset of frequency locking; fo
DL , D , Dc there is partial frequency locking; fo
D , DL the frequency locking is complete. The ins
shows the distribution of bare and dressed frequencie
D ­ 0.06 where about half of the junctions are locked.

Figure 2 shows the corresponding power spectra
the total voltage across the array, for representa
points in the three regimes [labeled (a), (b), and (c)
Fig. 1]. One sees that the onset of order is signa
by the birth of a sharp spike at the locking frequen
[compare Figs. 2(b) and 2(c)], while the complete-locki
transition coincides with the quenching of low-frequen
fluctuations [compare Figs. 2(a) and 2(b)]. We have a
run these simulations including Johnson noise onrj and
R for a temperature of4 K: Fig. 2 simply acquires a fla
noise floor at1025.

We now show that the Josephson system can
mapped onto Kuramoto’s model, a connection wh
enables us to make quantitative predictions about
observed dynamics. This can be done in the limit
weak coupling and disorder by extending an averag
procedure previously applied to identical junction arra
The first step is to introduce “natural angles”uj defined
by
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FIG. 2. Power spectra for the ac component of the total ar
voltage, sh̄y2ed s

P Ùfk 2 k
P Ùfkld, where k· · ·l indicates time

average, for the three different regimes of Fig. 1. (a)D ­
0.005 mA. (b) D ­ 0.06 mA. (c) D ­ 0.14 mA.

duj

vj
­

dfj

s2erjyh̄d sIB 2 Ij sinfjd
. (4)

The anglesuj are natural in the sense that (in th
uncoupled limit) they undergo uniform rotation, while
the fj do not. Using the trigonometric relationIB 2

Ij sinfj ­ sI2
B 2 I2

j dysIB 2 Ij cosujd obtained by inte-
grating Eq. (4), Eq. (1) becomes

Ùuj ­ vj 2
vj

ÙQ

I2
B 2 I2

j
sIB 2 Ij cosujd . (5)

In the weak-coupling limit, and for identical junctions
(Ij ­ I, rj ­ r, vj ­ v), Swift and co-workers have
shown how this system can be reduced using the met
of averaging [13,14]. The basic idea is that one c
replace the coupling terms on the right side by the
time average over one period, which generates hig
order corrections. The variableQ, meanwhile, can be
eliminated by noting that the load equation (2) is just
quasiperiodically driven linear oscillator, which can b
solved explicitly using the uncoupled solution of Eq. (5
As shown in [14], the first-order averaged version
Eq. (5) is

Ùuj ­ v 2
K
N

NX
k­1

sinsuj 2 uk 1 ad , (6)

where

K ­
Nrvs2erIByh̄ 2 vd

fsLv2 2 1yCd2 1 v2sR 1 Nrd2g1y2 (7)
405
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cosa ­
Lv2 2 1yC

fsLv2 2 1yCd2 1 v2sR 1 Nrd2g1y2
, (8)

where2py2 # a # 0. The same steps can be carri
out for the case of small disorder, with the result

Ùuj ­ vj 2
K
N

NX
k­1

sinsuj 2 uk 1 ad , (9)

whereK and cosa are given by thesameexpressions (7)
and (8) provided the quantitiesI, r , andv are replaced,
respectively, by the mean values ofIj , rj, and vj (Ī,
r̄j , and v̄). In the small disorder regime that we a
considering,v̄ ­ s2er̄yh̄d sI2

B 2 Ī2d1y2.
Equation (9) is the Kuramoto model [15]. A great de

is known about the dynamics of this system in the largeN
limit. A useful measure of the coherence of the array
the complex order parameterseic ­ s1yNd

P
j eiuj . For

a unimodal bare frequency distributiongsvd, and in the
large-N limit, s settles down to a constant value andc

rotates uniformly,c ­ Vt. Sakaguchi and Kuramoto [6
showed that the quantitiess and V can be determined
from the self-consistency relation

seia ­ Ks

"
iJ 1

Z py2

2py2
dj gsV 1 Ks sinjdeij cosj

#
,

(10)
where

J ­
Z py2

0
dj

cosjs1 2 cosjd
sin3j

fgsV 1 md 2 gsV 2 mdg ,

(11)

with m ­ Ksysinj. Specifically,s acts as an order pa
rameter for the onset of frequency locking; the critic
point K ­ Kc is where thes . 0 solution of Eq. (10)
branches off of thes ­ 0 solution. The locking fre-
quencyV can be shifted from the mean bare frequen
v̄, as seen in Fig. 1 (inset). In the Kuramoto mod
this effect is due to the nonzero value fora, as can be
seen from the simple case without disorder: from Eq. (
the in-phase solution isuj ­ sv̄ 2 K sinadt, so that the
locking frequency is given byV ­ v̄ 2 K sina.

Meanwhile, the fractionf of locked oscillators is
simply

f ­
Z V1Ks

V2Ks

dv gsvd (12)

so that the transition pointKL is the smallestK for
which f ­ 1. In the special case wherea ­ 0 andgsvd
is symmetric, further analytic progress is possible (sin
thenV andJ ­ 0), but more typically Eqs. (10) and (12
need to be solved numerically to determine the criti
points. Note thatKc depends on the local properties
gsvd near its mean, whileKL is sensitive to the outlying
values ofvj: in fact, in theN ! ` limit this transition
exists only ifgsvd has finite support.
406
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Having established the connection with the Kuramo
model, we are in a position to make quantitative pred
tions about the dynamical transitions in the Josephson
ray. For the parameter values used to generate Fig. 1,
corresponding Kuramoto parameters areK ­ 0.0601 and
cosa ­ 0.3878. The solid line of Fig. 1 shows the pre
diction from Eqs. (10) and (12), for the fraction of locke
junctions which agrees fairly well with the simulations.

We turn next to the possibility of experimental obse
vation of these transitions in Josephson arrays. Again
connection with the Kuramoto model gives us substa
tial insight. The first consideration is that in the in-phas
state should be an attractor when there is no disor
(vj ­ v̄). A linear stability analysis shows that this i
stable if and only ifK cosa . 0. From Eq. (8) this re-
quires that1y

p
LC , v̄. Second, in order to optimize

the sensitivity of the measurements, we want to maxim
the power delivered to the load, which entails matchin
the load and array resistances, soR ­ Nr̄. Third, for
superconductor-normal-superconductor junctions, fluctu
tions in the critical currentsIj are linked to those in the
resistancesrj, such that the productIjrj is fixed for all the
junctions [16]. For a givenD this increases the sprea
in hvjj and so increases the effective disorder. Four
it is not practical to vary the level of disorder; rathe
the most natural control parameter is the bias currentIB.
Of course, varyingIB affects simultaneously the coupling
strengthK, the phase shifta, and the bare frequenciesvj.
These can be determined according to the explicit fo
mulas given above. Generally speaking, asIB decreases
from a large value, the trend is that the frequency spre
decreases, whereas the effective coupling strengthK cosa
first increases, goes through a maximum, and then dr
to zero at the point where the in-phase state loses stabi
at v ­ sLCd21y2.

Fifth, it is not practical to measure directly the numbe
of frequency-locked junctions; however, the transition
should be observable by measuring the frequency sp
trum of the total voltage across the load. Specifically, t
onset of order is signaled by the birth of a narrow line
frequencyV [compare Figs. 2(b) and 2(c)]. The strengt
AV of this line is proportional to the Kuramoto order pa
rameters:

AV ­ 2Ks
I2

B 2 Ī2

v̄2Ī

q
sLV2 2 1yCd2 1 V2R2 . (13)

Thus, AV is a good order parameter for determining th
onset of coherence. On the other hand,AV shows no
dramatic change at the complete-locking transition, and
is better to monitor the broadband low-frequency part
the voltage output, which is quenched at this transiti
[compare Figs. 2(a) and 2(b)].

Figure 3 shows the results of simulations that ta
into account all of the above considerations. Figure 3
plots AV and, for comparison, Fig. 3(b) plots the fractio
of locked junctions. The junction critical currents wer
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FIG. 3. Dependence of (a)AV and (b) fraction of locked
junctions vs the bias currentIB, for N ­ 100, R ­ 50 V,
L ­ 25 pH, C ­ 0.04 pF, Ī ­ 0.5 mA, and r̄ ­ 0.5 V. The
solid lines correspond to Eq. (13) in (a) and to Eq. (12)
(b). Symbols correspond to numerical simulations of Eqs. (
and (2), circles forD ­ 0.001 mA, and asterisks forD ­
0.002 mA.

chosen as before, according to Eq. (3), and the resistan
were taken such thatrj ­ r̄ ĪyIj. There are two regimes
whereAV is very small. ForD ­ 0.001 mA (circles), the
transitions marking the onset of order (atIB ø 4.3 mA)
and the loss of dynamical stability (atIB ø 0.8 mA, still
well above the critical current0.5 mA) are clearly visible
in the behavior ofAV. The transitions into and out of the
fully locked state, as expected, are not reflected inAV .
For D ­ 0.002 mA (asterisks) full locking never takes
place whereas the other transitions are still clearly visib
[17]. For both data sets the theory does an excellent j
The power delivered to the load at the locking frequen
V is PV ­ fA2

Vy2R; for these parameters this is abou
30 nW per junction. This should be sufficient power t
detect using on-chip measurements.

Recently, Watanabe and Swift [18] and Chernikov an
Schmidt [19] showed how to extend the averaging meth
(for arrays of identical junctions) to include junction
capacitance. For sufficiently large bias currents, th
again recover an equation of the form (6). Consequen
in the presence of weak disorder, the system can ag
be related to the Kuramoto model, and the dynamic
transitions described above are expected. Also of gr
current interest is the effect of disorder on sychronizati
in two-dimensional arrays [20,21]; it is an open questio
whether those systems can be related to the Kuram
model.
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