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Universality of Flux Creep in Superconductors with Arbitrary Shape and Current-Voltage Law
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The nonlinear and nonlocal diffusion equation for the relaxing current dengityr) in long
superconductors of arbitrary cross section in a constant perpendicular magneti® fiésdsolved
exactly by separation of variables in the electric fi&lr,7) = f(r)g(z). This solution includes the
limiting cases of longitudinal and transverse geometries and applies to the current-voltade daws
ranging from Ohmic § = 1) to Bean-like § — ») behavior. The electric field profilg(r) weakly
depends om and becomes universal far exceeding=5. At large timesr one findsg o 1/¢%/¢=1
andJ o« 1/¢/0=D for n > 1, andE « J « exp(—t/7,) for n = 1. The contour lines of the creeping
E(r, ) coincide with the field lines oB(r, ¢) in the remanent statg, = 0. [S0031-9007(96)00286-4]

PACS numbers: 74.60.Ge, 74.25.Ha

Type-ll superconductors, in particular the high-su-  vation and by computation to occur also in thin specimens
perconductors, in general are not ideal conductors of ele@f square shape [5].
tric current when put into a magnetic fieR),. Nonzero In the present Letter | show that the exact solution of
resistivity appears when the Abrikosov vortices inducedhe creep problem by separation of variablesHgf, r)
by B, depin due to a current densitly exceeding a crit- is possible for a much more general geometry including
ical value J., or by thermal activation occurring also specimens of finite thickness and arbitrary cross section
at J < J.. The resulting motion of vortices generatesin a perpendicular field, and for all current-voltage laws
an electric fieldE = Bv, where B is the flux density E(J) « J", or, more precisely,
and v the drift velocity. A superconductor may thus E(J) = E\J/J.|" send 1)

be characterized by its current-voltage la&J/), which yielding J(E) = J.|E/E.|"/" senE. This power law is

in general is nonlinear and strongly dependsBnand . . .
9 gy cep Bon observed in numerous experiments and was considered

on the temperatur@. This E(J) characteristic is most I h . . ith 56 d fi
sensitively extracted from magnetization measurement$ ScW1Er€ 1N connection with creep [2,6] and flux pen-
etration and ac susceptibility [4,7—10]. It corresponds

e.g., by slowly increasing or decreasiBy(z) and then O A
g., Dy SIowly go (1) to a logarithmic current dependence of the activation

keeping it at a constant (or zero) value at times o S X
0. During such creep experiments, the magnetic mo_ehnergy({(J) N Igffan(J{J% Wh'CE;S:Trt)eﬂ gtoja; ’2‘“
ment caused by persistent currents relaxes with an a[5- enius law yieldst(J) = E. ex(—U/ = E(U/J0)

: A ; with n = U./kT > 1; it contains only two parameters
proximately logarithmic time law whe#&'(J) is strongly <l L X .

. . s E./J" and n; and it interpolates from Ohmic behavior
noEImear, and exponentially wheli(J) = pJ is linear (n /=Cl) ovenr typical creepr)) behavion (= 10 20) to
(OR?cI:Z)r%tIy Gurevich and co-workers have shown tha“hard" supercond_uctors with Begn—like behavir—é» ”).

' k power law avoids the unphysical behavior/at= 0 ex-

in both longitudinal [1,2] and transverse [2,3] geome-| " . oo ;
tries, corresponding to zero and unity demagnetizing fact"b't(':‘d by the exponential law originally used in Refs. [1-

tors, respectively, the relaxing electric fiel(r, ) is 3] to achieve separation of variables in the creep problem.
universalif E(J) is sufficiently nonlinear. This means Consider the rather general geometry qf a long (along
that after some transient time, E(r, 1) = £(r)g(t) sepa- z) superconductor of arbitrary cross secti®m a perpen-

rates into a universal profilg(r) and a time dependence dicular field B, directed alongy, e.g., a rectangular bar

. .~ filling the volume|x| = a, |y| = b, |z| < o, cf. Fig. 1.
g(t) « 1/(t; + t) = 1/t. The relaxing current density i ' " ’ i
J(r, ) and magnetic moment(s) %fr X (e 0)dr The current density (x, y), electric fieldE(x, y), and vec

X . . . ... tor potentialA(x, y) then point along; and the magnetic
are then obtained by inserting this general electric fiel : - . i i
into the material lawJ = J(E). This separation was nductionB(x,y) = V X A s in thex-y plane. Through

X = . out this Letter | shall assumB = uoH, i.e., disregard
found to E’grr‘zza%tngir?”etohaff/e o e’f]/tgl ‘gﬂh( SO the fiite value of the lower critical fiel.,. This ap-
£ ex;{l(’J 7 )/pj ] an% it £ depeﬁds only on one gpa proximation is excellent when everywhere inside the su-
c — Je 11 - — —
tial coordinate. This applies to slabs [1,2] or cyIinderspe_rlcgngu(CVto>r< c;n)eofrl]aeﬁtier%Bcé.ts I]fcr)cr)rgl;]r evonfet}rl,s,:
[4] in parallel field, and to thin strips or circular disks in ’_LO ~1v24  which has the soI?Jtion 9
perpendicular field [2,3]. The same universality of creep, Ko ’

and the existence in transverse geometry of “neutral lines” A(r) = —Mof &' Q(r,v"\J(¥)) — xB,,
along which the flux-densit(r, ) stays constant during s
creep, was recently demonstrated by magneto-optic obser-  Q(r,r’) = (1/27)In|r — r'|. @3]
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, ) T n/(n—1)

7 v \\\ E(r.1) = chn(r)<t1 - t) . 5)
If we chooser = uoJ.S/47(n — 1)E. we obtainf, (r)
from

%

Y= T
fulr) = =22 ] P Qe ). (6)

§
This nonlinear integral equation is easily solved by iter-
ating the relationfs" ™" = —@x/S) [ 0" starting
(1 2
4
N \

———
=

1
|

m
)

with f,(f’) = 1. The resulting serieg»’, fn ,..., CON-
verges rapidly ifn > 1. For m > 1 one has approxi-

7/
\ matelyf,(zm+1)(r) =~ f,(f")(r)(l + ¢/n™) with ¢ = 1. For
n > 1 (practically forn = 5) the shap¢’,(r) of the elec-
tric field becomes a universal function which depends
NS g e e m ot oo T /l

only on the specimen shape but not on the exponent
TN\ \

=
A
/’—\

anS(r) = fw(r) = _%f dzl”/lnll' - l'll. (7)

N

In the Ohmic casen = 1, the ansatz (5) makes no
sense since the exponemf(n — 1) diverges. For this

N , /// /I\ NN 7777772 special case the integral Eq. (4) is linear since the factor

FIG. 1. The field lines of the inductioB during penetration aj/aE 0= 1/pis thef constant Ohmic conductivity.
of perpendicular flux into long bars with side ratibga = 2 This linear integral equation is solved by the ansatz

(left) and b/a = 0.4 (right) in the Bean limit ¢ = 51) for

applied fieldsB, = 0.3, 0.7 (B, = 0.05, 0.1, 0.2, 0.4, in units E(r,t) = Eofo(r)exp(—t/79), (8)
moJca. The field of full penetration i, = 0.96 (0.87, 0.72, L ) )

0.49, 0.33) forb/a = 4 (2, 1, 0.4, 0.2). The dashed rectangle Yielding the relaxation timey = wooS/A, whereA and
marks the specimen boundary. The bold line (composed of(r) are the lowest eigenvalue and eigenfunction of the
the merging contour lined/|/J. = 0.5,...,0.3) shows the |inear integral equation

penetrating flux front inside whicli = 0 andB = 0.

foe) = =22 [ @l = ). ©
Here and in the followingr denotes(x,y) and the S Js
integration is over the specimen cross sectfon The  From (1) and (5) the current density becomes
induction lawB = dB/dr = —V X E in this geometry

1/(n—1
reduces toA = —E. Combining this with Eq. (2) and J(r,1) = ]C|fn(r)|1/”< T ) / )sgnf,,(r). (10)
with the material lawE = E(J) orJ = J(E), one obtains nt+t
the equation of motion foE(r, 1), For n > 1, t > t; the time factor in (10) equal$ —
9 . ﬁ In(z/7) and one ha$§/| = J. everywhere.

E(r,1) = Moj;dzrl O(r,r') o JE(', 0] + xB,. (3) The magnetization along per unit length along is
Figure 1 shows the magnetic field lines in and around M(t) = ym(t)/L, = f xJ(x,y,t)dxdy . (11)
a rectangular superconductor during flux penetration ob- s
tained from a similar integral equation far ) In (11) the prefactod of m(r) = 1 [r X J(r,t)dr was

In creep experiments one hAg = const; thusB, = 0,  compensated by the contribution to of the U-turning
and Eq. (3) simplifies to currents at the far away ends of the bar at =L,/2 >
. oJ a,b. The resulting factor of 2 inM was sometimes
E(r,t) = Mo] d*r' Q(r,r)E(r', 1) 3E (4)  missed in previous work on slabs.

These results apply to arbitrary specimen cross section
NS For the realistic rectangular cross section = x =
a, —b =y = b, S = 4ab, with B, alongy, the symme-
try J(x,y) = —=J(—x,y) = J(x, —y) (and same symme-
try for E and A) allows one to restrict the integration to
the quarted = x = a,0 =< y = b by using the symmet-
ric kernel

This integral equation describes the nonlinear and no
local diffusion of E(r,¢) during flux creep. For the
power law E(J) (1), one hasdJ/oE = 1/(0E/0J) =
(Je/mE) (E/E,)'/7, yielding

E(r,t) = ’MOIJ/;faﬂr’ (r,r)E(',)EV/"71 . (4a)
nEc

Remarkably, this nonlinear integral equation can be

solved exactly by the ansatz = f(r)g(¢), yielding

G2 4y (2 4+ yE)
4m () (d D)

stm (r, l'/) = (12)

4031



VOLUME 76, NUMBER 21 PHYSICAL REV

IEW LETTERS 20 My 1996

with x+ = x = x/, y= = y * y’. One now has in (5)
T = podeab/[m(n — 1)E.], (13)
a ! b / 2 + 2 2 + 2
e = [T | a2+ 5?6+ )
o a Jo b (x4 y2)(x2 + y1)
X falx!, y)m, (14)

Before discussing the rectangular cross section | firs
show that in the limits of longitudinalb(> «) and trans-

verse b < a) geometry the above expressions reduce to

known and new results. In both limits, the functiahs
E, A, B, and B, depend only ont. One may thus put
y = 0 writing, e.g., E(x,y) = E(x,0) = E(x), and one
getsM = 4b [ xJ(x) dx.

In the transverselimit (strip with thickness2b <
a), the reduced one-dimensional kerneldga,(x,x’) =
2bQ¢ym(x,0,x7,0) = (b/m)In[|x — x'|/(x + x')]. This
kernel was used in calculations of creep [3,10], flux
penetration [9], and nonlinear [10] and linear [11,12] ac
response of superconducting strips. In the creep solutio
(5) one now has (13) and the shapg,(x) is determined

by

1 a + /
@ =+ [ Cavn | S e as)
a Jo - X
Forn > 1 this reproduces thg of Ref. [3],
moJcab 1< a+x x a2—x2>
= —_——— + _ .
E(x,1) mn — 1) t In a—x a In x2
(16)

In thelongitudinallimit (slab with b > a), the reduced
kernel is  Qiong(x,x’) =2 fg dy' Qgym(x,0,x',y’) =
%(lx —x'| =[x + x'|) = —Min(x, x') (the min-
imum value of x, x'), which has the property
Olong = 8(x — x'). One now has in (5)7 from
(13) andf,(x) from

ful) = 2 [0 dx' Min(x, ¥)fu()/", (17)

0=<x<=a, f(—x) = —f(x). For large exponents >
1 this reproduces the result of Gurevich [1,2],
pole x(2a — Ix])
E(x,1) — > .
The unphysical dependence of (13) and f,(x) (17),
but not of E(x,t) (18), on the specimen lengith may
be removed by redefining and f,, multiplying the
integrals in (14) and (17) by a factdr + @b /4a, and
dividing 7 (13) by the same factor. This definition leaves

(18)

the transverse limit unchanged but replaces the prefactorA(xd’) ~ —pole

w/ab in (17) by 7?/44*>. The integral equation (17)
is equivalent to a differential equation with boundary
conditions,

o) = =K fa0)", 2000 = fi(@) =0, (19)
where k = 7/2a in our new definition of r. The
solutions of (19) in the Ohmio(= 1) and Bean#{ = )
limits look very similar, fi(x) = const X sin(wx/2a)
andf.(x) = (7%/8a*)x(2a — |x|), cf. Fig. 2.

4032

2 F--F-—"T--IT--L T 1
7 ]
~~ r .
-*—'_ - 4
o - 4
N~ ‘
- - q
X! 0
t~ T i
X [~ ‘ <— transverse ]
- K b
. i
L, /n 4
S -4
[f,(x)/f(a)] 1
.l.' -
;
L ]
O 1 1 H 1 Il 1 1 1 1
L T T T T T T T T T
=avn
A
- -, -
<
f()/f(a) s transverse i
“
| P
! 2
= T , 7, P ]
o ”, Py 4
~—r /7 2L . .
u v 22 longitudinal .
r\ ot PP
~—~ /¢ Z
4+ e 42 u
< e 2
~ B /7 // 4
L | //',I f"é’ ______ n>9 i
’,
{/I, f”’ .......... - n=5%
/G ¢>' ____________ _ T
_//.:’ £ =2 4
)
V2 4 n=1
7, T
o Il 1 1 1 1 1 1 1 1
0 1
x/a

FIG. 2. Profiles of the electric field& « f,(x) and current
density J « f,(x)"/* during creep in longitudinal (17) and
transverse (15) geometries for exponents: 1, 2, 5, andco.

Creep profilesf,(x) obtained from (14) and (17)
are depicted in Fig. 2 for exponents= 1, 2, 5, andece,
Notice that thef,(x) only weakly depend om but are
qualitatively different for the two geometries: In the
longitudinal limit thef, (x) are maximum at thboundary
x = a, whereas the transvergg(x) exhibit a maximum
inside the specimen, e.g., at= 0.7354 for n = 1 [11]
andx = a/+/2 = 0.707a for n — % [3].

The contour lines of the creeping(x,y,t) inside
and outside rectangular bars with aspect ratiga =
2, 1, and0.2 are depicted in Fig. 3 for the Bean limit
n > 1. These contour lines df are also the field lines
of the inductionB(x, y, ) in the remanent stateNamely,
for n > 1 one gets from (2) and (12) the vector potential

a b
f f stm(r, I'/)dy' dx' — xB,,
0 0 (20)

because one has = J.sgnx during creep. The lines

A = const are the field lines oB = V x (24). For

B, = 0 these lines coincide with the contour linesif=

—A, since during creep the time dependence separates,
E(r,t) = f(r)g(r), Eq. (5). For nonzero applied fieR,,

the linesE = const are still as depicted in Fig. 3. The
field lines of B for B, near the penetration field, look
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and inductionB 1 z, during flux creep is presented
for nonlinear conductors with constitutive laws o« J”
and B = uoH and with rectangular cross secti@a X

2b in a perpedicular fieldB, || y. The obtained two-
dimensional universal profiles & during creep (Fig. 3)
explain how the one-dimensional profiléXx, ) of the
two limiting geometriesb > a and b < a (Fig. 2)
come about. In particular, the maximum &f(x,r) in
transverse geometry, corresponding to a maximum in
the nearly constany = J.(E/E.)'/" = J. and in the
energy dissipatio£J « E'T!/" o« j7*1 s related to the
maximum of the vector potentiad || z (2) caused by
this current and depicted in Fig. 3. This theory is easily
extended to circular disks or cylinders with finite height
by modifying the kerneD(r, r’).

The origin of the well known sign reversal of the
perpendicular compone®®, at the surfaces = *b near
the edgest = *a, occurring in the remanent state and
leading to a neutral line on whicB = B, stays constant
during creep [3,5], becomes clear from the magnetic field
lines in Fig. 3, which coincide with the contour lines of
E andA during creep. Interesting further effects [13] are
expected at positions with smdilif a more generaB(H)
with finite B, is accounted for. Work in this direction is
under way.
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FIG. 3. The contour lines of the electric field = —A
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