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Universality of Flux Creep in Superconductors with Arbitrary Shape and Current-Voltage Law

Ernst Helmut Brandt
Max Planck Institute für Metallforschung, Institut für Physik, D-70506 Stuttgart, Germany

(Received 12 January 1996)

The nonlinear and nonlocal diffusion equation for the relaxing current densityJsr, td in long
superconductors of arbitrary cross section in a constant perpendicular magnetic fieldBa is solved
exactly by separation of variables in the electric fieldEsr, td ­ fsrdgstd. This solution includes the
limiting cases of longitudinal and transverse geometries and applies to the current-voltage lawsE ~ Jn

ranging from Ohmic (n ­ 1) to Bean-like (n ! `) behavior. The electric field profilefsrd weakly
depends onn and becomes universal forn exceedingø5. At large timest one findsE ~ 1ytnysn21d

andJ ~ 1yt1ysn21d for n . 1, andE ~ J ~ exps2tyt0d for n ­ 1. The contour lines of the creeping
Esr, td coincide with the field lines ofBsr, td in the remanent stateBa ­ 0. [S0031-9007(96)00286-4]

PACS numbers: 74.60.Ge, 74.25.Ha
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Type-II superconductors, in particular the high-Tc su-
perconductors, in general are not ideal conductors of e
tric current when put into a magnetic fieldBa. Nonzero
resistivity appears when the Abrikosov vortices induc
by Ba depin due to a current densityJ exceeding a crit-
ical value Jc, or by thermal activation occurring als
at J , Jc. The resulting motion of vortices generat
an electric fieldE ­ By, where B is the flux density
and y the drift velocity. A superconductor may thu
be characterized by its current-voltage lawEsJd, which
in general is nonlinear and strongly depends onBa and
on the temperatureT . This EsJd characteristic is mos
sensitively extracted from magnetization measureme
e.g., by slowly increasing or decreasingBastd and then
keeping it at a constant (or zero) value at timest $

0. During such creep experiments, the magnetic m
ment caused by persistent currents relaxes with an
proximately logarithmic time law whenEsJd is strongly
nonlinear, and exponentially whenEsJd ­ rJ is linear
(Ohmic).

Recently, Gurevich and co-workers have shown t
in both longitudinal [1,2] and transverse [2,3] geom
tries, corresponding to zero and unity demagnetizing
tors, respectively, the relaxing electric fieldEsr, td is
universal if EsJd is sufficiently nonlinear. This mean
that after some transient timet1, Esr, td ­ fsrdgstd sepa-
rates into a universal profilefsrd and a time dependenc
gstd ~ 1yst1 1 td ø 1yt. The relaxing current densit
Jsr, td and magnetic momentmstd ­

1
2

R
r 3 Jsr, tdd3r

are then obtained by inserting this general electric fi
into the material lawJ ­ JsEd. This separation wa
found to be exact if one has≠Ey≠J ­ EyJ1 with con-
stant J1, corresponding to an exponential lawEsJd ­
Ec expfsJ 2 JcdyJ1g, and if E depends only on one spa
tial coordinate. This applies to slabs [1,2] or cylinde
[4] in parallel field, and to thin strips or circular disks
perpendicular field [2,3]. The same universality of cre
and the existence in transverse geometry of “neutral lin
along which the flux-densityBsr, td stays constant durin
creep, was recently demonstrated by magneto-optic ob
4030 0031-9007y96y76(21)y4030(4)$10.00
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vation and by computation to occur also in thin specime
of square shape [5].

In the present Letter I show that the exact solution
the creep problem by separation of variables ofEsr, td
is possible for a much more general geometry includ
specimens of finite thickness and arbitrary cross sec
in a perpendicular field, and for all current-voltage la
EsJd ~ Jn, or, more precisely,

EsJd ­ EcjJyJcjn sgnJ , (1)

yielding JsEd ­ JcjEyEcj1yn sgnE. This power law is
observed in numerous experiments and was consid
elsewhere in connection with creep [2,6] and flux pe
etration and ac susceptibility [4,7–10]. It correspon
to a logarithmic current dependence of the activat
energyUsJd ­ Uc lnsJcyJd, which inserted into an Ar-
rhenius law yieldsEsJd ­ Ec exps2UykT d ­ EcsJyJcdn

with n ­ UcykT ¿ 1; it contains only two parameter
EcyJn

c and n; and it interpolates from Ohmic behavio
(n ­ 1) over typical creep behavior (n ­ 10, . . . , 20) to
“hard” superconductors with Bean-like behavior (n ! `).
A power law avoids the unphysical behavior atJ ­ 0 ex-
hibited by the exponential law originally used in Refs. [1
3] to achieve separation of variables in the creep probl

Consider the rather general geometry of a long (alo
z) superconductor of arbitrary cross sectionS in a perpen-
dicular field Ba directed alongy, e.g., a rectangular ba
filling the volume jxj # a, j yj # b, jzj , `, cf. Fig. 1.
The current densityJsx, yd, electric fieldEsx, yd, and vec-
tor potentialAsx, yd then point alongz and the magnetic
inductionBsx, yd ­ = 3 A is in thex-y plane. Through-
out this Letter I shall assumeB ­ m0H, i.e., disregard
the finite value of the lower critical fieldBc1. This ap-
proximation is excellent when everywhere inside the
perconductor one hasB . 2Bc1. From J ­ = 3 H ­
m

21
0 = 3 s= 3 Ad one then gets for our geometryJ ­

2m
21
0 =2A, which has the solution

Asrd ­ 2m0

Z
S

d2r 0 Qsr, r0dJsr0d 2 xBa ,

Qsr, r0d ­ s1y2pd lnjr 2 r0j . (2)
© 1996 The American Physical Society
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FIG. 1. The field lines of the inductionB during penetration
of perpendicular flux into long bars with side ratiosbya ­ 2
(left) and bya ­ 0.4 (right) in the Bean limit (n ­ 51) for
applied fieldsBa ­ 0.3, 0.7 (Ba ­ 0.05, 0.1, 0.2, 0.4, in units
m0Jca. The field of full penetration isBp ­ 0.96 (0.87, 0.72,
0.49, 0.33) forbya ­ 4 (2, 1, 0.4, 0.2). The dashed rectang
marks the specimen boundary. The bold line (composed
the merging contour linesjJjyJc ­ 0.5, . . . , 0.3) shows the
penetrating flux front inside whichJ ­ 0 andB ­ 0.

Here and in the followingr denotes sx, yd and the
integration is over the specimen cross sectionS. The
induction law ÙB ­ ≠By≠t ­ 2= 3 E in this geometry
reduces toÙA ­ 2E. Combining this with Eq. (2) and
with the material lawE ­ EsJd or J ­ JsEd, one obtains
the equation of motion forEsr, td,

Esr, td ­ m0

Z
S

d2r 0 Qsr, r0d
≠

≠t
JfEsr0, tdg 1 x ÙBa . (3)

Figure 1 shows the magnetic field lines in and arou
a rectangular superconductor during flux penetration
tained from a similar integral equation forA.

In creep experiments one hasBa ­ const; thusÙBa ­ 0,
and Eq. (3) simplifies to

Esr, td ­ m0

Z
d2r 0 Qsr, r 0d ÙEsr0, td

≠J
≠E

. (4)

This integral equation describes the nonlinear and n
local diffusion of Esr, td during flux creep. For the
power law EsJd (1), one has≠Jy≠E ­ 1ys≠Ey≠Jd ­
sJcyhEd sEyEcd1yh , yielding

Esr, td ­
m0Jc

nE
1yn
c

Z
d2r 0 Qsr, r0d ÙEsr0, tdEs1ynd21 . (4a)

Remarkably, this nonlinear integral equation can
solved exactly by the ansatzE ­ fsrdgstd, yielding
e
of

d
b-

n-

e

Esr, td ­ Ecfnsrd
µ

t

t1 1 t

∂nysn21d
. (5)

If we chooset ­ m0JcSy4psn 2 1dEc we obtainfhsrd
from

fnsrd ­ 2
4p

S

Z
d2r 0 Qsr, r0dfnsr0d1yn. (6)

This nonlinear integral equation is easily solved by it
ating the relationf

sm11d
n ­ 2s4pySd

R
Qf

smd1yn
n starting

with f
s0d
n ­ 1. The resulting seriesf

s1d
n , f

s2d
n , . . . , con-

verges rapidly ifn . 1. For m ¿ 1 one has approxi-
matelyf

sm11d
n srd ø f

smd
n srd s1 1 cynmd with c ø 1. For

n ¿ 1 (practically forn $ 5) the shapefnsrd of the elec-
tric field becomes a universal function which depen
only on the specimen shape but not on the exponentn,

fn$5srd ø f`srd ­ 2
2
S

Z
S

d2r 0 lnjr 2 r0j . (7)

In the Ohmic casen ­ 1, the ansatz (5) makes n
sense since the exponentnysn 2 1d diverges. For this
special case the integral Eq. (4) is linear since the fac
≠Jy≠E ­ s ­ 1yr is the constant Ohmic conductivity
This linear integral equation is solved by the ansatz

Esr, td ­ E0f0srd exps2tyt0d , (8)

yielding the relaxation timet0 ­ m0sSyL, whereL and
f0srd are the lowest eigenvalue and eigenfunction of
linear integral equation

f0srd ­ 2
2L

S

Z
S

d2r 0 lnjr 2 r0jf0sr0d . (9)

From (1) and (5) the current density becomes

Jsr, td ­ Jcj fnsrdj1yn

µ
t

t1 1 t

∂1ysn21d
sgnfnsrd . (10)

For n ¿ 1, t ¿ t1 the time factor in (10) equals1 2
1

n21 lnstytd and one hasjJj ø Jc everywhere.
The magnetization alongy per unit length alongz is

Mstd ­ ŷmstdyLz ­
Z

S
xJsx, y, td dx dy . (11)

In (11) the prefactor12 of mstd ­
1
2

R
r 3 Jsr, tdd3r was

compensated by the contribution tom of the U-turning
currents at the far away ends of the bar atz ­ 6Lzy2 ¿
a, b. The resulting factor of 2 inM was sometimes
missed in previous work on slabs.

These results apply to arbitrary specimen cross sec
S. For the realistic rectangular cross section2a # x #

a, 2b # y # b, S ­ 4ab, with Ba alongy, the symme-
try Jsx, yd ­ 2Js2x, yd ­ Jsx, 2yd (and same symme
try for E and A) allows one to restrict the integration t
the quarter0 # x # a, 0 # y # b by using the symmet-
ric kernel

Qsymsr, r0d ­
1

4p
ln

sx2
2 1 y2

2d sx2
2 1 y2

1d
sx2

1 1 y2
2d sx2

1 1 y2
1d

, (12)
4031



VOLUME 76, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 1996

r

i

e

t

al

tes,

e

with x6 ­ x 6 x0, y6 ­ y 6 y0. One now has in (5)

t ­ m0Jcabyfpsn 2 1dEcg , (13)

fnsx, yd ­
Z a

0

dx0

a

Z b

0

dy0

b
ln

sx2
1 1 y2

2d sx2
1 1 y2

1d
sx2

2 1 y2
2d sx2

2 1 y2
1d

3 fnsx0, y0d1yn. (14)

Before discussing the rectangular cross section I fi
show that in the limits of longitudinal (b ¿ a) and trans-
verse (b ø a) geometry the above expressions reduce
known and new results. In both limits, the functionsJ,
E, A, Bx , andBy depend only onx. One may thus put
y ­ 0 writing, e.g., Esx, yd ø Esx, 0d ­ Esxd, and one
getsM ­ 4b

Ra
0 xJsxd dx.

In the transverse limit (strip with thickness 2b ø

a), the reduced one-dimensional kernel isQtranssx, x0d ­
2bQsymsx, 0, x0, 0d ­ sbypd lnfjx 2 x0jysx 1 x0dg. This
kernel was used in calculations of creep [3,10], flu
penetration [9], and nonlinear [10] and linear [11,12] a
response of superconducting strips. In the creep solut
(5) one now hast (13) and the shapefnsxd is determined
by

fnsxd ­
1
a

Z a

0
dx0 ln

Ç
x 1 x0

x 2 x0

Ç
fnsx0d1yn. (15)

For n ¿ 1 this reproduces theE of Ref. [3],

Esx, td ­
m0Jcab

psn 2 1d
1
t

µ
ln

a 1 x
a 2 x

1
x
a

ln
a2 2 x2

x2

∂
.

(16)
In the longitudinal limit (slab with b ¿ a), the reduced

kernel is Qlongsx, x0d ­ 2
R`

0 dy0 Qsymsx, 0, x0, y0d ­
1
2 sjx 2 x0j 2 jx 1 x0jd ­ 2Minsx, x0d (the min-
imum value of x, x0), which has the property
Q00

long ­ dsx 2 x0d. One now has in (5)t from
(13) andfnsxd from

fnsxd ­
p

ab

Z a

0
dx0 Minsx, x0dfnsx0d1yn, (17)

0 # x # a, fs2xd ­ 2fsxd. For large exponentsn ¿

1 this reproduces the result of Gurevich [1,2],

Esx, td ­
m0Jc

n 2 1
xs2a 2 jxjd

2t
. (18)

The unphysical dependence oft (13) and fnsxd (17),
but not of Esx, td (18), on the specimen length2b may
be removed by redefiningt and fn, multiplying the
integrals in (14) and (17) by a factor1 1 pby4a, and
dividing t (13) by the same factor. This definition leave
the transverse limit unchanged but replaces the prefac
pyab in (17) by p2y4a2. The integral equation (17)
is equivalent to a differential equation with boundar
conditions,

f 00
n sxd ­ 2k2fnsxd1yn , fns0d ­ f 0

nsad ­ 0 , (19)

where k ­ py2a in our new definition of t. The
solutions of (19) in the Ohmic (n ­ 1) and Bean (n ­ `)
limits look very similar, f1sxd ­ const 3 sinspxy2ad
andf`sxd ­ sp2y8a2dxs2a 2 jxjd, cf. Fig. 2.
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FIG. 2. Profiles of the electric fieldE ~ fnsxd and current
density J ~ fnsxd1yn during creep in longitudinal (17) and
transverse (15) geometries for exponentsn ­ 1, 2, 5, and`.

Creep profilesfnsxd obtained from (14) and (17)
are depicted in Fig. 2 for exponentsn ­ 1, 2, 5, and`.
Notice that thefnsxd only weakly depend onn but are
qualitatively different for the two geometries: In th
longitudinal limit thefnsxd are maximum at theboundary
x ­ a, whereas the transversefnsxd exhibit a maximum
inside the specimen, e.g., atx ­ 0.735a for n ­ 1 [11]
andx ­ ay

p
2 ­ 0.707a for n ! ` [3].

The contour lines of the creepingEsx, y, td inside
and outside rectangular bars with aspect ratiosbya ­
2, 1, and0.2 are depicted in Fig. 3 for the Bean limi
n ¿ 1. These contour lines ofE are also the field lines
of the inductionBsx, y, td in the remanent state. Namely,
for n ¿ 1 one gets from (2) and (12) the vector potenti

Asx, yd ø 2m0Jc

Z a

0

Z b

0
Qsymsr, r0ddy0 dx0 2 xBa ,

(20)

because one hasJ ø Jc sgnx during creep. The lines
A ­ const are the field lines ofB 5 = 3 sẑAd. For
Ba ­ 0 these lines coincide with the contour lines ofE ­
2 ÙA, since during creep the time dependence separa
Esr, td ­ fsrdgstd, Eq. (5). For nonzero applied fieldBa,
the linesE ­ const are still as depicted in Fig. 3. Th
field lines ofB for Ba near the penetration fieldBp look
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FIG. 3. The contour lines of the electric fieldE ­ 2 ÙA
during creep in long rectangular superconductors with si
ratiosbya ­ 2, 1, and0.2 (from top) for n ­ 51 and arbitrary
constant applied fieldBa. These lines coincide with the
magnetic field lines in the fully saturated remanent stateBa ­
0. Bottom: 3D plot ofE (and ofA) for bya ­ 0.2.

similar as depicted in Fig. 1, bottom row; they are near
parallel lines slightly inflated inside the specimen.

All these analytical results are confirmed by comput
tions of creep from Eq. (4): During constant ramp ra
ÙBa fi 0 one hasE ­ x ÙBa in the fully penetrated state.
WhenBa is held constant, the straightE profile starts to
curve down near the edge and, after a short transition ti
t1, it reaches the universal profiles depicted in Figs. 2 a
3. During creep theshapesof E, J, andB practically do
not change over many decades of the creep timet, but
their amplitudesdecrease according to Eqs. (5) and (10
In particular, forn ¿ 1 andt ¿ t1 one hasE ~ 1yt and
M ~ J ~ stytd1ysn21d ø 1 2

1
n21 lnstytd.

In conclusion, the exact solution for the electric fiel
Esx, y, td k z, and thus for the current densityJ k z
e

ly

-
e

e
d

).

and induction B ' z, during flux creep is presente
for nonlinear conductors with constitutive lawsE ~ Jn

and B ­ m0H and with rectangular cross section2a 3

2b in a perpedicular fieldBa k y. The obtained two-
dimensional universal profiles ofE during creep (Fig. 3)
explain how the one-dimensional profilesEsx, td of the
two limiting geometriesb ¿ a and b ø a (Fig. 2)
come about. In particular, the maximum ofEsx, td in
transverse geometry, corresponding to a maximum
the nearly constantJ ­ JcsEyEcd1yn ø Jc and in the
energy dissipationEJ ~ E111yn ~ Jn11, is related to the
maximum of the vector potentialA k z (2) caused by
this current and depicted in Fig. 3. This theory is eas
extended to circular disks or cylinders with finite heig
by modifying the kernelQsr, r0d.

The origin of the well known sign reversal of th
perpendicular componentBy at the surfacesy ­ 6b near
the edgesx ­ 6a, occurring in the remanent state an
leading to a neutral line on whichB ­ Ba stays constant
during creep [3,5], becomes clear from the magnetic fi
lines in Fig. 3, which coincide with the contour lines o
E andA during creep. Interesting further effects [13] a
expected at positions with smallB if a more generalBsHd
with finite Bc1 is accounted for. Work in this direction i
under way.
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