Universality of Flux Creep in Superconductors with Arbitrary Shape and Current-Voltage Law

Ernst Helmut Brandt

Max Planck Institute für Metallforschung, Institut für Physik, D-70506 Stuttgart, Germany

(Received 12 January 1996)

The nonlinear and nonlocal diffusion equation for the relaxing current density $J(\mathbf{r},t)$ in long superconductors of arbitrary cross section in a constant perpendicular magnetic field B_a is solved exactly by separation of variables in the electric field $E(\mathbf{r},t) = f(\mathbf{r})g(t)$. This solution includes the limiting cases of longitudinal and transverse geometries and applies to the current-voltage laws $E \propto J^n$ ranging from Ohmic ($n = 1$) to Bean-like ($n \rightarrow \infty$) behavior. The electric field profile $f(\mathbf{r})$ weakly depends on *n* and becomes universal for *n* exceeding \approx 5. At large times *t* one finds $E \propto 1/t^{n/(n-1)}$ and $J \propto 1/t^{1/(n-1)}$ for $n > 1$, and $E \propto J \propto \exp(-t/\tau_0)$ for $n = 1$. The contour lines of the creeping $E(\mathbf{r}, t)$ coincide with the field lines of $\mathbf{B}(\mathbf{r}, t)$ in the remanent state $B_a = 0$. [S0031-9007(96)00286-4]

PACS numbers: 74.60.Ge, 74.25.Ha

Type-II superconductors, in particular the high- T_c superconductors, in general are not ideal conductors of electric current when put into a magnetic field B_a . Nonzero resistivity appears when the Abrikosov vortices induced by *Ba* depin due to a current density *J* exceeding a critical value J_c , or by thermal activation occurring also at $J < J_c$. The resulting motion of vortices generates an electric field $E = Bv$, where *B* is the flux density and v the drift velocity. A superconductor may thus be characterized by its current-voltage law $E(J)$, which in general is nonlinear and strongly depends on B_a and on the temperature *T*. This $E(J)$ characteristic is most sensitively extracted from magnetization measurements, e.g., by slowly increasing or decreasing $B_a(t)$ and then keeping it at a constant (or zero) value at times $t \ge$ 0. During such creep experiments, the magnetic moment caused by persistent currents relaxes with an approximately logarithmic time law when $E(J)$ is strongly nonlinear, and exponentially when $E(J) = \rho J$ is linear (Ohmic).

Recently, Gurevich and co-workers have shown that in both longitudinal [1,2] and transverse [2,3] geometries, corresponding to zero and unity demagnetizing factors, respectively, the relaxing electric field $E(\mathbf{r}, t)$ is *universal* if $E(J)$ is sufficiently nonlinear. This means that after some transient time t_1 , $E(\mathbf{r}, t) = f(\mathbf{r})g(t)$ separates into a universal profile $f(\mathbf{r})$ and a time dependence $g(t) \propto 1/(t_1 + t) \approx 1/t$. The relaxing current density $J(\mathbf{r}, t)$ and magnetic moment $\mathbf{m}(t) = \frac{1}{2} \int \mathbf{r} \times \mathbf{J}(\mathbf{r}, t) d^3 r$ are then obtained by inserting this general electric field into the material law $J = J(E)$. This separation was found to be exact if one has $\partial E/\partial J = E/J_1$ with constant J_1 , corresponding to an exponential law $E(J)$ $E_c \exp[(J - J_c)/J_1]$, and if *E* depends only on one spatial coordinate. This applies to slabs [1,2] or cylinders [4] in parallel field, and to thin strips or circular disks in perpendicular field [2,3]. The same universality of creep, and the existence in transverse geometry of "neutral lines" along which the flux-density $B(\mathbf{r},t)$ stays constant during creep, was recently demonstrated by magneto-optic obser-

vation and by computation to occur also in thin specimens of square shape [5].

In the present Letter I show that the exact solution of the creep problem by separation of variables of $E(\mathbf{r}, t)$ is possible for a much more general geometry including specimens of finite thickness and arbitrary cross section in a perpendicular field, and for all current-voltage laws $E(J) \propto J^n$, or, more precisely,

$$
E(J) = E_c |J/J_c|^n \operatorname{sgn} J, \qquad (1)
$$

yielding $J(E) = J_c |E/E_c|^{1/n}$ sgn*E*. This power law is observed in numerous experiments and was considered elsewhere in connection with creep [2,6] and flux penetration and ac susceptibility [4,7–10]. It corresponds to a logarithmic current dependence of the activation energy $U(J) = U_c \ln(J_c/J)$, which inserted into an Arrhenius law yields $E(J) = E_c \exp(-U/kT) = E_c (J/J_c)^n$ with $n = U_c/kT \gg 1$; it contains only two parameters E_c/J_c^n and *n*; and it interpolates from Ohmic behavior $(n = 1)$ over typical creep behavior $(n = 10, \ldots, 20)$ to "hard" superconductors with Bean-like behavior ($n \rightarrow \infty$). A power law avoids the unphysical behavior at $J = 0$ exhibited by the exponential law originally used in Refs. [1– 3] to achieve separation of variables in the creep problem.

Consider the rather general geometry of a long (along *z*) superconductor of arbitrary cross section *S* in a perpendicular field *Ba* directed along *y*, e.g., a rectangular bar filling the volume $|x| \le a$, $|y| \le b$, $|z| < \infty$, cf. Fig. 1. The current density $J(x, y)$, electric field $E(x, y)$, and vector potential $A(x, y)$ then point along *z* and the magnetic induction $\mathbf{B}(x, y) = \nabla \times \mathbf{A}$ is in the *x*-*y* plane. Throughout this Letter I shall assume $\mathbf{B} = \mu_0 \mathbf{H}$, i.e., disregard the finite value of the lower critical field B_{c1} . This approximation is excellent when everywhere inside the superconductor one has $B > 2B_{c1}$. From $J = \nabla \times H =$ $\mu_0^{-1} \nabla \times (\nabla \times \mathbf{A})$ one then gets for our geometry $J =$ $-\mu_0^{-1}\nabla^2 A$, which has the solution

$$
A(\mathbf{r}) = -\mu_0 \int_S d^2 r' Q(\mathbf{r}, \mathbf{r}') J(\mathbf{r}') - x B_a,
$$

$$
Q(\mathbf{r}, \mathbf{r}') = (1/2\pi) \ln |\mathbf{r} - \mathbf{r}'|.
$$
 (2)

4030 0031-9007/96/76(21)/4030(4)\$10.00 © 1996 The American Physical Society

FIG. 1. The field lines of the induction **B** during penetration of perpendicular flux into long bars with side ratios $b/a = 2$ (left) and $b/a = 0.4$ (right) in the Bean limit ($n = 51$) for applied fields $B_a = 0.3, 0.7$ ($B_a = 0.05, 0.1, 0.2, 0.4$, in units $\mu_0 J_c a$. The field of full penetration is $B_p = 0.96$ (0.87, 0.72, 0.49, 0.33) for $b/a = 4$ (2, 1, 0.4, 0.2). The dashed rectangle marks the specimen boundary. The bold line (composed of the merging contour lines $|J|/J_c = 0.5, \ldots, 0.3$ shows the penetrating flux front inside which $J = 0$ and $\mathbf{B} = 0$.

Here and in the following **r** denotes (x, y) and the integration is over the specimen cross section *S*. The induction law $\dot{\mathbf{B}} = \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$ in this geometry reduces to $A = -E$. Combining this with Eq. (2) and with the material law $E = E(J)$ or $J = J(E)$, one obtains the equation of motion for $E(\mathbf{r}, t)$,

$$
E(\mathbf{r},t) = \mu_0 \int_S d^2 r' Q(\mathbf{r}, \mathbf{r}') \frac{\partial}{\partial t} J[E(\mathbf{r}',t)] + x \dot{B}_a. (3)
$$

Figure 1 shows the magnetic field lines in and around a rectangular superconductor during flux penetration obtained from a similar integral equation for *A*.

In creep experiments one has B_a = const; thus B_a = 0, and Eq. (3) simplifies to

$$
E(\mathbf{r},t) = \mu_0 \int d^2 r' Q(\mathbf{r}, \mathbf{r}') \dot{E}(\mathbf{r}',t) \frac{\partial J}{\partial E}.
$$
 (4)

This integral equation describes the nonlinear and nonlocal diffusion of $E(\mathbf{r}, t)$ during flux creep. For the power law $E(J)$ (1), one has $\partial J/\partial E = 1/(\partial E/\partial J)$ $\overline{(J_c/\eta E)}$ $(E/E_c)^{1/\eta}$, yielding

$$
E(\mathbf{r},t) = \frac{\mu_0 J_c}{n E_c^{1/n}} \int d^2 r' Q(\mathbf{r}, \mathbf{r}') \dot{E}(\mathbf{r}',t) E^{(1/n)-1}.
$$
 (4a)

Remarkably, this nonlinear integral equation can be solved exactly by the ansatz $E = f(\mathbf{r})g(t)$, yielding

$$
E(\mathbf{r},t) = E_c f_n(\mathbf{r}) \left(\frac{\tau}{t_1 + t}\right)^{n/(n-1)}.\tag{5}
$$

If we choose $\tau = \mu_0 J_c S/4\pi (n-1)E_c$ we obtain $f_\eta(\mathbf{r})$ from

$$
f_n(\mathbf{r}) = -\frac{4\pi}{S} \int d^2 r' Q(\mathbf{r}, \mathbf{r}') f_n(\mathbf{r}')^{1/n}.
$$
 (6)

This nonlinear integral equation is easily solved by iterating the relation $f_n^{(m+1)} = -(4\pi/S)\int Qf_n^{(m)1/n}$ starting with $f_n^{(0)} = 1$. The resulting series $f_n^{(1)}$, $f_n^{(2)}$,..., converges rapidly if $n > 1$. For $m \gg 1$ one has approximately $f_n^{(m+1)}(\mathbf{r}) \approx f_n^{(m)}(\mathbf{r}) (1 + c/n^m)$ with $c \approx 1$. For $n \gg 1$ (practically for $n \ge 5$) the shape $f_n(\mathbf{r})$ of the electric field becomes a universal function which depends only on the specimen shape but not on the exponent *n*,

$$
f_{n\geq 5}(\mathbf{r}) \approx f_{\infty}(\mathbf{r}) = -\frac{2}{S} \int_{S} d^{2} r' \ln|\mathbf{r} - \mathbf{r}'|.
$$
 (7)

In the Ohmic case $n = 1$, the ansatz (5) makes no sense since the exponent $n/(n - 1)$ diverges. For this special case the integral Eq. (4) is linear since the factor $\partial J/\partial E = \sigma = 1/\rho$ is the constant Ohmic conductivity. This linear integral equation is solved by the ansatz

$$
E(\mathbf{r},t) = E_0 f_0(\mathbf{r}) \exp(-t/\tau_0), \qquad (8)
$$

yielding the relaxation time $\tau_0 = \mu_0 \sigma S/\Lambda$, where Λ and $f_0(\mathbf{r})$ are the lowest eigenvalue and eigenfunction of the linear integral equation

$$
f_0(\mathbf{r}) = -\frac{2\Lambda}{S} \int_S d^2r' \ln|\mathbf{r} - \mathbf{r}'| f_0(\mathbf{r}'). \tag{9}
$$

From (1) and (5) the current density becomes

$$
J(\mathbf{r},t) = J_c |f_n(\mathbf{r})|^{1/n} \left(\frac{\tau}{t_1+t}\right)^{1/(n-1)} \text{sgn} f_n(\mathbf{r}). \quad (10)
$$

For $n \gg 1$, $t \gg t_1$ the time factor in (10) equals 1 – $\frac{1}{n-1}$ ln(*t*/ τ) and one has $|J| \approx J_c$ everywhere.

The magnetization along *y* per unit length along *z* is

$$
M(t) = \hat{\mathbf{y}} \mathbf{m}(t) / L_z = \int_S x J(x, y, t) dx dy.
$$
 (11)

In (11) the prefactor $\frac{1}{2}$ of **m** $(t) = \frac{1}{2}$ \int **r** \times **J**(**r**, *t*) d^3r was compensated by the contribution to **m** of the U-turning currents at the far away ends of the bar at $z = \pm L_z/2 \gg$ *a*, *b*. The resulting factor of 2 in *M* was sometimes missed in previous work on slabs.

These results apply to arbitrary specimen cross section *S*. For the realistic rectangular cross section $-a \leq x \leq$ $a, -b \le y \le b, S = 4ab$, with B_a along *y*, the symmetry $J(x, y) = -J(-x, y) = J(x, -y)$ (and same symmetry for *E* and *A*) allows one to restrict the integration to the quarter $0 \le x \le a$, $0 \le y \le b$ by using the symmetric kernel

$$
Q_{\text{sym}}(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi} \ln \frac{(x_{-}^2 + y_{-}^2)(x_{-}^2 + y_{+}^2)}{(x_{+}^2 + y_{-}^2)(x_{+}^2 + y_{+}^2)},
$$
 (12)

4031

with
$$
x_{\pm} = x \pm x'
$$
, $y_{\pm} = y \pm y'$. One now has in (5)
\n
$$
\tau = \mu_0 J_c ab / [\pi (n - 1) E_c], \qquad (13)
$$
\n
$$
f_n(x, y) = \int_0^a \frac{dx'}{a} \int_0^b \frac{dy'}{b} \ln \frac{(x_+^2 + y_-^2)(x_+^2 + y_+^2)}{(x_-^2 + y_-^2)(x_-^2 + y_+^2)}
$$
\n
$$
\times f_n(x', y')^{1/n}. \qquad (14)
$$

Before discussing the rectangular cross section I first show that in the limits of longitudinal ($b \gg a$) and transverse $(b \ll a)$ geometry the above expressions reduce to known and new results. In both limits, the functions *J*, *E*, *A*, B_x , and B_y depend only on *x*. One may thus put $y = 0$ writing, e.g., $E(x, y) \approx E(x, 0) = E(x)$, and one gets $M = 4b \int_0^a x J(x) dx$.

In the *transverse* limit (strip with thickness $2b \ll$ *a*), the reduced one-dimensional kernel is $Q_{trans}(x, x') =$ $2bQ_{sym}(x, 0, x', 0) = (b/\pi) \ln[|x - x'|/(x + x')]$. This kernel was used in calculations of creep [3,10], flux penetration [9], and nonlinear [10] and linear [11,12] ac response of superconducting strips. In the creep solution (5) one now has τ (13) and the shape $f_n(x)$ is determined by

$$
f_n(x) = \frac{1}{a} \int_0^a dx' \ln \left| \frac{x + x'}{x - x'} \right| f_n(x')^{1/n}.
$$
 (15)

For $n \gg 1$ this reproduces the *E* of Ref. [3],

$$
E(x,t) = \frac{\mu_0 I_c ab}{\pi (n-1)} \frac{1}{t} \left(\ln \frac{a+x}{a-x} + \frac{x}{a} \ln \frac{a^2 - x^2}{x^2} \right).
$$
\n(16)

In the *longitudinal* limit (slab with $b \gg a$), the reduced kernel is $Q_{\text{long}}(x, x') = 2 \int_0^\infty dy' Q_{\text{sym}}(x, 0, x', y') =$ $\frac{1}{2}(|x - x'| - |x + x'|) = -\text{Min}(x, x')$ $(the$ minimum value of x , x'), which has the property $Q_{\text{long}}^{\prime\prime} = \delta(x - x^{\prime})$. One now has in (5) τ from (13) and $f_n(x)$ from

$$
f_n(x) = \frac{\pi}{ab} \int_0^a dx' \operatorname{Min}(x, x') f_n(x')^{1/n}, \qquad (17)
$$

 $0 \le x \le a$, $f(-x) = -f(x)$. For large exponents $n \gg$ 1 this reproduces the result of Gurevich [1,2],

$$
E(x,t) = \frac{\mu_0 I_c}{n-1} \frac{x(2a - |x|)}{2t}.
$$
 (18)

The unphysical dependence of τ (13) and $f_n(x)$ (17), but not of $E(x, t)$ (18), on the specimen length 2*b* may be removed by redefining τ and f_n , multiplying the integrals in (14) and (17) by a factor $1 + \pi b/4a$, and dividing τ (13) by the same factor. This definition leaves the transverse limit unchanged but replaces the prefactor π/ab in (17) by $\pi^2/4a^2$. The integral equation (17) is equivalent to a differential equation with boundary conditions,

$$
f_n''(x) = -k^2 f_n(x)^{1/n}, \qquad f_n(0) = f_n'(a) = 0, \quad (19)
$$

where $k = \pi/2a$ in our new definition of τ . The solutions of (19) in the Ohmic ($n = 1$) and Bean ($n = \infty$) limits look very similar, $f_1(x) = \text{const} \times \sin(\pi x/2a)$ and $f_{\infty}(x) = (\pi^2/8a^2)x(2a - |x|)$, cf. Fig. 2.

FIG. 2. Profiles of the electric field $E \propto f_n(x)$ and current density $J \propto f_n(x)^{1/n}$ during creep in longitudinal (17) and transverse (15) geometries for exponents $n = 1, 2, 5$, and ∞ .

Creep profiles $f_n(x)$ obtained from (14) and (17) are depicted in Fig. 2 for exponents $n = 1, 2, 5$, and ∞ . Notice that the $f_n(x)$ only weakly depend on *n* but are qualitatively different for the two geometries: In the longitudinal limit the $f_n(x)$ are maximum at the *boundary* $x = a$, whereas the transverse $f_n(x)$ exhibit a maximum *inside* the specimen, e.g., at $x = 0.735a$ for $n = 1$ [11] and $x = a/\sqrt{2} = 0.707a$ for $n \rightarrow \infty$ [3].

The contour lines of the creeping $E(x, y, t)$ inside and outside rectangular bars with aspect ratios $b/a =$ 2, 1, and 0.2 are depicted in Fig. 3 for the Bean limit $n \gg 1$. These contour lines of *E* are also the field lines of the induction $\mathbf{B}(x, y, t)$ *in the remanent state*. Namely, for $n \gg 1$ one gets from (2) and (12) the vector potential

$$
A(x,y) \approx -\mu_0 J_c \int_0^a \int_0^b Q_{sym}(\mathbf{r}, \mathbf{r}') dy' dx' - x B_a,
$$
\n(20)

because one has $J \approx J_c$ sgn*x* during creep. The lines $A = \text{const}$ are the field lines of $\mathbf{B} = \nabla \times (\hat{\mathbf{z}}A)$. For $B_a = 0$ these lines coincide with the contour lines of $E =$ $-A$, since during creep the time dependence separates, $E(\mathbf{r}, t) = f(\mathbf{r})g(t)$, Eq. (5). For nonzero applied field B_a , the lines $E = \text{const}$ are still as depicted in Fig. 3. The field lines of **B** for B_a near the penetration field B_p look

FIG. 3. The contour lines of the electric field $E = -A$ during creep in long rectangular superconductors with side ratios $b/a = 2$, 1, and 0.2 (from top) for $n = 51$ and arbitrary constant applied field *Ba*. These lines coincide with the magnetic field lines in the fully saturated remanent state B_a 0. Bottom: 3D plot of *E* (and of *A*) for $b/a = 0.2$.

similar as depicted in Fig. 1, bottom row; they are nearly parallel lines slightly inflated inside the specimen.

All these analytical results are confirmed by computations of creep from Eq. (4): During constant ramp rate $B_a \neq 0$ one has $E = xB_a$ in the fully penetrated state. When B_a is held constant, the straight E profile starts to curve down near the edge and, after a short transition time *t*1, it reaches the universal profiles depicted in Figs. 2 and 3. During creep the *shapes* of *E*, *J*, and **B** practically do not change over many decades of the creep time *t*, but their *amplitudes* decrease according to Eqs. (5) and (10). In particular, for $n \gg 1$ and $t \gg t_1$ one has $E \propto 1/t$ and $M \propto J \propto (\tau/t)^{1/(n-1)} \approx 1 - \frac{1}{n-1} \ln(t/\tau).$

In conclusion, the exact solution for the electric field $E(x, y, t)$ \parallel *z*, and thus for the current density *J* \parallel *z* and induction $\mathbf{B} \perp z$, during flux creep is presented for nonlinear conductors with constitutive laws $E \propto J^n$ and $\mathbf{B} = \mu_0 \mathbf{H}$ and with rectangular cross section 2*a* \times 2*b* in a perpedicular field $B_a \parallel y$. The obtained twodimensional universal profiles of *E* during creep (Fig. 3) explain how the one-dimensional profiles $E(x, t)$ of the two limiting geometries $b \gg a$ and $b \ll a$ (Fig. 2) come about. In particular, the maximum of $E(x, t)$ in transverse geometry, corresponding to a maximum in the nearly constant $J = J_c (E/E_c)^{1/n} \approx J_c$ and in the energy dissipation $EJ \propto E^{1+1/n} \propto J^{n+1}$, is related to the maximum of the vector potential $A \parallel z$ (2) caused by this current and depicted in Fig. 3. This theory is easily extended to circular disks or cylinders with finite height by modifying the kernel $Q(\mathbf{r}, \mathbf{r}')$.

The origin of the well known sign reversal of the perpendicular component B_y at the surfaces $y = \pm b$ near the edges $x = \pm a$, occurring in the remanent state and leading to a neutral line on which $B = B_a$ stays constant during creep [3,5], becomes clear from the magnetic field lines in Fig. 3, which coincide with the contour lines of *E* and *A* during creep. Interesting further effects [13] are expected at positions with small *B* if a more general $B(H)$ with finite B_{c1} is accounted for. Work in this direction is under way.

- [1] A. Gurevich and H. Küpfer, Phys. Rev. B **48**, 6477 (1993).
- [2] A. Gurevich, Int. J. Mod. Phys. B **9**, 1045 (1995).
- [3] A. Gurevich and E. H. Brandt, Phys. Rev. Lett. **73**, 178 (1994).
- [4] E. H. Brandt, Rep. Prog. Phys. **58**, 1465 (1995).
- [5] Th. Schuster, H. Kuhn, and E. H. Brandt, Phys. Rev. B **51**, 697 (1995).
- [6] V. M. Vinokur, M. V. Feigel'man, and V. B. Geshkenbein, Phys. Rev. Lett. **67**, 915 (1991).
- [7] J. Rhyner, Physica (Amsterdam) **212C**, 292 (1993).
- [8] J. Gilchrist and C. J. van der Beek, Physica (Amsterdam) **231C**, 147 (1994).
- [9] Th. Schuster *et al.,* Phys. Rev. Lett. **73**, 1424 (1994); Phys. Rev. B **50**, 16 684 (1994); E. H. Brandt, Physica (Amsterdam) **235C– 240C**, 2939 (1994).
- [10] A. Gurevich and E. H. Brandt, Phys. Rev. Lett., **70**, 1723 (1996).
- [11] E. H. Brandt, Phys. Rev. Lett. **71**, 2821 (1993); **49**, 9024 (1994); Phys. Rev. B **50**, 4034 (1994); **50**, 13 833 (1994).
- [12] A. T. Dorsey, Phys. Rev. B **51**, 15 329 (1995).
- [13] M. V. Indenbom, Th. Schuster, H. Kuhn, H. Kronmüller, T. W. Li, and A. A. Menovsky, Phys. Rev. B **51**, 15 484 (1995).