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We study the effects of the electron-electron interaction on the critical properties of the platea
transitions in theintegerquantum Hall effect. We find the renormalization group dimension associated
with short-range interactions to be20.66 6 0.04. Thus the noninteracting fixed point (characterized
z ­ 2 andn ø 2.3) is stable. For the Coulomb interaction, we find the correlation effect is a marginal
perturbation at a Hartree-Fock fixed point (z ­ 1, n ø 2.3) by dimension counting. Further calculations
are needed to determine its stability upon loop corrections. [S0031-9007(96)00226-8]

PACS numbers: 73.40.Hm, 05.30.–d
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The plateau transitions have been one of the unsol
problems in the quantum Hall effect. The fundamen
questions that remain unanswered are: (a) What are
effects of electron-electron interaction on the integer tra
sitions? (b) What are the effects of the quasiparticle sta
tics on the fractional transitions? Almost all recent wor
on the integer plateau transitions are based on nume
analyses of models ofnoninteractingelectrons [1]. An
important outcome of these efforts is the consensus on
approximate values of the localization length exponent (n),
and several others characterizing the participation ratio
its higher moments [1]. In particular, the resultn ø 2.3
is in excellent agreement with the measured value [2
Nonetheless, such basic issues as the relevance an
effects of the electron-electron interaction have not be
addressed. The necessity to understand the interactio
fects becomes even more pressing after recent experim
tal reports of the dynamical exponentz ­ 1, instead of
the noninteracting value 2 [4,5]. In this Letter, we fo
cus on the effects of the interactions on theintegerplateau
transitions.

Our strategy is the following. We take the2 1 1
dimensional noninteracting theory as the starting po
We then ask what the effects are of turning on t
interaction. In practice, we calculate the renormalizati
group (RG) dimension of the interaction Hamiltonian, a
also look at the other possible interactions it genera
upon renormalization. This is a standard exercise wh
one analyzes the stability of a known critical poin
However, unlike many cases where one hasanalytic
knowledge of the critical point in question, in the prese
case such knowledge is lacking. Thus the results that
report in this Letter are based onnumericalcalculations
of various correlation functions at the noninteracting a
Hartree-Fock fixed point.

For short-rangeinteraction we obtained its RG dimen
sion ø 20.65, and found that to the second order in th
interaction strength no relevant operators are genera
upon renormalization. Thus we conclude that short-ran
interaction is an irrelevant perturbation at the nonint
0031-9007y96y76(21)y4014(4)$10.00
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acting fixed point. Hence for screened electron-elect
interactionsz ­ 2 and n ø 2.3. For Coulomb interac-
tion, we find that it is relevant at thenoninteracting
fixed point. However, by dimension counting, we fin
that due to a linear suppression in the density of sta
(DOS) [6] the correlation effect is only amarginal per-
turbation at the Hartree-Fock fixed point. For the la
ter, we findz ­ 1 andn ø 2.3. The Hartree-Fock fixed
point provides a concrete example where Coulomb int
action modifies the dynamical exponent and not the st
one. The root of such behavior is thenoncritical sup-
pression of the DOS. Indeed, as was shown in Ref.
the Hartree-Fock DOS vanishes linearly withjE 2 EF j
regardless of whether the Fermi energyEF coincides with
the critical value. This suppression resulted in a chan
of z from 2 to 1, and a degradation of the RG dime
sion of theresidual Coulomb Hamiltonian from 1 to 0.
We do not yet know the effects of the residual Coulom
interaction upon further loop corrections.

We start with noninteracting electrons described by
following Euclidean action (in unitseyc ­ h̄ ­ kB ­ 1):

S0 ­
Z

d2x
X
vn

cvn
sxd f2ivn 1 P2 1 Vimpsxdgcvn

sxd .

(1)

In the above,c is the fermion Grassmann field,vn ­
s2n 1 1dpyb is the fermion Matsubara frequency,Vimp

is the disorder potential, andP2 ; 2s1y2md
P

k f≠k 2

iAksxdg2 whereAksxd is the external vector potential. Th
action describing the interaction reads

Sint ­ T
X

v1,...,v4

dv11v2,v31v4

Z
d2x d2y

3 V sjx 2 yjdcv1
sxdcv2

s ydcv4s ydcw3sxd . (2)

In this Letter we considerV sjx 2 yjd ­ gyjx 2 yjl.
The total action isS ­ S0 1 Sint, in which Sint couples
the otherwise independent frequency components ofS0

together. To emphasize the symmetry property ofSint we
© 1996 The American Physical Society
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rewrite it as

Sint ­
T
4

X
v1,...,v4

dv11v2,v31v4

Z
d2x d2y

3 V sjx 2 yjdBsv1,v2dsx, ydBsv3,v4ds y, xd , (3)

where Bsv1,v2dsx, yd ; cv1
sxdcv2

s yd 1 cv2
sxdcv1

s yd.
In the following we imagine sitting at the fixed point o
S0 and numerically analyze the scaling properties ofkSintl
and kS2

intl in finite periodic systems of linear dimensio
L and imaginary time dimension 1yT. (Hereafterk· · ·l
denotes quantum and impurity averages.) Since we
after theuniversal scaling properties of various correla
tion functions, any representation ofS0 which produces
the right universality class suffices. In the followin
we choose the “quantum percolation” (or the netwo
model of Chalker and Coddington. For details about t
model the readers are referred to Ref. [7]. Moreover,
numerical calculations reported here are done using
Us2ndjn!0 Hubbard model representation of the netwo
model [8].

In order to evaluatekSintl, it is necessary to know
the correlation functionkBsv1,v2dsx, ydBsv3,v4ds y, xdl ­
dv1,v3dv2,v4G

0s4dsx, y; v1, v2, Ld. To extract the critical
piece ofG0s4d, it is important to perform the trace decom
position [9,10]. Thus we write

G0s4dsx, y; v1, v2, Ld ; Gs4dsx, y; v1, v2, Ld

1 kcv1
sxdcv1 sxdcv1

s ydcv1s yd

1 sv1 ! v2dl . (4)

Each of the last two terms in Eq. (4) involves only
single Matsubara frequency and is noncritical.Gs4d is
only critical when v1v2 , 0 [11]. Since the scaling
dimension ofcv1

sxdcv2sxd is zero at the noninteractin
fixed point (i.e., the density of states has no anomal
dimension) [8],Gs4d obeys the following scaling form:

Gs4dsx, y; v1, v2, Ld ­ F1sjx 2 yjyL, v1L2, v2L2d .

(5)

Note that near the noninteracting fixed point, it is su
cient to consider any pair of a positive and a negat
frequency. The latter scales withL22 in Eq. (5) which re-
flects the fact thatz ­ 2 at the noninteracting fixed point
We have calculatedGs4d using the Monte Carlo method o
Ref. [8] for v1,2L2 ­ const1,2. The details of the calcula
tion will be reported elsewhere [11]. The scaling beha
ior of Gs4d vs jx 2 yjyL is shown in Fig. 1. The result
are consistent withF1sjx 2 yjyL, v1L2, v2L2d , sjx 2

yjyLdx4s for jx 2 yjyL ø 1, jsv1,2L2dj21y2, and x4s ø
0.65. Thus, in terms of the properly scaled variables,
first order correction to thesingular part of the quench-
re
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FIG. 1. The scaling plot ofGs4d. Inset shows theL depen-
dence ofGs4dsx, x 1 1d.

averaged action is

DS
s1d
sing ­

TL2

4

µ
g

Ll22

∂ X
0

n1,n2

Z
d2

µ
x
L

∂ Z
d2

µ
y
L

∂
3

Ç
L

x 2 y

Ç
l

F1

µ
jx 2 yj

L
; ps2n1,2 1 1dTL2

∂
.

(6)

In the above
P0

denotes the restricted sum satisfy
ing n1n2 , 0. Let us change the integration variable
d2sxyLdd2s yyLd to d2sx 1 ydd2sx 2 ydyL2. The part
that depends on the relative coordinate readsZ

d2

µ
x 2 y

L

∂ µ
L

jx 2 yj

∂l

F1

µ
jx 2 yj

L
, v1L2, v2L2

∂
,

(7)

where the upper limit of the integral is 1 and the low
one isayL (a is the lattice spacing). Naively, one woul
deduce from Eq. (6) that the RG dimension ofg is 2 2 l

as the result of dimensional analyses. This conclus
can be modified if the integral in Eq. (7) depends o
ayL, i.e., if it diverges at the lower limit. SinceF1 ,
sjx 2 yjyLdx4s for jx 2 yjyL ø 1, the integral diverges
(we will henceforth refer to this case as that of short-ran
interaction) whenl $ x4s 1 2, and converges (long-
range interaction) otherwise.

Let us now concentrate on the casel . x4s 1 2 (i.e.,
short-range interaction). Simple analyses of Eq. (6) sh
that

DS
s1d
sing ­ sgyLl22d fA 1 BsayLd21x4s2lg , (8)

whereA andB are nonuniversal functions ofTL2. Since
l 2 2 . x4s, the asymptotic scaling behavior ofDS

s1d
sing

is controlled byDS
s1d
sing ­ BuyLx4s whereu ; ga21x4s2l.

In the language of the renormalization group, the dens
operators at nearby points have fused together to fo
4015
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a new operator with a RG dimension2x4s. Thus for
screened Coulomb interactions, we conclude that the
dimension for T is 2 (thus z ­ 2), and that foru is
2x4s ø 20.65. Therefore to this order the interaction
irrelevant. Here we note that if similar analyses are do
for the weak-field (i.e., the “singlet only”) metal-insulato
transition in 2 1 e dimensions, one obtainsx4s ­

p
2e

agreeing with the results obtained in, e.g., Ref. [10].
In order to perform a self-consistency check on the R

dimension of u, and to study the fusion product
s
t
in
th
t

t
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G
[12] of two interaction operators, we next calcula
kS2

intl. For that purpose we need to consid
kBsv1,v2dsx,ydBsv3,v4ds y,xdBsv5,v6dsx0,y0dBsv7,v8ds y0,x0dlc­
dv1,v7dv2,v8dv3,v5dv4,v6G

s8dsx,y,x0, y0; v1, v2, v3, v4; Ld.
For short-range interactions we need to concentr
only on the limit jx 2 yj, jx0 2 y0j ø jR 2 R0j,
where R ­ sx 1 ydy2 and R0 ­ sx0 1 y0dy2. In
that limit and for v1v2 , 0, v3v4 , 0 (other
combinations give noncritical contributions [11]), th
result is
Gs8dsx, y, x0, y0; hvij; Ld ­ F2

µÇ
x 2 x0

R 2 R0

Ç
,

Ç
y 2 y0

R 2 R0

Ç
,
jR 2 R0j

L
, hviL

2j
∂

, (9)
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In the limit jxs yd 2 x0s y0djyjR 2 R0j ø

1, viL2j21y2, F2 reduces to

F2 ,
Ç

x 2 y
R 2 R0

Çx4s
Ç

x0 2 y0

R 2 R0

Çx4s

F3sjR 2 R0jyL, hviL
2jd .

(10)

The result forjR 2 R0j2x4s Gs8d vs jR 2 R0jyL for small,
typical, fixed jx 2 yj, jx0 2 y0j, vi ­ O s1yL2d, and
x4s ­ 0.65, is shown in Fig. 2. This result indicate
that the previously obtainedx4s ø 0.65 is the consisten
scaling dimension of the short-range interaction. Go
through similar manipulations one can show that
second order correlation correction to the singular par
the quench-averaged action,DS

s2d
sing, is

DS
s2d
sing ­ 2 sTL2d2 u2

L2x4s

X
0

n1,...,n4

Z
d2

3

µ
R
L

∂
d2

µ
R0

L

∂ Ç
L

R 2 R0

Ç2x4s

3 F4

∑
jR 2 R0j

L
, ps2n1!4 1 1dTL2

∏
, (11)

where
P0

denotes the restricted sum satisfyingn1n2 , 0
and n3n4 , 0, and F4 ~ F3. In Eq. (11) let us conver

FIG. 2. The scaling plot ofjR 2 R0j2x4s Gs8d obtained with
x4s ø 0.65.
g
e
of

d2Rd2R0 to d2sR 1 R0dd2sR 2 R0d. In the integral over
the relative coordinates, the short-distance cutoff is ag
ayL. As before, new dependence onL could emerge
if the integral overR 2 R0 diverges at the lower limit.
In general, ifF4sjR 2 R0jyL, hviL2jd , jsR 2 R0dyLja ,
and if 2x4s 2 a 2 2 . 0 then

DS
s2d
sing ­ 2fCsuyLx4s d2 1 DyyL21ag , (12)

where C,D are nonuniversal functions ofTL2, whereas
y ; g2a2s22ld121a . In this case a new scaling operato
fused from two interaction operators, would emerge w
a RG dimension2s2 1 ad. Moreover, since2 1 a ,

2x4s this operator would control the asymptotic scalin
of DS

s2d
sing. On the other hand, if2x4s 2 a 2 2 , 0

the integral over the relative coordinates converges,
DS

s2d
sing ­ 2CsuyLx4s d2; thus no new scaling variable

needs to be introduced. Our results shown in Fig
indicate thata ­ 0; thus 2x4s 2 2 2 a , 0 and hence
we do not need to introduce any new scaling operato
this order.

Now we summarize our results for short-range i
teraction. For interactionV srd ­ gyjrjl, we find that
the noninteracting fixed point isstable (thus z ­ 2 and
n ø 2.3) if l . 2 1 x4s (here2x4s is the RG dimension
of short-range interactions). Our numerical results g
x4s ø 0.65. Although the above analyses do not for
a “proof” that strong short-ranged interactions are irre
vant, we believe that the evidence is sufficiently strong

Next, we consider the long-range Coulomb interactio
i.e., l ­ 1. In that casel , x4s 1 2; therefore Eq. (8)
is asymptotically controlled byDS

s1d
sing ­ AgyLl22, which

implies a relevant RG dimension forg of 2 2 l ­ 1.
Thus the noninteracting fixed pointis unstable upon
turning on the Coulomb interaction. This result is n
surprising given the fact that the measured value forz is
1 instead of the noninteracting value 2. But if so, wh
should the static exponentn remain unchanged?

In two recent papers, MacDonald and co-worke
studied the integer plateau transition under a Hartree-F
treatment of the Coulomb interaction [6]. They foun
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that (a) the DOS shows the Coulomb gap behavior [i
rsEFd , L21 in samples of linear dimensionL [13]]
regardless of whether the system is at criticality or n
(b) despite the dramaticnoncritical DOS suppression, the
localization length exponent and the fractal dimension
the critical eigen wave functions remain unchanged.
addition, the conductivitiesdid not show any qualitative
change. We take these results as indicating that
Hartree-Fock theory is in the same universality class
the noninteracting one. Thus the field theory sho
be the same nonlinears model [14] in which the
bare parameters do not have nontrivial scale depende
except that the DOS in the symmetry-breaking te
should be replaced by the appropriate Coulomb gap fo
Since the combinationpTr should have dimension 2, an
r , 1yL, it implies z ­ 1. Thus, z is modified while
n is not, and the change inz is caused by anoncritical
modification of the DOS.

A direct consequence of the DOS suppression is
the dimension ofcv1

cv2 is changed from 0 to 1
Indeed, it can be shown [11] that the two-particle spec
function that is consistent with the results in Ref. [6] a
the scaling arguments in Ref. [15] are given by

S2sE1, E2, $qd ­
r2sq2

r2sE1 2 E2d2 1 ssq2d2
. (13)

In the abover depends onE ; sE1 1 E2dy2 and s, a
quantity with the dimension of conductivity, depends
v ; sE1 2 E2dy2 and the wave vector$q. At the criti-
cal point,rsEd , 1yL andssv, $qd ­ const forjrvj ¿
q2; and const3 sq2yjrvjdx2y2 for jrvj ø q2. Here
x2 ø 20.5 is the exponent characterizing the anomalo
diffusive behavior in the critical regime [8,15]. Note th
the new exponentsx4s are independent ofx2. They are,
respectively, the scaling dimensions of the operators
sociated with the fusion products of four fermion ope
tors, or two SU(2n) spin operators that are symmetr
and antisymmetric under permutations [9]. If one us
Eq. (13) to compute the two-particle Green’s functio
one can show that bothz and the scaling dimension o
cv1

cv2 are unity [11].
To support the predictions of the Hartree-Fock theo

one has to analyze the stability of the Hartree-Fock fix
point when the residual Coulomb interaction is taken in
account. Because of the normal ordering with respec
the Hartree-Fock ground state, there is no contribut
to DS

s1d
sing due to the residual Coulomb interaction [16

The lowest order effects now come in viaDS
s2d
sing. The

new scaling form forGs8d is Gs8dsr1, r2, r3, r4, hvij, Ld ­
L24F5srijL21, hviLjd. Inserting this result into

DS
s2d
sing ­ 2

1
32

sgT d2
X

0

n1,...,n4

Z
d2x d2y d2x0 d2y0

3
Gs8dsssx, y, x0, y0; ps2n1!4 1 1dT , Lddd

jx 2 yj jx0 2 y0j
(14)
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and ignoring the possible short-distance divergencewe
obtainDS

s2d
sing , g2sTLd2, thusg is marginal. In order to

go beyond this analysis (i.e., to determine the outcom
short-distance fusion) we need to know the behaviors
Gs8d in a number of limits, information that we do not ha
at present. Finally, we would like to emphasize that
Hartree-Fock theory presents a concrete example wh
due to anoncritical suppression of the DOS,z is modified
while n is not.

We thank J. Gan and S. A. Kivelson for useful discu
sions.

Note added.—In an interesting recent work [17], th
effects of interactions are studied via the nonlinears

model [14] where the topological term is handled by
dilute instanton gas approximation. Since the latterhas
not produced the correct critical properties even for
noninteracting transition, it is difficult for us to judge th
reliability of the results on the effects of interactions.
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