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We study the effects of the electron-electron interaction on the critical properties of the plateau
transitions in theéntegerquantum Hall effect. We find the renormalization group dimension associated
with short-range interactions to be0.66 = 0.04. Thus the noninteracting fixed point (characterized
z =2 andy = 2.3) is stable. For the Coulomb interaction, we find the correlation effect is a marginal
perturbation at a Hartree-Fock fixed poipt€ 1, » = 2.3) by dimension counting. Further calculations
are needed to determine its stability upon loop corrections. [S0031-9007(96)00226-8]

PACS numbers: 73.40.Hm, 05.30.—d

The plateau transitions have been one of the unsolvedcting fixed point. Hence for screened electron-electron
problems in the quantum Hall effect. The fundamentalinteractionsz = 2 and v = 2.3. For Coulomb interac-
guestions that remain unanswered are: (a) What are th®sn, we find that it is relevant at theoninteracting
effects of electron-electron interaction on the integer tranfixed point. However, by dimension counting, we find
sitions? (b) What are the effects of the quasiparticle statisthat due to a linear suppression in the density of states
tics on the fractional transitions? Almost all recent works(DOS) [6] the correlation effect is only marginal per-
on the integer plateau transitions are based on numericaldrbation at the Hartree-Fock fixed point. For the lat-
analyses of models dfioninteractingelectrons [1]. An ter, we findz = 1 and» = 2.3. The Hartree-Fock fixed
important outcome of these efforts is the consensus on thgoint provides a concrete example where Coulomb inter-
approximate values of the localization length exponeht (  action modifies the dynamical exponent and not the static
and several others characterizing the participation ratio andne. The root of such behavior is tm®ncritical sup-
its higher moments [1]. In particular, the result= 2.3  pression of the DOS. Indeed, as was shown in Ref. [6],
is in excellent agreement with the measured value [2,3}the Hartree-Fock DOS vanishes linearly with — Er|
Nonetheless, such basic issues as the relevance and tegardless of whether the Fermi enerfy coincides with
effects of the electron-electron interaction have not beethe critical value. This suppression resulted in a change
addressed. The necessity to understand the interaction eff z from 2 to 1, and a degradation of the RG dimen-
fects becomes even more pressing after recent experimesion of theresidual Coulomb Hamiltonian from 1 to O.
tal reports of the dynamical exponent= 1, instead of We do not yet know the effects of the residual Coulomb
the noninteracting value 2 [4,5]. In this Letter, we fo- interaction upon further loop corrections.
cus on the effects of the interactions on thiegerplateau We start with noninteracting electrons described by the
transitions. following Euclidean action (in unite/c = i = kg = 1):

Our strategy is the following. We take th2 + 1
dimensional noninteracting theory as the starting pointg, — 2 b — 2 A
We then ask what the gffects )gre of turning gonp theSO fd * wznlpw”(X)[ o + I+ Vimp(0) o, ()
interaction. In practice, we calculate the renormalization 1)
group (RG) dimension of the interaction Hamiltonian, and
also look at the other possible interactions it generatel) the above,y is the fermion Grassmann fieldy, =
upon renormalization. This is a standard exercise whef2n + )7/ is the fermion Matsubara frequencyn,
one analyzes the stability of a known critical point.is the disorder potential, antl® = —(1/2m) 3 [9; —
However, unlike many cases where one hamlytic iAx(x)]* whereA,(x) is the external vector potential. The
knowledge of the critical point in question, in the presentaction describing the interaction reads
case such knowledge is lacking. Thus the results that we

report in this Letter are based gumerical calculations St =T Z b‘w]mz,wﬁmf d’x d*y
of various correlation functions at the noninteracting and @50y . B
Hartree-Fock fixed point. X V(lx =Dt o, ) 4, ()0, (Y (x) . (2)

For short-rangeinteraction we obtained its RG dimen-
sion =~ —0.65, and found that to the second order in theln this Letter we consideV(|x — y|) = g/Ix — y|*.
interaction strength no relevant operators are generatethe total action isS = Sy + Sy, in which Sy, couples
upon renormalization. Thus we conclude that short-rangéhe otherwise independent frequency components,of
interaction is an irrelevant perturbation at the nonintertogether. To emphasize the symmetry propert§;afwe
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where By, (x,y) = ¢, (), (y) + ()¢, ().
In the following we imagine sitting at the fixed point of
Sy and numerically analyze the scaling properties$f;)
and (SZ,) in finite periodic systems of linear dimension
L and imaginary time dimension/I. (Hereafter(---)

denotes quantum and impurity averages.) Since we are

after theuniversalscaling properties of various correla-
tion functions, any representation 8§ which produces

the right universality class suffices. In the following
we choose the “quantum percolation” (or the network)
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FIG. 1. The scaling plot of"®. Inset shows thé. depen-
dence ofT™®(x,x + 1).

model of Chalker and Coddington. For details about this

model the readers are referred to Ref. [7].
numerical calculations reported here are done using th
U(2n)|,—o Hubbard model representation of the network
model [8].

In order to evaluatg(Sj,), it is necessary to know
the correlation function(B ., v, (X, Y)B(w,.w,) (¥, X)) =
8003000, 1@ (x,y; w1, 0y, L).  To extract the critical
piece of "™, it is important to perform the trace decom-
position [9,10]. Thus we write

I'Y(x,y; 01, w2, L) = TW(x,y; 01, w2, L)
+ (Y, ), ) (V)0 (¥)
(4)

+ (w1 — ).

Each of the last two terms in Eq. (4) involves only a
single Matsubara frequency and is noncriticall® is
only critical when wyw,; < 0 [11]. Since the scaling
dimension ofﬁwl(x)lpwz(x) is zero at the noninteracting
fixed point (i.e., the density of states has no anomalou
dimension) [8],I'® obeys the following scaling form:

T,y 01,02, L) = Fi(lx — yl/L, 01 L%, 0,L?).
(5)

Note that near the noninteracting fixed point, it is suffi-

cient to consider any pair of a positive and a negative

frequency. The latter scales with 2 in Eq. (5) which re-

flects the fact that = 2 at the noninteracting fixed point.
We have calculatedf® using the Monte Carlo method of
Ref. [8] for w;,L? = const,. The details of the calcula-

tion will be reported elsewhere [11]. The scaling behav-

ior of I'® vs |x — y|/L is shown in Fig. 1. The results
are consistent withF(Ix — y|/L, w L%, w,L?) ~ (Jx —
yl/Ly for |x — yI/L < 1L |(012L%)|71/2, and x4 ~

Moreover, the

%veraged action is

m  TL*( g i o x 2y
—T<—L>Zf \L))E\T
L -
X j]-"1< lx =yl sm(2nyn + 1)TL2> .
xX—y L

(6)

In the aboveY’ denotes the restricted sum satisfy-
ing nin, < 0. Let us change the integration variables
d*(x/L)d*(y/L) to d*(x + y)d*(x — y)/L*. The part
that depends on the relative coordinate reads
,w1L2,w2L2>,

R (= )Aﬁ< ,

x =l
where the upper limit of the integral is 1 and the lower
one isa/L (ais the lattice spacing). Naively, one would
geduce from Eq. (6) that the RG dimensiongas2 — A
as the result of dimensional analyses. This conclusion
can be modified if the integral in Eq. (7) depends on
a/L, i.e., if it diverges at the lower limit. Sincgl; ~
(lx = yl/L)*s for |x — y|/L < 1, the integral diverges
(we will henceforth refer to this case as that of short-range
interaction) whenA = x4y + 2, and converges (long-
range interaction) otherwise.
Let us now concentrate on the cake> x4 + 2 (i.€.,
short-range interaction). Simple analyses of Eq. (6) show
that

lx — yl
L

(1

ASgng = (g/L* H)[A + B(a/L)* ™ *],  (8)

whereA andB are nonuniversal functions afL2. Siﬂg;e

A — 2 > x4, the asymptotic scaling behavior &fSg,,
is controlled byAS(l) = Bu/L** whereu = ga>** .

sing

0.65. Thus, in terms of the properly scaled variables, thdn the language of the renormalization group, the density

first order correction to theingular partof the quench-

operators at nearby points have fused together to form
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a new operator with a RG dimensionxs,. Thus for [12] of two interaction operators, we next calculate
screened Coulomb interactions, we conclude that the R@2,). For that purpose we need to consider
dimension forT is 2 (thusz = 2), and that foru is  (B(w,.0,)(*:Y)Bws.0)(Y5%)Blaws.w) 'Y )Blwr.w) (X)) =
—x45 = —0.65. Therefore to this order the interaction is §,, ., 8 w,.0; S ws.wsOwew L & (X,y.X,¥'; 01, @2, w3, w4; L).
irrelevant. Here we note that if similar analyses are doneFor short-range interactions we need to concentrate
for the weak-field (i.e., the “singlet only”) metal-insulator only on the limit |x — y|,|x’ — y/| < |R — R/,
transition in2 + e dimensions, one obtaing,, = v/2¢ = where R = (x + y)/2 and R = (x' +y)/2. In
agreeing with the results obtained in, e.g., Ref. [10]. that limit and for w;w; <O0,wsws <0 (other

In order to perform a self-consistency check on the RGcombinations give noncritical contributions [11]), the
dimension of u, and to study the fusion product|s result is

/ / /
(8) Pl Ty — X — X y—y IR — R| 72

F (X,y’X,y a{wl}3L) - .TZ( R _ Rl 9‘ R . Rl ’ L 9{wlL } ) (9)

In the limit lx(y) — x'(y"|/IR — R'| < | ®Rd?R' to d*(R + Rd*(R — R'). Inthe integral over
1, w;L*| "2, F, reduces to the relative coordinates, the short-distance cutoff is again

Yol ot o a/L. As before, new dependence @ncould emerge

X =y Yl xT—y s 2 . . ol A L
F ~ / | BUR—R'I/L{w;L?). if the integral overR — R’ diverges at the lower limit,

R — R R—-R In general, if F4(IR — R'|/L.{w;L*}) ~ |(R — R")/LI|¢,

(10) and if2x4s — @ — 2 > 0then

The result for|[R — R/|*+T® vs |R — R'|/L for small, @ ) )

typical, fixed |x — y|,|Ix' — /|, w; = O(1/L?), and ASgng = —[C(u/L*™)* + Dv/L***],  (12)

x4s = 0.65, is shown in Fig. 2. This result indicates

that the previously obtained,, =~ 0.65 is the consistent where C,D are nonuniversal functions dfL2, whereas
scaling dimension of the short-range interaction. Goingy = g2422-V+2+a |n this case a new scaling operator,
through similar manipulations one can show that thefused from two interaction operators, would emerge with
second order correlation correction to the singular part of RG dimension—(2 + «). Moreover, sinc& + a <

the quench-averaged actiamsfrfg, is 2x45 this operator would control the asymptotic scaling
@ - ) , R of ASSn)g. On the other hand, x4y, —a — 2 <0
ASgng = — (TL7) T ] d the integral over the relative coordinates converges, and
R R/ o ”4L - ASiﬁfg = —C(u/L**)?; thus no new scaling variable
X <—>d2 <_>‘ needs to be introduced. Our results shown in Fig. 2
L LJIR-FK indicate thate = 0; thus2xs;;, — 2 — @ < 0 and hence

|[R — R/| ) we do not need to introduce any new scaling operator at
X T4|:T, 7T(2)’l1_,4 + I)TL i|, (11) this order.
Now we summarize our results for short-range in-
WhereZ' denotes the restricted sum satisfyimg:, < 0  teraction. For interactiorV(r) = g/Ir|*, we find that
andnzny < 0, and F4 « F53. In Eq. (11) let us convert the noninteracting fixed point istable (thusz = 2 and
v = 23)if A > 2 + x4 (here—xy, is the RG dimension
of short-range interactions). Our numerical results give
x45 = 0.65. Although the above analyses do not form
a “proof” that strong short-ranged interactions are irrele-
vant, we believe that the evidence is sufficiently strong.
Next, we consider the long-range Coulomb interaction,
i.e., A = 1. In that casex < x4 + 2; therefore Eqg. (8)
is asymptotically controlled bg&Siiln)g = Ag/L""2, which
implies a relevant RG dimension fa@ of 2 — A = 1.
Thus the noninteracting fixed pointis unstable upon
a turning on the Coulomb interaction. This result is not
] surprising given the fact that the measured valuezfar
] 1 instead of the noninteracting value 2. But if so, why
4_0IIII|II|I|IIlI|IIIl|IIII . .
0.0 0.1 0.2 0.3 0.4 0.5 should the static exponemtremain unchanged?
IR-RL In two recent papers, MacDonald and co-workers
FIG. 2. The scaling plot o R — R'|>*T® obtained with  Studied the integer plateau transition under a Hartree-Fock
x45 =~ 0.65. treatment of the Coulomb interaction [6]. They found
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that (a) the DOS shows the Coulomb gap behavior [i.e.and ignoring the possible short-distance divergenge

p(Er) ~ L™' in samples of linear dimensioh [13]] obtainASiﬁfg ~ ¢X(TL)?, thusg is marginal. In order to
regardless of whether the system is at criticality or not;go beyond this analysis (i.e., to determine the outcome of
(b) despite the dramaticoncritical DOS suppression, the short-distance fusion) we need to know the behaviors of
localization length exponent and the fractal dimension off® in a number of limits, information that we do not have
the critical eigen wave functions remain unchanged. It present. Finally, we would like to emphasize that the
addition, the conductivitieslid not show any qualitative Hartree-Fock theory presents a concrete example where,
change. We take these results as indicating that thgue to anoncritical suppression of the DOS,is modified
Hartree-Fock theory is in the same universality class agile » is not.

the noninteracting one. Thus the field theory should e thank J. Gan and S. A. Kivelson for useful discus-
be the same nonlinearr model [14] in which the sgjons.

bare parameters do not have nontrivial scale dependence Note added—In an interesting recent work [17], the
except that the DOS in the symmetry-breaking termeffects of interactions are studied via the nonlinear
should be replaced by the appropriate Coulomb gap formmodel [14] where the topological term is handled by the
Since the combinationr Tp should have dimension 2, and dilute instanton gas approximation. Since the lattes

p ~ 1/L, it implies z = 1. Thus, z is modified while  not produced the correct critical properties even for the
v is not, and the change inis caused by aoncritical  noninteracting transition, it is difficult for us to judge the

modification of the DOS. reliability of the results on the effects of interactions.
A direct consequence of the DOS suppression is that

the dimension of@wlgbwz is changed from 0 to 1.
Indeed, it can be shown [11] that the two-particle spectral
function that is consistent with the results in Ref. [6] and
the scaling arguments in Ref. [15] are given by [1] B. Huckestein, Rev. Mod. Phys57, 357 (1995), and
ploq? references therein.

2E| — B2 + (0g2)? (13) [2] H.P. Wei, D.C. Tsui, M. Paalanen, and A.M.M.
Pk 2 q Pruisken, Phys. Rev. Letb1, 1294 (1988).
In the abovep depends orE = (E| + E,)/2 and o, a [3] S. Koch, R. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev.
quantity with the dimension of conductivity, depends on Lett. 67, 883 (1991).

S2(E1, Ep, q) =

w = (E, — E»)/2 and the wave vecto§. At the criti- [4] H.P. Wei, L.W. Engel, and D.C. Tsui, Phys. Rev.5B,
cal point,p(E) ~ 1/L ando(w, §) = const for| pw| > . 34\/30?5(19?43)- Shahar. C. Kurdak and b.C. Teui. Ph
g% and constx (¢2/|pw|)/? for |pw| < ¢*. Here [ R.ev.L(:tggi 2638621333)' urdak, and D. . 1sul, Fhys.
x, = —0.5 is the exponent characterizing the anomalous 6] S R.E. Yana and A H. MacDonald. Phvs. Rev. Lett
diffusive behavior in the critical regime [8,15]. Note that 20, 4110 (19993). S-RE Yang, A. H. Mayc[.)onald and
the new exponents,; are independent of,. They are, B. Huckestein, Phys. Rev. Left4, 3229 (1995).
respectively, the scaling dimensions of the operators as{7] j.T. Chalker and P.D. Coddington, J. Phys2C 2665
sociated with the fusion products of four fermion opera- (1988); D.-H. Lee, Z. Wang, and S.A. Kivelson, Phys.

tors, or two SU(R) spin operators that are symmetric Rev. Lett.70, 4130 (1993).

and antisymmetric under permutations [9]. If one uses[8] D.-H. Lee and Z. Wang, Philos. Mag. Le#t3, 145 (1996).
Eq. (13) to compute the two-particle Green’s function, [9] F. Wegner, Z. Phys. B86, 209 (1980).

one can show that both and the scaling dimension of [10] D. Belitz and T.R. Kirkpatrick, Nucl. Phys8316 509
lelﬁwz are unity [11]. (1989); D. Belitz and T.R. Kirkpatrick, Rev. Mod. Phys.

- 66, 261 (1994).

To support the predictions of the Hartree-Fock theory :
one has to analyze the stability of the Hartree-Fock fixedLk D:-H-Lee and Z.Wang (to be published). ”

. : . . . 12] See, e.g., J.L. Cardy, irrields, Strings and Critical
point when the residual Coulomb interaction is taken int PhenomenaProceedings of the Les Houches Summer
account. Because of the normal ordering with respect t0  gchool Session XLIX. edited by E. Brezin and J. Zinn-
the Hartree-Fock ground state, there is no contribution  jystin (Elsevier, New York, 1989).
to ASiilgg due to the residual Coulomb interaction [16]. [13] We take this as indicating that in the thermodynamic limit

R ¢) p(E) = |E — EF|.
The lowest order effects now come in viSs,. The [14] A.M. M. Pruisken, inThe Quantum Hall Effecedited by

new scaling form forl™® is T® (ry, ra, r3, 14, {w}, L) = R.E. Prange and S.M. Girvin (Springer-Verlag, Berlin,

L™* Fs(ri;L™ " {w;L}). Inserting this result into 1990).
@) 1 2 N/ 2 2 2 2 [15] J.T. Chalker, Physica (Amsterdarh$7A, 253 (1990).
ASgng = — 3—2(gT) Z [ d'xd’yd’x dy [16] We note that in Ref. [6] the Hartree-Fock fixed point
® ”1;""”;*. is done for every disorder configuration. Hence here the
'y, yh w2 + DT, L) normal ordering is performed before the impurity average.
lx — ylIx" = y/| [17] A.M.M. Pruisken and M. A. Baranov, Europhys. Ledtl,
(14) 543 (1995).
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