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An analyticalsolution is found for the lowest Floquet state in a single quantum well which is stro
driven by an external laser field of formeFz cosvt. The spectral weights of the photon sidebands v
in a highly nonlinear fashion withF, exhibiting strong quenchings close to roots of the Bessel functi
Jnsk0eFymv2d, wheren is the sideband index andk0 is the wave vector of the centerband resonan
The v22 scaling behavior of the roots is qualitatively different from thev21 dependence found in the
coherent miniband transport in superlattices. [S0031-9007(96)00217-7]

PACS numbers: 73.20.Dx, 03.65.Ge, 72.20.Ht, 73.40.Gk
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The recent advent of powerful free-electron lasers
pable of delivering extremely strong and coherent el
tric driving fields has stimulated studies of photon-assis
tunneling (PAT) in nanostructured systems in the high
nonlinear regime. It may thus soon be feasible to stu
tailored artificial atoms and other structures subject to
intense laser field, which would provide new insight in
similar experiments in atomic physics and chemistry. F
strong driving, tunneling is expected to occur mainly v
sidebands offset from the energy of the incident electron
a multiple of the photon energȳhv, with the contribution
of each sideband varying nonmonotonically with the dr
ing field [1]. Experimentally, this has indeed been quali
tively observed in superlattices [2,3] and, less conclusive
in quantum dots in the Coulomb-blockade regime [4].

There exists a good theoretical understanding of P
in the coherent carrier transport in superlattice miniban
[5,6]. Dynamical localization, leading to a collapse of th
miniband and a subsequent quenching of the tunne
current, is predicted at zeros of the Bessel funct
J0seFdSLyh̄vd, with eFdSL the Bloch energy of the
superlattice andh̄v the photon energy of the driving
laser field. A similar quenching effect has also be
predicted in biquartic double wells [7] and in potentia
driven resonant tunneling diodes [8]. On the oth
hand, however, there is no analytical quantum-mechan
theory yet for the fundamental problem of asingle
quantum well subject to an intense laser field. In Refs.
and [3] the Tien-Gordon theory [1] has been used
this purpose, assuming that the applied laser field can
approximated by its potential drop across a period of
superlattice [Fig. 1(b)]. Clearly, this approximation nee
critical examination.

The purpose of this Letter is to calculate the spect
function of the lowest resonance in asinglequantum well
which is strongly driven by an external laser field, and
apply the results to the analysis ofsequentialPAT in a
superlattice. One of our main findings is that for this ca
the characteristic scale for the driving field differs fro
that derived by Holthaus [5] for the coherent miniban
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transport by a factor of the order ofE0yh̄v, where E0

is the energy of the quantum-well resonance. Thisv22

dependence of the characteristic scale is qualitatively n
and cannot be explained using the Tien-Gordon theo
which predicts av21 dependence. Also, we find an
asymmetry in the photon emitting and absorbing chann
which is not seen in the Tien-Gordon theory.

First, let us consider a quantum well sandwiched b
tween twoinfinitely high walls atz  6dy2 as depicted
in Fig. 1(a) which is harmonically driven by an electri
field eFz cosvt. Later we shall discuss the applicabilit
of our theory to quantum wells surrounded byfinite barri-
ers. Within2dy2 , z , dy2 the Hamiltonian is thus of
the form

Hstd  2
h̄2

2m
≠2

≠z2 1 eFz cosvt . (1)

A particular solution to the corresponding time-depende
Schrödinger equation was given by Truscott [9]. In ord
to be able to satisfy the boundary conditions one has
make an ansatz using all possible particular solutio
which for a resonant level with even symmetry yields

FIG. 1. A quantum well sandwiched between two infinite
high walls atz  6dy2, and driven by an external potentia
eFz cosvt generated by a laser (a) or driven by auniform
potentialV0 (b).
© 1996 The American Physical Society
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2msE0 1 lh̄vd . (3)

csz, t, E0d is of the form exps2ietyh̄dustd with ustd 
ust 1 2pyvd which is characteristic for a Floquet sta
[10]. A Floquet state is the analog to a Bloch sta
when replacing aspatially periodic potential with atime
periodic potential. The quasimomentum of the Blo
state becomes the quasieigenenergye of the Floquet
state. From Eq. (2) we finde  E0 1 e2F2y4mv2. The
spatial symmetry of the sideband wave functions in
is essentially cosinelike for even sideband indexl and
sinelike for odd l, reflecting the fact that the applie
laser field, and hence a one-photon transition from
sideband to the next, has odd parity. The energyE0 and
the coefficientsAl in Eq. (2) depend on the driving field
and have to be determined from the boundary condit
that the wave function vanishes atz  6dy2 at all times,
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To solve this equation we Fourier transform it using t
identity

exp

µ
ikleF cosvt

mv2

∂


X̀
n2`

inJn

µ
kleF
mv2

∂
expsinvtd ,

where Jn is the nth Bessel function. The boundar
condition can then be recast into the form

0 
X̀

l2`

s2idlAlfexpsikldy2d 1 s21dn exps2ikldy2dg

3 Jn1l

µ
kleF
mv2

∂
for all n . (4)

So far, all equations have been exact. In order to fi
an approximate solution to Eq. (4) we now define t
dimensionless variables for the effective field streng
q  k0eFymv2, and the relative spacing of the side
bands,y  h̄vyE0. Note that these are implicit equa
tions ask0 and E0 both depend onq and y. Expanding
the wave vectorkl  k0

p
1 1 ly in powers of y, and

specifying further that only the lowest resonance is co
sidered, the (not normalized) solution is found to seco
order as
Al  il

Ω
Jlsqd 1

qsq2 2 p2dy2

64
fJl11sqd 2 Jl21sqdg 2

3q2y

32
fJl12sqd 2 Jl22sqdg 2

q2y2

32
fJl12sqd 1 Jl22sqdg

2
q3y2
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fJl13sqd 2 Jl23sqdg 1

9q4y2

2048
fJl14sqd 1 Jl24sqdg

æ
, (5)
o
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k0d  p

µ
1 2

q2y2

16

∂
. (6)

By inspecting higher-order corrections (iny) to (6) one
finds that a subset of these can be summed up i
geometric series, yielding

k0d 
pp

1 1 q2y2y8

"
1 2

s15 2 p2dq2y4

768s1 1 q2y2y8d3

#
. (7)

The remaining unaccounted terms are of the order
Ofsyy4d4g 3 Ofsqyy4d2g and are generally very sma
unless the photon energȳhv exceeds the quasieigenen
ergy of the resonance considerably (in which case,
havey ¿ 1). With E0  h̄2k2

0y2m this contribution to
the quasieigenenergy of the lowest driven quantum-w
a

f

e

ll

resonance is finally given by

E0 
Estatic

1 1 q2y2y8

"
1 2

s15 2 p2dq2y4

768s1 1 q2y2y8d3

#2

, (8)

whereEstatic denotes the energy of the resonance witho
any driving. Recalling thaty  h̄vyE0, we can use the
leading term of Eq. (8) to solve fory,

y 
4Estatic

q2h̄v
2

s
16E2

static

q4h̄2v2
2

8
q2

. (9)

This equation yields real solutions only up to a maxim
value qmax 

p
2 Estaticyh̄v, beyond which the theory

breaks down. At this point, we haveymax  2h̄vyEstatic,
giving qmaxymax  2

p
2 andE0min  Estaticy2. In terms

of the field strengthF one finds with Eq. (7) that the
4011
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breakdown occurs atdeFyh̄v  p , i.e., when the ac
voltage drop across the quantum well exceeds the ph
energy by a factor ofp . The origin of this breakdown
can be traced back to the expansion of the wave vec
askl  k0

p
1 1 ly which fails forkl imaginary andk0, y

real, which is precisely what happens for sidebands be
the bottom of the quantum well. This is also reflect
by the fact thatqmax is proportional toEstaticyh̄v. We
stress, however, that numerical solutions of Eq. (4) do
suffer from this breakdown.

Resonant tunneling experiments on double-bar
structures have shown that the presence of a reson
in the quantum well strongly affects the transmissi
probability and hence theIsV d characteristics of a device
Much information on the transmission probability ca
be drawn from the analysis of the spectral function
the quantum-well resonance, which is defined as
imaginary part of the retarded Green’s function a
describes the probability distribution over the sideban
n. In the case of a laser-field driven quantum we
this function is found to beSsEd 

P
n wnjAnj2dsE 2

E0 2 e2F2y4mv2 2 nh̄vdy
P

n wnjAnj2, where the
weight resulting from the spatial integration is evaluat
to be wn  j1 1 s21dnJ0s2kneFymv2d sinsknddykndj.
From Eq. (5) one sees that the spectral weights of
sidebands vary dramatically with the amplitudeF of the
applied ac field, and a characteristic feature found in
sidebands is that their weights go to zero at particu
values ofF, which for y ø 1 are determined by root
of Jnsk0eFymv2d. This is qualitatively very similar to
what has been found in potential-driven [à la Fig. 1(b)]
resonant tunneling diodes [8]. In what follows, we sh
use this quenching effect to study how well the analysis
the spectral function of a quantum well havinginfinitely
high walls can predict the transmission characteristics
double-barrier diodes withfinite barrier heights.

Based on a numerical implementation of the transf
matrix method to solve for the scattering states in an
field driven double-barrier diode, we find the ac field
which the tunneling current through the centerbandn  0
first quenches as a function of the photon energy. F
ure 2 shows the results for two double-barrier structu
havingVb  300 meV (solid circles) andVb  700 meV
(solid squares), withdb  dqw  5 nm. This has to be
compared with a determination ofFmin from the collapse
of the spectral weight of the centerband using Eq. (
which to lowest order iny gives Fmin  q0mv2yk0e,
whereq0 ø 2.4048 is the first root ofJ0 (dashed lines).
For photon energies larger than the tunneling linewi
D of the static resonance, indicated as vertical das
lines in Fig. 2, the analytical solution is in perfect agre
ment with the transfer-matrix calculation. AtD ø h̄v a
crossover is seen to a new type of ac response whic
turns out, shows a much less pronounced quenching e
in the tunneling current. This latter regime is obvious
not covered by the analytical solution (5) as the assum
4012
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FIG. 2. Driving field strength as a function of laser frequen
at which the centerband of the lowest quantum-well resona
collapses for two double barrier structures having differe
barrier heights. Discrete points are taken from transmiss
calculations, dashed lines from roots of Eq. (5).

tion of infinitely high walls implies having already take
the limit D ! 0. In passing, we note that for large value
of y  h̄vyE0, we see from Eq. (5) that the quenchin
is not related in a simple way to roots of Bessel functio
anymore, and hence we do not expect a simplev2 depen-
dence. Nevertheless, judging from Fig. 2 the deviat
appears to be rather small.

It is interesting to compare these results with the the
of dynamical localization due to PAT in the miniband of
superlattice as discussed by Holthaus and co-workers
where the characteristic driving scaleeFdSLyh̄v shows
a v21 rather than av22 dependence. With Eq. (7) on
finds that

q 
k0eF
mv2

ø
2
p

E0

h̄v

eFd
h̄v

, (10)

and hence that in the present case of asinglequantum well
the characteristic scale for the ac driving field is a fac
g ø s2ypd sE0yh̄vddydSL larger than the scale found
by Holthaus. The reason behind this difference is th
while in a single quantum well the relevant driving forc
is indeed the acelectric field, in a coherently coupled
two-well system or a superlattice with a coherence ran
longer than the superlattice period the relevant drivi
force is, to leading order, the acpotential dropbetween
two neighboring quantum wells. Which scaling fact
is more appropriate is thus entirely a question of t
coherence length in the system and can be chec
experimentally by varying the ratiōhvyEstatic by either
changing the laser frequency or the well parameters.
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We can now apply our theory to the experiment
Keay et al. [2], where a free-electron laser was us
to study sequential PAT in a superlattice. Because
the sequential nature of the tunneling, it is sufficient
consider a single quantum well. In Fig. 3 we show t
spectral function of a quantum well of widthd  16 nm
[11], corresponding toEstatic  21.923 meV, as a function
of the driving laser field strengthF. The photon energy
was taken from experiment to bēhv  5.38 meV, and
hencey  h̄vyE0 ø 1y4 is rather large. The top pane
of Fig. 3 displays a numerical solution of Eq. (4), while th
bottom one is based on an analytical fourth-order solut
(in y) of the same equation. The agreement betw
these two is excellent up to field strengths of the or
of F ø 4.5 kVycm, where sidebands below the bottom
the quantum well start to become important. The weig
of the sidebands vary greatly as a function of the driv
field, with the channels involving theemissionof photons
sn , 0d being generally stronger than those involving t
absorption of photonssn . 0d. This is in contrast to
the theory by Tien and Gordon [1], which predicts t
spectral weights of the6n sidebands to be equal, an
it may help to explain the asymmetry of these chann
found in the experiment leading to absolute negat
conductivity. From Eq. (5) we see that this asymme
gets stronger with increasing ratioy  h̄vyE0. The
authors of Ref. [2] estimate the ac field strength of th
free-electron laser by fitting the minima and maxima
the sideband weights deduced from experiment to the T

FIG. 3. Sideband spectrum of a driven quantum well of wid
d  16 nm as a function of a driving laser field of streng
F and photon energȳhv  5.38 meV. The top panel is
a numerical solution of Eq. (4), the lower one an analyti
fourth-order solution (iny  h̄vyE0) in the spirit of Eq. (5).
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Gordon theory. Using our theory, we find that this estim
should be reduced by a factorg ø 2. Clearly, for smaller
values ofh̄vyE0 the discrepancy will become even large

The difficulty with transport measurements lies in t
fact that theIsV d andIsvd characteristics do not directl
measure the spectral function, but rather its convolut
with—at least—the supply function in the emitter of th
device, and/or the spectral function in the neighbor
quantum wells. On the other hand, optical methods s
as absorption measurements are capable of provi
spectral information with very high energy resolutio
We therefore propose an induced absorption experim
on a single quantum well utilizing two lasers, where
strong FIR laser is used to drive the states in the quan
well, while a second, tunable, low-power laser measu
the absorption. In this way, it should be possible
trace the spectral weights and energies of a numbe
sidebands as a function of the power of the FIR laser.

In conclusion, we have presented an analytical a
numerical treatment of a single quantum wellstrongly
driven by an external laser fieldeFz cosvt. In such a
field a static quantum-well resonance becomes a Floq
state consisting of a series of sidebandsn at energies
E0 1 e2F2y4mv2 1 n"v. The sideband amplitudes ar
a highly nonmonotonic function of the driving fieldF
and scale withk0eFymv2, where k0 is the centerband
wave vector of the resonance. This is in contrast to
scaling law found for potential-driven quantum wells,
superlattices, where av21 dependence was found.

Many fruitful discussions with A. P. Heberle, J.
Baumberg, J. Allam, and D. A. Williams are grateful
acknowledged.
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