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1D Generalized Statistics Gas: A Gauge Theory Approach
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A field theory with generalized statistics in one space dimension is introduced. The statistics enters
the scene through the coupling of the matter fields to a statistical gauge field, as it happens in the
Chern-Simons theory in two dimensions. We study the particle-hole excitations and show that the long
wavelength physics of this model describes a gas obeying the Haldane generalized exclusion statistics.
The statistical interaction is found to provide a way to describe the low-T critical properties of one-
dimensional non-Fermi-liquids. [S0031-9007(96)00207-4]
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In the Landau theory of Fermi liquids [1] the interactio
effects are treated as perturbations and we are introdu
to the concept of quasiparticles having a one-to-o
correspondence with the single particle states of the id
Fermi gas. A departure from this Fermi liquid pictu
can be observed in the study of strongly correlat
electron systems, where even for weak interaction
Fermi surface is drastically altered. For many yea
the theoretical ground for these studies has been
one-dimensional (1D) electron liquid described by t
Luttinger model [2,3]. The discovery of the fractiona
quantum Hall effect (FQHE) [4] in 2D systems gav
further momentum to the study of non-Fermi-liquid
since it cannot be explained in terms of single partic
states. In fact the edge excitations of a FQHE sample
believed to be described by a 1D non-Fermi-liquid, bas
on the (chiral) Luttinger model [5].

It was recently proposed [6] that by bosonization
an ideal gas obeying a generalized exclusion statis
[7,8] we may describe the low-T fixed points of 1D non-
Fermi-liquids. Instead of being based on the monodro
properties of the wave functions, this generalized exclus
statistics is based on the variation of the number
available single particle states as the number of partic
in the system varies through the relationDd ­ 2kDN ,
with d being the number of available states,N the number
of particles, andk the “statistical interaction” paramete
For k ­ 0 we have bosons and fork ­ 1 we have
fermions, and for other values we say that we are dea
with generalized statistics. In this Letter we propo
another point of view for this correspondence betwe
generalized statistics and the Luttinger model. Inspi
by the success of the Chern-Simons-Ginzburg-Land
description for the FQHE in 2D [9], where the (spinles
electrons are described by bosonic fields coupled t
Chern-Simons gauge field in a way that the effective the
is fermionic, we recently introduced [10] a 1D gauge fie
theory that when coupled to the matter fields has
property of transmuting the statistics of the elementa
quanta. Using this gauge model we here explore
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long wavelength physics and find that for the partic
hole (density) fluctuations, the statistical parameterk can
be used to relate the density-density correlation funct
of this model to the ones found for the 1D Thirring an
Luttinger models.

We now proceed to describe our gauge model. Imag
a gas of bosonic and spinless nonrelativistic particl
constrained to move on an infinite line and that in t
many-body language are described as the elemen
quanta of a complex matter fieldCsx, td. The only
interaction present here is a “statistical” gauge interacti
The Lagrangian density for this system is

L ­ iCps≠t 1 ifdC 1
1

2m
Cp

µ
≠x 2 i≠xj 1

i
2

x

∂2

3 C 2
1

2kp
sx≠tj 1 fxd , (1)

with k a real parameter. It is easy to see that this L
grangian density is invariant under the gauge transform
tions

C0sx, td ­ Csx, tdeiLsx,td,

C0psx, td ­ Cpsx, tde2iLsx,td, (2)

j0sx, td ­ jsx, td 1 Lsx, td, x 0sx, td ­ xsx, td , (3)

f0sx, td ­ fsx, td 2 ≠tLsx, td . (4)

The two scalar gauge fieldsj and x enter the x
component of the covariant derivative in a combinati
that transforms as a vector potential. The last term inL

gives the dynamics of the statistical gauge fields.
To quantize the above model we follow [11] where

gauge invariant treatment of the two-dimensional Che
Simons model can be found. From the symplectic str
ture of (1) we have the following equal time canonic
commutation relations (nonzero part):

fĈsx, td, Ĉys y, tdg ­ dsx 2 yd,

fĵsx, td, x̂s y, tdg ­ 2i2kpdsx 2 yd . (5)
© 1996 The American Physical Society 4007
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The Hamiltonian operator is given by

Ĥ ­
Z `

2`

dx

Ω
2

1
2m

Ĉy

∑
≠x 2 i

µ
≠xĵ 2

1
2

x̂

∂∏2

3 Ĉ 1 f̂

µ
1

2kp
x̂ 1 ĈyĈ

∂æ
. (6)

As in electrodynamics the term that multipliesf̂ in Ĥ is
the generator of time independent gauge transformat
and can be set identically zero if we work with gau
invariant matter fields, i.e., fields that commute w
Ĝ ­

1
2kp x̂ 1 ĈyĈ. These fields are given by the gau

invariant operators

F̂sx, td ­ Ĉsx, tde2iĵsx,td,

F̂ysx, td ­ Ĉysx, tdeiĵsx,td. (7)

With these operators and settingĜ ­ 0, the Hamiltonian
reads

Ĥ ­ 2
Z `

2`

dx
1

2m
F̂ys≠x 2 ikpF̂yF̂d2F̂ . (8)

To study the content of the abovêH we introduce the
occupation number operator

N̂ ­
Z `

2`

dx F̂yF̂ (9)

and construct the following arbitrary eigenstate ofN̂ :

jNl ­
Z

dx1 · · · dxN csx1, . . . , xNd

3 F̂ysx1d · · · F̂ysxN d j0l , (10)

with c being an arbitrary function symmetric und
exchange of any of its entries andj0l is the ground state
defined byF̂sxd j0l ­ 0. If we further insist that this state
is an eigenstate of̂H with eigenvalueE, we have thatc
satisfies theN-body Schrödinger equation

2
1

2m

NX
a­1

∑
≠

≠xa
2 ikp

X
bfia

dsxa 2 xbd
∏2

3csx1, . . . , xN d ­ Ecsx1, . . . , xN d . (11)

This d-function interaction was considered in [12] for th
particular casek ­ 1 in order to describe fermions in th
Feynman path integral. One can remove this interac
with the aid of a gauge transformation inc :

c̄sx1, . . . , xN d ­ exp

√
2ikp

X
a,b

uH sxa 2 xbd

!
3 csx1, . . . , xNd , (12)

whereuH is the Heaviside step function, so thatc̄ satisfies
the free Schrödinger equation

2
1

2m

NX
a­1

≠2

≠x2
a

c̄sx1, . . . , xN d ­ Ec̄sx1, . . . , xN d , (13)

but obeys a nontrivial condition under exchange of a
two arguments
4008
ns

n

y

c̄sx1, . . . , xa, xb , . . . , xN d ­ eikp sgnsxa2xbd

3 c̄sx1, . . . , xb , xa, . . . , xNd .

(14)

As we can see from (14) our model leads to an effect
theory where the elementary quanta display a general
statistics, but for a statistics other than Fermi or Bose, d
to strong correlation we will have a situation similar
the Thirring model were there is, asymptotically, no sing
particle interpretation [13]. This point will become clea
in the following, when we study the collective excitation
of our model and show its equivalence to the Thirrin
model.

Within this model we now proceed to study th
behavior of the collective modes corresponding to t
density fluctuations (particle-hole excitations) of a 1
gas with generalized statistics. For that purpose
decompose the matter fieldC in a density and phase part

C ­
p

r eih , (15)

and introduce a uniform background density2r̄, so that
(1) reads

L ­ 2 r≠th 2 sr 2 r̄df

2
1

2m

∑
s≠x

p
rd2 1 r

µ
≠xh 2 ≠xj 1

1
2

x

∂2∏
2

1
2kp

xsf 1 ≠tjd . (16)

Variation of f gives the constraintx ­ 22kpsr 2 r̄d.
Introducing the variables

s ­ h 2 j, t ­ h 1 j , (17)

we have that (16) goes to

L ­ 2 r≠ts

2
1

2m
hs≠x

p
rd2 1 rf≠xs 2 kpsr 2 r̄dg2j .

(18)

Notice that the above Lagrangian depends only on
gauge invariant fieldss andr. We now make one more
change of variables,

r ­ r̄ 1 ≠xu , (19)

so that the density fluctuationsr 2 r̄ are now expressed
as ≠xu. As one can see from the first term in (18
Pu ­ 2≠xs is the canonical momentum ofu in these
new variables. If we go to Fourier modesusqd ­

1
p

2p

R1`

2` dx usxd expsiqxd, the long wavelength physics i
governed by the Hamiltonian

H .
r̄

2m

Z 1`

2`
dqfPusqdPus2qd

1 q2k2p2usqdus2qdg . (20)

Performing the canonical transformation

u !
1

p
kp

u , (21)
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Pu !
p

kp Pu , (22)

the Hamiltonian reads

H .
ys

2

Z 1`

2`
dqfPusqdPus2qd 1 q2usqdus2qdg ,

(23)

with ys being the sound velocity

ys ­ k
r̄p

m
­ kyF . (24)

Here yF is the Fermi velocity for a gas of 1D spinles
electrons. The same result was found in [6] by bosoniz
tion of an ideal gas of particles obeying the Haldane ge
eralized exclusion statistics.

To see the relation of our model with 1D fermio
models we now proceed to compute the ground-state w
functional c0 for (23); we choose the wave functiona
to depend onu so thatPu acts on it as the functional
derivative 2i

d

du . It can be shown [14] thatjc0j
2 is

equivalent to the 2N-point density-density correlation
function provided we set≠xusxd to represent the density
for N particles atxa andN holes atya (a ­ 1, 2, . . . , N),
i.e.,

usxd ­
p

kp

NX
a­1

fuHsx 2 xad 2 uH sx 2 yadg

­
p

kp

NX
a­1

1
2pi

Z 1`

2`
dq

1
q

seiqsx2xad 2 eiqsx2yadd .

(25)

The solution for the ground-state wave functional is

c0fug ­ N e
s1y2d

R1`

2`
dqjqjusqdus2qd

, (26)

with N a normalization constant. If we now extract from
(25) usqd and insert it in (26), we obtain

jc0j
2 ­ N 2

Q
a,b jxa 2 xbj2kjya 2 yb j2kQ

a,b jxa 2 ybj2k
. (27)

For k ­ 1 we recover the 2N-point density-density corre-
lation function for free gapless 1D Dirac fermions [15
and for k generic (but.0) we have the equivalence
with the gapless Thirring and Luttinger models [14]. I
fact, the use of generalized statistics to solve the Thirri
model can be found in [13].

To study the nonideal gas case, one can introduc
two-body interaction in (20) through the term
a-
n-

ve

,

g

a

Hint ­
1
2

Z
dx

Z
dyfrsxd 2 r̄gV sx 2 yd frs yd 2 r̄g

­

r
p

2

Z 1`

2`
dq V sqdq2usqdus2qd . (28)

If the two-body potential is sufficiently short ranged, s
that in the lowq approximation we keep only the term
V sq ­ 0d, the sole effect of this interaction in all that w
have computed is to renormalize the statistical parame
k:

k !

s
k2 1

m
p

2
r̄p3y2

V s0d . (29)

For more general forms ofV sx 2 yd we can build a
perturbation theory based on the Luttinger model as
Fermi liquid is based on the ideal Fermi gas [3].

In summary, we described here an alternative desc
tion of generalized statistics in 1D based on a gauge fi
theory that parallels the Chern-Simons construction in 2
It was shown that in the long wavelength limit we have
correspondence to a gas with generalized exclusion sta
tics, and the relation to 1D fermionic models was esta
lished.
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