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1D Generalized Statistics Gas: A Gauge Theory Approach
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A field theory with generalized statistics in one space dimension is introduced. The statistics enters
the scene through the coupling of the matter fields to a statistical gauge field, as it happens in the
Chern-Simons theory in two dimensions. We study the particle-hole excitations and show that the long
wavelength physics of this model describes a gas obeying the Haldane generalized exclusion statistics.
The statistical interaction is found to provide a way to describe theTlawitical properties of one-
dimensional non-Fermi-liquids. [S0031-9007(96)00207-4]

PACS numbers: 71.27.+a, 05.30.—d, 11.15.—q, 74.20.Mn

In the Landau theory of Fermi liquids [1] the interaction long wavelength physics and find that for the particle-
effects are treated as perturbations and we are introducédmble (density) fluctuations, the statistical parameateran
to the concept of quasiparticles having a one-to-onde used to relate the density-density correlation function
correspondence with the single particle states of the idealf this model to the ones found for the 1D Thirring and
Fermi gas. A departure from this Fermi liquid picture Luttinger models.
can be observed in the study of strongly correlated We now proceed to describe our gauge model. Imagine
electron systems, where even for weak interaction th@ gas of bosonic and spinless nonrelativistic particles,
Fermi surface is drastically altered. For many yearsonstrained to move on an infinite line and that in the
the theoretical ground for these studies has been thmany-body language are described as the elementary
one-dimensional (1D) electron liquid described by thequanta of a complex matter field(x,r). The only
Luttinger model [2,3]. The discovery of the fractional interaction present here is a “statistical” gauge interaction.
quantum Hall effect (FQHE) [4] in 2D systems gave The Lagrangian density for this system is
further momentum to the study of non-Fermi-liquids, 1 P \2
since it cannot be explained in terms of single particleL = iV*(9, + i¢)¥ + 2—\If*<ax — §0,& + 5)(>
states. In fact the edge excitations of a FQHE sample are | "
believed to be described by a 1D non-Fermi-liquid, based XV — —(x9,& + dx), (1)
on the (chiral) Luttinger model [5]. 2k
It was recently proposed [6] that by bosonization of
an ideal gas obeying a generalized exclusion statisticd
[7,8] we may describe the lov-fixed points of 1D non-

with « a real parameter. It is easy to see that this La-
rangian density is invariant under the gauge transforma-

Fermi-liquids. Instead of being based on the monodromy W(x, 1) = W(x, )0,

properties of the wave functions, this generalized exclusion _

statistics is based on the variation of the number of W (x, 1) = WH(x, r)e A0, (2)
available single particle states as the number of particles

in the system varies through the relatidd = — AN, El,n) = £ t) + A o), x'nt) = (0, 3)

with d being the number of available statdsthe number

of particles, andkc the “statistical interaction” parameter.

For k = 0 we have bosons and fok = 1 we have &' (x,1) = dp(x,1) — 9, A(x,1). 4)
fermions, and for other values we say that we are dea”ng’he two scalar gauge f|e|d§ and X enter the x
with generalized statistics. In this Letter we proposecomponent of the covariant derivative in a combination
another point of view for this correspondence betweeRngat transforms as a vector potential. The last ternfin
generalized statistics and the Luttinger model. Inspireq‘;i\,eS the dynamics of the statistical gauge fields.

by the success of the Chern-Simons-Ginzburg-Landau To quantize the above model we follow [11] where a
description for the FQHE in 2D [9], where the (spinless)gauge invariant treatment of the two-dimensional Chern-
electrons are described by bosonic fields coupled t0 &mons model can be found. From the symplectic struc-

Chel’l’l—SimonS gauge f|e|d in away thatthe effeCtlve theorYure of (1) we have the fo”OW|ng equal time Canonical
is fel’mlonIC, we I’ecently introduced [10] alD gauge ﬁeldcommutation relations (nonzero part):

theory that when coupled to the matter fields has the 5 2+ _ B
property of transmuting the statistics of the elementary [\P(Ax’ 0, W (y.0] = 8(x = ).
guanta. Using this gauge model we here explore the [£(x,0), % (y, )] = —i2k78(x — y). (5)
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The Hamiltonian operator is given by (X1, Xy Xpys oy Xy) = €< 52N )

N * 1 . . 1 2 X (X1, Xy Xay ooy XN) -
_ sy . S
H f_wd"‘{ o [ax (o:d - 5 Xﬂ (14)

5 N PPN As we can see from (14) our model leads to an effective

: t
W ¢<2K7T v w)} (6) theory where the elementary quanta display a generalized
As in electrodynamics the term that multiplidsin # is statistics, but for a statistics other than Fermi or Bose, due

the generator of time independent gauge transformatiorf® Strong correlation we will have a situation similar to
and can be set identically zero if we work with gaugeth€ Thirring model were there is, asymptotically, no single
invariant matter fields, i.e., fields that commute withP&rticle interpretation [13]. This point will become clear
G = %f + Wi, These fields are given by the gauge " the following, when we _study the collective excitations
invariant operators of our model and show its equivalence to the Thirring

& _ iR (o) model.
(e, 1) = W(x,1)e S Within this model we now proceed to study the
Ot (x, 1) = Ul(x, 1)ets®, (7)  behavior of the collective modes corresponding to the

density fluctuations (particle-hole excitations) of a 1D
gas with generalized statistics. For that purpose we
decompose the matter field in a density and phase parts

i = —] dxﬁ(i)*(ax _ikmdtd)rd . (8) V= pe, (15)

A . and introduce a uniform background density, so that
To study the content of the abové we introduce the (1) reads

occupation number operator

With these operators and settigy= 0, the Hamiltonian
reads

w L= —pdn—(p—p¢
N = f dx dtd (9) . Lo
— R — — | (9:/p)* + (ax —ax+—>}
and construct the following arbitrary eigenstateNof 2m [( V) PR ¢ 2 X
1
IN) = ]dx1-~-de W(xi,. .., xn) T S X(@ Tt a8). (16)
. . Variation of ¢ gives the constraing = —2«w(p — p).
X ®T(xp) - DT (xy) 0), (10)  Introducing the variables
with ¢ being an arbitrary function symmetric under o=n— &, T=mn+ ¢, (17)

exchange of any of its entries af@) is the ground state

defined byd (x) |0) = 0. If we further insist that this state we have that (16) goes to

is an eigenstate aff with eigenvalueE, we have thai) L = — qaﬂf

saUsﬂe; theN-body Schrddinger equatlzon _ %{(GX\/F)Z + ploco — km(p — PP
1 d

- [ s Z 8(x, — xb)} (18)
2m ;=L 0xg b#a Notice that the above Lagrangian depends only on the

Xep(xr,. .., xn) = Egr(xr, ... xy). (11) 9auge invaria_nt fieldsr andp. We now make one more

. L . : . change of variables,

This &-function interaction was considered in [12] for the B

particular casec = 1 in order to describe fermions in the p=ptadb, (19)

F(_aynman_path integral. One can remove this interactioso that the density fluctuations — p are now expressed

with the aid of a gauge transformationjn as 9,0. As one can see from the first term in (18)

II, = —0,0 is the canonical momentum &f in these
Ylxr,...,xy) = exp(—imr Z On(x, — xb)> new variables. If we go to Fourier mode&(g) =
a<b J% ffz dx 0(x) expigx), the long wavelength physics is
X (xg,...,xn), (12) governed by the Hamiltonian
wheredy is the Heaviside step function, so thasatisfies b +e
the free Schrodinger equation H = ﬁ[_x dq[TTe(g)TTp(—g)
N 2
S G ) = Ed.x). (13) + ¢?k?m0(g)0(=q)]. (20)
Zm ;= 9x Performing the canonical transformation
but obeys a nontrivial condition under exchange of any 0 — 0 (21)
two arguments Jrm
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Hg — /KT Hg,

the Hamiltonian reads

(22)

+oo
Uy
H=2 [ g @na-g + @o@o-g),
- (23)
with v, being the sound velocity
vy = K pm _ KUF . (24)
m

Here vy is the Fermi velocity for a gas of 1D spinless

Hi = 5 [ ax [ ot = pW( = 160 - 7]

\/?[_x dq V(9)q*0(q)0(—q).

If the two-body potential is sufficiently short ranged, so
that in the lowg approximation we keep only the term
V(g = 0), the sole effect of this interaction in all that we
have computed is to renormalize the statistical parameter

K:
K—>\/K2 +

For more general forms oV (x — y) we can build a

(28)

m2

/-)77-3/2

V(0). (29)

electrons. The same result was found in [6] by bosonizaperturbation theory based on the Luttinger model as the
tion of an ideal gas of particles obeying the Haldane genFermi liquid is based on the ideal Fermi gas [3].

eralized exclusion statistics.
To see the relation of our model with 1D fermion

In summary, we described here an alternative descrip-
tion of generalized statistics in 1D based on a gauge field

models we now proceed to compute the ground-state wav@eory that parallels the Chern-Simons construction in 2D.

functional ¢, for (23); we choose the wave functional
to depend or¥ so thatll, acts on it as the functional
derivative —i;—e. It can be shown [14] thatyy|® is
equivalent to the R-point density-density correlation
function provided we set,f0(x) to represent the density
for N particles atx, andN holes aty, (¢ = 1,2,...,N),
ie.,

N
0(x) = VK D [0n(x — x2) = Ou(x — yJ)]
a=1
N 1 + o0 1
S5 _ N iq(x_xu) — iq(x_yu)
\/Kﬂ';zﬂ_i f_w dq p (e e ).
(25)

The solution for the ground-state wave functional is

P[] = N2 ddlalo@oCa) (26)

with 2N" a normalization constant. If we now extract from
(25) 6(¢) and insert it in (26), we obtain

NZna<h Ixo = xp1**lya — ypl**
l_[a,b |xa - )’b|2K

lgpol* = (27)

For k = 1 we recover the ®B-point density-density corre-

lation function for free gapless 1D Dirac fermions [15],
and for « generic (but>0) we have the equivalence
with the gapless Thirring and Luttinger models [14].

model can be found in [13].
To study the nonideal gas case, one can introduce
two-body interaction in (20) through the term

It was shown that in the long wavelength limit we have a
correspondence to a gas with generalized exclusion statis-
tics, and the relation to 1D fermionic models was estab-
lished.

The author is grateful to A.N. Vaidya, E.C. Marino,
and P. Gaete for many stimulating conversations. This
work was supported by the CNPq (Brazilian Research
Council).

*Electronic address: silvio@quantum.stanford.edu
TPresent address.
[1] L. Landau, Sov. Phys. JET®, 920 (1957).
[2] J. M. Luttinger, J. Math. Phys. (N.Y4, 1154 (1963).
[3] F.D.M. Haldane, J. Phys. €4, 2585 (1981).
[4] D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).
[5] X.-G. Wen, Int. J. Mod. Phys. B, 1711 (1992).
[6] Y.S. Wu and Y. Yu, Phys. Rev. Let¥5, 890 (1995).
[7] F.D.M. Haldane, Phys. Rev. Le#7, 937 (1991).
[8] Y.S. Wu, Phys. Rev. Let{r3, 922 (1994).
[9] S.C. Zhang, T. Hansson, and S. Kivelson, Phys. Rev. Lett.
62, 82 (1989); N. Readbid. 62, 86 (1989).
[10] S.J. Rabello, Phys. Lett. B63 180 (1995).
[11] D. Boyanovsky, E. T. Newman, and C. Rovelli, Phys. Rev.
D 45, 1210 (1992).
[12] H. Kleinert, Phys. Lett. B25 381 (1989).
[13] B. Klaiber, in Lectures in Theoretical Physics, Boulder,
1967 (Gordon & Breach, New York, 1968).

. . . I_n [14] E. Fradkin, E. Moreno, and F.A. Shaposnik, Nucl. Phys.
fact, the use of generalized statistics to solve the Thirring

B392 667 (1993).

[15] J. Zinn-Justin,Quantum Field Theory and Critical Phe-
a nomena(Oxford University Press, New York, 1993), 2nd
ed.

4009



