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Landau-Ginzburg Theory of Self-Organized Criticality
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Self-organized criticality occurs through a nonlinear feedback mechanism triggering transitions
between differentmetastablestates. These transitions take the form of intermittent avalanchelike
events distributed according to a power law. We present the first and sinfplgstcontinuous
partial differential formalism of this phenomenon, based on the introductionsobaritical dynamics.

SOC is identified as the regime where diffusive relaxation is faster than the instability growth
rate. In the other limit of slow diffusion, avalanches comparable to the system size become
dominant. This provides a general correspondence between SOC and synchronization of threshold
oscillators. [S0031-9007(96)00101-9]

PACS numbers: 64.60.Ht, 05.40.+j, 05.45.+b, 05.70.Ln

The possibility for driven dissipative extended systemshe sake of pedagogy, we formulate the problem in the
to exhibit a spontaneous organization towards a kind ofandpilelanguage. It will turn out that, notwithstanding
dynamical critical point has been dubbed self-organizedur neglecting of many details, the basic properties as
criticality (SOC) [1]. This concept has been mostly il- well as the known value of the avalanche exponent are
lustrated using cellular automata models [2,3] and disrecovered quantitatively by our approach, providing a new
crete space-time models [4]. They are characterized biest of universality for SOC as well as a connection with
a very slow driving and a threshold dynamics, i.e., a locakynchronization behavior.
stepwiseunstability occurs when the field exceeds some Our first idea is that the theory must incorporate
critical value leading to a rapid relaxation on neighborsboth the dynamics of an order parameter (OP) and
which may cascade to create large avalanches well diffelef the correspondingsontrol parameter (CP), in order
entiated in time (this is where the slow driving is impor- to understand why the CP self-organizes to a critical
tant). Attempts have been pursued to develop continuouglue. Within the sandpile picturéi/ox is the slope
field theoretical approaches to this phenomenon, based @i the sandpiles being the local height, and is the
continuous anisotropic nonlinear driven diffusion equa-state variable distinguishing between static grakhs= 0)
tions with stochastic noise [5]. However, avalanches arand rolling grains(S # 0). Therefore, the sand flux is
not described and the origin of the self-organization is noproportional toS. Coupling these two parameters is
explained. This is due to the fact that the threshold dyvery natural physically and has already been exploited
namics [6] is replaced by a “weak” perturbative nonlinearto describe the large avalanche regime rotating drum
term. Furthermore, the driving occurs on a fast time scalexperiments [8,9].

(stochastic noise) in contrast with the very slow driving Our second ingredient is to specify the dynamical equa-
common to all SOC models, whereas the order paramdion of the order parameter. The crucial role played by
ter exhibits slow diffusionlike relaxations similar to criti- the threshold dynamics and the necessity to take it into
cal slowing down [7] in opposition to the fast relaxation account explicitly in a continuum formalism has been rec-
induced by the avalanches. A physical system which exegnized by several authors [6,10—13]. In these works, the
emplifies these features is provided by earthquakes whictihreshold nature of the dynamics is modeled by either a
relax, over time scales of tens of seconds, the stress accdiscontinuous or singular diffusion coefficient [10,12,13]

mulated over centuries. or by series expansion of the Heaviside function and its

Our goal is to construct a fully continuous formulation derivatives [11]. Therefore, their formalism still contains
in terms of partial differential equations, in the spirit of the an ad hoc discrete component. Furthermore, the very
Landau-Ginzburg theory of phase transitions, which takeslow driving condition is rarely imposed except in [13].
full account of the nonperturbative nature of the thresholdrhe only attempt to incorporate the threshold behavior
mechanism. Our hope is that a continuous field theoryn a continuous formalism has been done in [9] using
constructed on the basis of symmetry and parsimonyhe macroscopic phenomenological Coulomb solid fric-
will be both sufficiently simple and general to teach ustion law. It turns out that this law does not yield any
something on SOC, as for thermal critical transitions.SOC but only a large avalanche regime due to the linear
We do not describe a specific experimental system bujrowth derived from the Coulomb law. Here we propose
rather aim at a general understanding that will providea more microscopic and fundamental description which
a starting point for specific applications. However, forcan both display SOC and the large avalanche regime, and
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furthermore provides a good model of solid friction [14]. starts to roll down the slope, this tends to relax the slope
Our basic idea is that the OP presents multistability andvhich has led to its instability. However, any feedback
hysteresis. This will ensure the threshold dynamics asnechanism leading to the organization of the system close
well as all the other properties described below. In adio the critical state is not able to give rise to long-range
dition, it can be shown that a local hysteretic respons®rder and power-law distributions (explicit examples can
qualifies as a microscopic model of solid friction [14], be built [15]). One has also to take into account the
which is a key property of dry sand. This justifies furtherphysical fact that a local relaxation of tif&? takes place
our choice to incorporate in the theory this fundamentaht the expense of the neighbors, a local relaxation of the
two-state property. The simplest way to implement thisslope being associated with an increase of the slope of
condition in a continuous formalism is to write down the the neighbors. A sufficient but not necessary condition
normal form for asubcritical bifurcation, characterized by for this is, and that will be our last condition, that a

the possible coexistence of two local states: conservation law operates on the control parameter [17].
9s We adopt it having in mind the physical conservation of
a = x{uS + 2553 - SS}, (1)  grains in a sandpile or of stress in the earthquake problem.

It is expressed as

where u = [(9h/dx)*> — (0h/dx|.)*] and B8 > 0 (sub-
critical condition). In the supercritical casg8 < 0), ok _ _OF(S, 0h/dx) + @, (2)
one can show that Eq. (1) together with the feedback at dx

mechanism given by Eq. (2) below reduces to a simpleyvhereF is a (grain) flux andd is a weak, slow random
diffusive relaxation of the slope with small fluctuations sgyrce term which describes the continuous driving
without avalanches [15]04/dx|. is the critical slope be- of the system. Symmetry considerations now allow
yond which the sand begins to flow. The parameter us to get the form ofF (S, dh/x): F(0,0h/dx) = 0
fixes the time scald~y~') for the growth ofS once (there is no flux if there are no rolling grains);
an instability sets in. Odd powers of in Eq. (1) en-  F(-5,9h/0x) = F(S,0h/dx) (the sign of S has
sure that the physics is invariant with respecSte~ =S no meaning); F(S,—0h/ox) = —F(S, dh/dx)[(x —
since the sand flux should always be downslope (see be-y) — (F — —F) (parity)]; 0h/ox > 0 — F(S,0h/
low). For the time being, consider as a fixed pa- gx) < 0 (the sand falls down the slope). The simplest
rameter. Expression (1) ensures that the valueSof expression obeying these criteria is
which is selected at long times is not a continuous func-
tion of u, as expected for a hysteresis or first-order be- F<S, %> = —a oh s, a>0. 3
havior. Indeed, whens is given, Eq. (1) is variational: J dx
x~'9S/ot = —6F/aS, which implies that the asymp- This expression (3) together with (2) determine the
totic solultion forS }s one of 1the states which minimizes feedback of the OF onto the CPh (or betterdh/ox)
F=—(7u8+ 785" — 55°given byS; =0and capturing the obvious fact that stress (slope) may be
Sti=B++B>+ u(Stnu=p — /B> + pisanun- relaxed only on activeS # 0 sites. Here we neglect
stable fixed point). These two states have the same eiigher order terms in (3).
ergy F(S) = F(Sm) at u = p, = —%Bz. Suppose Now we analyze the set of coupled Egs. (1)-(3). In
now that the local slopén/dx increases steadily to larger the language of dynamical systems, one can represent the
and larger negative values (we consider the case of a sandynamics at a given spatial positionalong the system
pile whose slope decreases on average from left to rightand given timer as a representative point (RP) in the
The § = 0 state remains stable untidh/dx reaches phase spacéCP,OP. Because of the external forcing
—/(0h/dx|.)? + w.. Beyond this slope, th& = 0 state  and transfer ofs from active neighbors, the RP moves
becomes metastable to tlfe= Sy; state. However, in along theS; branch and eventually reaches the spinodal
the absence of large fluctuations enabling to pass the bapoint « = 0. Then, two main regimes occur depending
rier, the OP will remain zero until the slope reaches theon the value of the key parametgi/«. Consider first
“spinodal” valuedh/ox|. (u = 0). Atthis point, Eq. (1) the casey/a >> 1 for which the dynamics of the OP
shows thatS = 0 is linearly unstable ¢ becomes posi- is much faster that of the diffusive relaxation of the
tive) asS = Spe*X! at short times §, being some small CP. In the presence of some background noise, the
initial fluctuation) andS — Sy; at long times. The physi- limit y — +o leads to a very fast jump of the OP from
cal mechanism for this unstability can be tracked back tdhe state of repos& = 0 to the active state§ = Sy;.
the unstable branclﬁ%n which describes an increase of Because of the diffusive relaxation (2), the RP then
the OP and therefore flux [see Eg. (3) below] when theollows the upper branch downward to lower absolute
slope decreases in absolute value. values of the CP. This will hold down to the limiting
The last ingredient of the theory is the feedback ofslope —+/(9h/dx|.)> — B2, at which theS;; and Sy
the OPS onto the CP {h/dx or u) which becomes a branches coincide and beyond which the only solution for
dynamical variable and relaxes by the transition to theghe OP isS = 0. At this point, the RP has to jump back
dynamical stateS # 0 [16]. Physically, when a grain to the lower stable branch and the avalanche has gone past
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100000 of the RP in phase space close to the spinodal point
s by §? = —u/2B, where0 < B < 3 (the upper bound
* aya=100 n=0.01 corresponds to a trajectory which is tangent to the unstable
*a branchSyi1). In the vicinity of the spinodal point, we
* o report this expression fos? into (2) and (3) and get
10003 y l an antidiffusionequation forz with a negativediffusion
coefficient D = —(a/B) (0h/dx|.)>. The growth of a
- given modeh,, is then given byi, () = /Pl and is all
the more pronounced for small wavelengths. In practice,
a finite mesh size: or higher order terms will provide
o an ultraviolet cutoff. This mechanism corresponds to a
wmmwos o cascade from small scales to large scales which is very
1 10 100 1000 sensitive to microscopic heterogeneities and leads to the
Mass broad power law distribution of avalanches (see Fig. 1).
L o This is analogous to the inverse energy cascade in 2D
FIG. 1. This figure shows the distribution8(M) of the 1 lence and is reminiscent of the inverse cascade in the

avalanche sizes for the two regimeg/a = 0.1 and y/a = . . . . . .
100. The curves have been moved with respect to each othdfuramoto-Sivashinsky equation leading to scale invariant

for better clarity. We define an avalanche as the loci ofsolutions described by the KPZ equation [20].
connected points whose local flux is larger than some threshold, These predictions have been checked by a numerical im-
here /100. We measure the mass of an avalanche as thglementation of the equations of motions (1)—(3). Fig-

integral over time of the flux going out of the system on ifS ;o 1 presents the distributio®M) of avalanche sizes
right, which corresponds to actual experiments [21]. We have for th . ) . he distributi
found convenient to add a small noise souncen the rhs. of M for the two regimes: Foy/a = 0.1, the distribution

Eq. (1) in order to help start up the instabilities. Most of the qualifies as a power laR(M)dM = M~ *#dM, with an
simulations have been done with a time step of integratiorexponentu = 1.0 = 0.1 which is found independent of
equal t0107° 1vvhich is much smaller than the characteristic y /4 in this regime which extends up to abopfa = 1.
time scale y~' = 1, while we have verified that changing This value is compatible with experimentg: = 1.5 in

it by 1 order of magnitude on both sides does not modify - .
our results. The driving is done by choosing at random theX€f- [21] and=1.1in Ref. [22]. The avalanche mass dis-

position at each time step at which an increment of flux istributions for different system sizels/a obey finite size
added locally. The boundary conditions a#&/dx|.—o =0  scaling as they collapse on the same master curve using
and h,—, = 0. System sizes range froth/a = 64 to 2048.  the reduced variabléf//L?, with ¢ = 0.7 = 0.1. For
The parameters are spinodal sldpe/ox.| = 1.2, driving flux /> | we still observe a power-law distribution at
@ = 0.1, subcritical paramete = 1.5. ’ . . . .
small avalanche sizes with exponentsincreasing con-
tinuously with y/a. However, the dominant structure
this point. Because of the slow continuous forcing, thisis the appearance of very large avalanches spanning the
hysteresis cycle repeats itself, leading to almost periodievhole system represented on the plot by the peak, in agree-
large scale avalanches (see Fig. 1). Alternatively, one cament with our above analysis.
see the set of equations (1)—(3) as reducing to the original Figure 2 shows a subtle effect which has also been ob-
sandpile cellular automaton rules fgr— +o which in  served in experiments [23], namely the effect of the naise
1D do give rise to repetitive avalanches which span theadded on the OP. Figure 2 represents the avalanche mass
whole system in a dominolike pattern [1]. This regimedistribution for the same//a = 0.1 but decreasing val-
is reminiscent of real sandpiles that are well documentedes of the noise:. While the mass distributions remain
to exhibit large quasiregular avalanches corresponding ta power law for small masses with the same exponpent
oscillations of relaxation between two different anglesdecreasing the noise introduces a characteristic scale: Be-
of repose [9,18], the maximum angl®h/ox|.| for  cause of the small albeit finite driving (present here for
triggering a dynamical flow and the minimum angle numerical feasibility and corresponding to the discrete na-
—/(0h/ax|.)? — B2 which can still sustain a sand flow ture of grains in experiments), if the noise is too small, the
[19]. Physically, we suggest that this regime stems fronspinodal poinfu = 0 can be bypassed locally. > 0) and
the fact that the halting of a rolling grain occurs over aas a consequence the Lyapunov exponentbecomes fi-
time which is comparable or smaller than the time neededite leading to a jump to the upper brangh even in this
for a significant decrease of the local slope by diffusionregimey/a < 1 for which the upper branch should be in
hence the conditioy /a >> 1. principle never attained for sufficiently slow driving.

In the other regimey/a not large, the time scalg ™! Figure 3 shows the distributioR(J) of flux amplitudes
over which the OP grows is now comparable or largerat the right border, where the flux is going out of the
than the smallest relaxation time scale due to the diffusiveystem in the same condition as for Fig. 1. Kofa =
relaxation of the CP: The OP has no time to jump to thed.1 (and all other values less than about B)J)dJ =
upper branch before it is perturbed by the diffusion of theM ~2dJ, with § = 0.7 = 0.1 independent fromy/a
CP. In this regime, one can approximate the trajectoryn this regime. This power law describes trsenall
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FIG. 2. DistributionsP(M) of avalanche sizes for the same
x/a — 0.1 but decreasing values, from bottom to top, of the

noise. The curves have been moved with respect to each othe

for better clarity.

J — 0 flux distribution, asJ is bound by the intrinsic
value Jou = @SHoh/ox|.. The massM is related to
the avalanche duratiof and the statistics of flux by
M = [{J(t)dt = T({J);. Since s < 1,{J) ~ J%20 is

constant and the statistics of is the same as that of

the durationT, as we checked directly. This also agrees

with experiments. Foj/a > 1, we observe even more
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