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Prediction of Turbulent Velocity Profile in Couette and Poiseuille Flows from First Principles
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To obtain the turbulent velocity profiles in Couette and Poiseuille flows between parallel walls, we use
statistical mechanics of point vortices. Our theory does not contain phenomenological constants. The
only parameter taken from experiments is the total kinetic energy of the flow. We solve numerically
the equation for averaged flow and show that the theoretical predictions are in good agreement with the
experimental data. [S0031-9007(96)00166-4]

PACS numbers: 47.27.Nz

Characteristics of turbulent flow would be known if one The walls move in opposite directions with velocities
knew the invariant measure of the attractor of viscousand —u. Consider values ofi for which the flow is
fluid motion. The complexity of this attractor does not turbulent. Imagine a laminar flow with the same value
leave a hope for “exact” knowledge of invariant measurepf the wall velocityu. This flow is unstable with respect
but some simple and effective approximations might beo finite disturbances. To find the evolution of the laminar
possible. Experiments show that fluctuations of the totaflow after it loses its stability we take the vorticity field of
energy of turbulent flows are small. This suggests thathis flow as initial vorticity for the flow of an ideal fluid.
the attractor lies in close vicinity to the surface of constantWWe introduce a grid of vortices dividing the flow field into
energy in the phase space, and a natural approximation far large number of pieces of equal area and substituting
the invariant measure seems to be the invariant measueach piece by a point vortex with the corresponding
of an ideal fluid flow, since its phase trajectories lie onintensity. Since vorticity of laminar Couette flow is
energy surfaces. The situation is complicated, howeveigonstant, point vortices have equal intensities in this case.
by the fact that the motion of an ideal fluid is not ergodicWe then disturb the grid and study the evolution of the
on the energy surface: Ideal fluid flow has an infinitevortex system. To choose an appropriate disturbance
number of additional integrals of motion, circulations we note that the energy of the flow is an integral of
of velocity over closed fluid circuits. Prescribing thesemotion. Thus it should be taken equal to the energy of the
integrals is equivalent to prescribing the initial vorticity. turbulent flow under consideration. Therefore, we disturb
Each phase trajectory of ideal fluid flow belongs to athe vortex positions in such a way that the energy of the
“sheet” in the phase space characterized by the value dafisturbed vortex system has a prescribed value, and then
energy and the initial vorticity field. We assume that thelet vortices go. Some turbulent flow is developed. Stream
motion is ergodic on each sheet. function of this flow is time independent if the number

Ergodic motion on the sheets can be studied byof vorticesN tends to infinity, and the vortex motion is
means of approximation of vorticity by a large numberergodic (see [1-7]). Stream function has fluctuations of
N of vortex filaments. In a two-dimensional case, theorderl/+/N. Fluctuations of velocity may be finite. The
theory of vortex gas is mature enough to predict averagénal flow does not depend on the initial disturbance. In
velocity profiles (see [1-7] and references therein), whilghe limit N — o, the “steady part” of the stream function
determination of more delicate characteristics like velocitys can be found from the equation [1,2]
or pressure fluctuations is still an open problem. e~ B &)y (x)

The invariant measure of the attractor of viscous fluid —A¢(x) = f wo(§) = —— déE,

. , : . v fve Bwo(E)p(x) !
motion can be approximated by the invariant measure
of a sheet if a rule is established linking energy and lav =0, @
initial vorticity of ideal fluid flow with parameters of
turbulent flow. In this paper, we propose such a rule an
argue that, in the limit of large Reynolds numbers, initial

vorticity evolves t me “invariant” vorticity which i . T
orticrty evolves 1o some ana oruerty ch s correspondence with the total kinetic energy of the flow

determined only by the total energy of the flow. The : . . : )
equation for invariant vorticity is established for channeIE' Equ:?mon @ |s_der|yed n [1.] from the assumption that
the motion of vortices is ergodic.

flows. We compare the theoretical predictions of velocit ;

profiles with thepavailable experimerrJnaI data and obser\)//e In the case of Couette flow, is constant and Eq. (1)

a remarkable coincidence. IS reduced to
The scheme of calculation of turbulent velocity profiles  _ Ay = «, : .

is as follows. Let us take, for simplicity, the Couette flow: wy Sy e Peotidy!

here w( is the initial vorticity field, parameteB has
he sense of inverse temperature of vortex motion, and
A is Laplace operator. Paramet@r is in one-to-one

e—Boot(y)

glav = 0. (2)
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Equation (2) can be studied analytically and numeri-should be taken constant at each of the two pieces of the
cally. boundary. Without the loss of generaligy,can be taken
Equation (1) determines the operator of mixing, de-zero at one piece of the boundary. Then the valuat
noted byM, which maps an initial vorticity fieldvy into  the other piece of the boundary is equal to total discharge
a vorticity field of the final flow of the flow. Second, due to symmetry of the region an
w() = Mag(x). 3) additional integral of motion appears,

The explicit equation for the mixing operator allows f wxydx = F. (6)
one to discuss the following questions. v

1. Let wo(x) be a vorticity field for which the Herex; is the coordinate which is normal to the wall. Ex-
flow loses its stability. Which vorticity field develops istence of the additional integral leads to the appearance
afterward? The transition fromwg(x) to w(x) shall  of an additional parameter in Eq. (1):
further be referred to as primary mixing. e~ @@ [BY(x)+ax]

2. Change of flow parameters may cause the loss of —A(x) =f wo(€) OB ] ~d¢é. (7)
stability for the flow that is formed by primary mixing. v Jyeme 2ldx

Then the next process of mixing occurs. Which vorticity parameterr should be taken in such a way that the solu-
field develops in this case? It shall further be referred tGjgn of Eq. (7) has a prescribed value of the integral (6).
as secondary mixing. To find the flow after secondaryrhe above-mentioned modifications of the mixing oper-
mixing one has to plug into (1) instead @fo(x) the  ator for channel flows yield the corresponding modifica-

vorticity field that is formed by primary mixing. tions in the fixed point equation (5). Some comments are
3. Repeating the process of mixing many times we mayppropriate at this point.

arrive at the fixed point of mixing operator, the invariant 1 |f Eq. (5) is integrated over the regiofy one gets
flow winy, an identity. Hence, one additional condition should be set
Winy = M wipy . (4) inorder to select a uniqge. solution. We choose for this
purpose the average vorticity of the flow,

It is natural to expect that flows with very high

Reynolds numbers will obey Eq. (4) while flows with low _1 [ Ayd*x = @. (8)
Reynolds numbers are described by primary mixing and, vV Jv
therefore, should be governed by Eq. (3). Having prescribed average vorticity, we fix the value of

In the case of simply connected regidh the mixing  average tangent velocity at the boundary.
operator is given by the left-hand side of Eq. (1). The 2. Equation (5) does not admit pointwise no-slip bound-
mixing operator carries some specific features of theary condition and only the average tangent velocity of the
point vortex approximation. In particular, the maximum boundary can be given. If tangent velocity at the bound-
value of mixed vorticity fieldw(x) may be larger than ary is not constant along the boundary, molecular viscosity
the maximum value ofwo(x). This corresponds to the may contribute to the expression for the mixing operator.
concentration of point vortices in some subregions. Noté ortunately, tangent velocity is constant along the bound-
that mixing of a smooth flow of ideal fluid occurs ary for the well documented Couette and Poiseuille flows,
in another way: Maximum vorticity after mixing is and we can check the theory in these cases.
equal to maximum initial vorticity. Comparison with the 3. Solutions of the fixed point equation for Couette
experiments given below shows that the mixing operatofiow follow the log-law asymptotically as Re> < (E —
based on the point vortex approximation seems to captur® [2]. This stresses the point of view that molecular

correctly the increase of vorticity in boundary layers. viscosity plays an important role only in formation of the
The fixed points of the mixing operator are the SO|Uti0n330undary layer, but, being formed, the boundary layer is
of the equation supported mostly by inertia forces.
A x) = f AU(E) PRV de Couette flow—In the case of Couette flow we have
v [y eBMEE) gyt =2 to so_I\_/e Eq. (7) in a rectgngle with periodic boundary
Ylay = 0. (5) conditions on the short sides, and= 0 on the long

sides (the discharge of the flow is zero). All quantities in
Equations (1) and (5) are highly nonlinear and highlyEq. (7) are scaled by means of the wall veloeitgnd the
nonlocal. Nevertheless, their numerical solutions can belistanceh between the wall and the center of the channel.
obtained relatively easily. We keep the same notations for dimensionless quantities.
For the flows between parallel walls regidhcan be Denote the dimensionless coordinate which is orthogo-
taken as a long rectangle with periodic conditions at thenal to the walls byy, —1 = y =< 1. We are searching for
short sides. In this caséis the double connected region. solutions of Eq. (7) which depend only gn Functions
Additional analysis [2] shows that some modificationsy andw( are even functions of. Therefore, integral (6)
should be done in the expression for the mixing operatoand constantx are zeros. Vorticitywo(y) for laminar
for such regions. First, for double connected regiafis, flow is constantw, = —1. Equation (7) takes the form
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FIG. 1. Dependence of energy on Reynolds number for Couette and Poiseuille flows.

Poiseuille flon—For Poiseuille flow the walls have
W(—1) = (1) =0. (9) equal ve_Iocitit_es. It is conve_nient to choose a co_ordinate
system in which the total discharge of the flow is zero.
For definitness, we assume that average velocity at the
center of the channel is positive. Then the wall velocities
are negative and equal tou. We scale all quantities by

23.3!//()))
lp}’y = 1 (y) ’
J=y €PNy’

Index y denotes the derivative with respectyo Prob-
lem (9) has an analytical solution:

w(y) = 2 In( codA) > (10) means ofu and the distancé between the walls and the
B \codAy) center of the channel. Dimensionless velocity is equal to
The constanA obeys the equation —1 at the walls. o _
Dimensionless energy is a single-valued function of the
B = 2AtanA. (12)

Reynolds number. Energy dependence on the Reynolds
Note that boundary conditiong,(=1) = =1 are satisfied number taken from experimental data by Comte-Bellot
automatically because the mixing operator conserves thg0] and Laufer [11] is shown in Fig. 1. In Poiseuille
total vorticity. flow, velocity ¢, is an even function of while ¢ andw,
Parametelg is determined by the prescribed value of are odd functions. Since discharge is zapg;-1) = 0.
kinetic energyE. From (10) and (11) we obtain the In general, integral (6) and constant are not zeros

equation forg, for Poiseuille flow. In the coordinate system chosen the
1 1 ) 242 integral (6) is equal t@®,(1). Thus, prescribing this
5 f gy dy = 8 <1 - 7) =E. (12)  integral is equivalent to prescribing, at the boundary.
-1 In accordance with the scaling chosgn(=1) = —1.

Experimental dependence Bfon the Reynolds number condition (8) is satisfied automatically due to symmetry
can be found from the experimental data by Reichardt [Sbroperties of the flow. So, to find the flow after primary
and Robertson [9], as shown in Fig. 1. Mention that theyxing we have to solve the problem

growth of Re is accompanied by the decay of energy in the | .

coordinate system in which the discharge is equal to zero,, - :f wo(€) = sinhlwo(§) [B(y) + ay]}
Velocity distribution for low Reynolds number Re [0 cosHwo (&) [Bir(y") +1 ay'l} dy’

2900 (E = 0.122 and B8 = 11.097) versus experimental _ _ _ 2,

data by Reichardt is presented in Fig. 2. As is seen, thef%(o) =0 ¢M=0 ¢1)=-1, 0 Yrdy = E.

is a good agreement between theory and experiment. (14)
Agreement between the primary mixing profile and
experimental data decays if Reynolds number grows. For 1% T [ T | hi
high Reynolds numbers one has to use the equation of Primary Mixing Solution (Re=2900)
invariant mixing, which takes the form 0.8001 — Invariant profils (Re=34000) —=
1 e BV v (y) *  Experment by Reichard? [B] (Re=2000) :,l"'
by = fl ee(€) fl BN gy d¢, ,.0600H © Experiment by Reicharct (8] (Re=34000)
1 -1 E s/
%]_lwfdy =E, (1) =0, #(x1)=*I. > 0400 A )
(13) /
0.200 ——
The latter boundary condition is a consequence of Eq. (8). A
Equation (13) can be solved numerically. The solu- Gm[hr__,...-saﬁér"*"““JE'P
tion for Re= 34000 (E = 0.03842, B8 = 20.5) is shown 0.000 0.200 0.400 0.600 0.800 1.000
in Fig. 2. It fits quite well the experimental data by ¥
Reichardt [8]. FIG. 2. Velocity distributions for Couette flow.
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The last two conditions serve to determine the constants Re > 50000. We expected that for such high Reynolds
andB. For laminar flowwo(y) = —3y. Primary mixing numbers mixing should be invariant and the fixed point
for Re= 12300 (E = 0.01468, « = —2.2775, B =  equation should take place. However, we faced the
20.5026) is shown in Fig. 3. It coincides quite well following difficulty. It turns out that the mixing operator
with the experimental data by Laufer [11]. For largerdoes not have a smooth fixed point with a monotone
Reynolds numbers the agreement is not as close, buwelocity profile. To show that, let us write down the fixed
is still good. Considerable deviations are observed fopoint equation

! sinhye: (£ [B(y) + ayl}
O R )T (15)
0 Jo costyee () [By(Y) + ay'lrdy
Integrating the absolute value of this equation oyand applying the integral inequality we have
! ! o | sinhe¢ (£) [By(y) + ayH dy
] |y ()] dy = f PRERL £ =g (16)
0 0 Jocostyg () [By(y") + eyl dy
Since sinkk < coshx, we arrive at the contradiction | of solutions and should not affect guasisolutions. There
1 1 are a number of reasons to improve Eq. (15). First, we
jo [y (W) dy < ]o liee(E) dE . did not take into account small corrections which are due

& finiteness of the effective number of degrees of free-
om in fluid motion (finiteness of the number of vortices in
Q_oint vortex approximation). Second, we neglected three-
tioning the existence of fixed points. However, numer-dimensional effects. Third, we disregarded molecular vis-

ical simulations revealed an interesting fact: There ar&OoSIy- Which one of_thes_e reasons is crucial in restoring
guasisolutions of Eq. (15) that are functions which sat-the existence of solutions is not clear at present.

isfy (15) with very high accuracy. The difference in the Th_e dlscuss_ed examples d_emonst_rate tha_t statistical me-
right-hand side and the left-hand side of (15) divided bychanics of point vortices satisfactorily predicts turbulent
the average value of the left-hand side may be of Ordeyeloc:lty profiles in channel flows. It is difficult to avoid

1073, It turns out that quasisolutions fit experimental datathe temptation to think that it happens not by chance, and

quite well. An example for Re= 120000 is shown in that the mixing operator really captures some peculiarities
Fig. 3. Note the coincidence of velocity profiles in the of turbulent motion. However, many questions S.hOUId be
boundary layer. In other words, one can say that Substitu’;_mswered before this can be stated with full confidence.
tion of experimental data in Eqg. (15) satisfies this equation The authors _cordlally thanl_< BO”.S Sho_ykhet for useful
with high accuracy. The numerical scheme used to solv dvice concerning the numerical simulations. Comments

Eq. (15) has been derived from the procedure of succe Y Vlct_or Yudovich _and Michael Zhukov were greatly
sive mixing. The velocity profile seems converging toappremated. The first two aL_Jthors_aIso_ thanl_< Chudo
I-shaped profile. The experimental profiles are observed "€y @nd Nachal Bloom for stimulating discussions.
as intermediate steps in the course of iterations.

We assume that there should be a small term which is
missing in Eq. (15). This term should restore the existence

We had not been suspecting the absence of solutions wh
we started the numerical study of Eq. (15). In fact, som
strange behavior of numerical solutions suggested que
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