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It is shown that the description of anomalous scaling in turbulent systems requires the simulta
use of two normalization scales. This phenomenon stems from the existence of two indep
(infinite) sets of anomalous scaling exponents that appear in leading order, one set due to i
anomalies and the other due to ultraviolet anomalies. To expose this clearly we introduce here a
local fields whose correlation functions depend simultaneously on the two sets of exponents. Th
Kolmogorov picture of “inertial range” scaling is shown to fail because of anomalies that are sen
to the two endsof this range. [S0031-9007(96)00258-X]
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Anomalous multiscaling in turbulence is usually di
cussed [1,2] in terms of the simultaneous structure fu
tions of velocity differences across a scaleR,

S̃nsRd ; kjusr 1 Rd 2 usrdjnl . seRdny3sLyRddn , (1)

where k· · ·l stands for a suitably defined ensemble av
age,e is the mean energy flux per unit time per unit ma
anddn is the deviation of the scaling exponentzn of the
structure function from the 1941 Kolmogorov (K41) pre
diction zn ; ny3 2 dn. Since K41 follows from dimen-
sional analysis [3], deviations require a renormalizati
scale, and it is accepted [1,2,4–6] that inS̃nsRd it is the
outer scale of turbulenceL that serves this purpose. Th
same renormalization scale appears in the correlation fu
tion of the energy dissipation rateesr, td (which is roughly
nj=usr, tdj2 with n the kinematic viscosity) [7]:

K̃eesRd ­ ksesr 1 Rd 2 ed sesrd 2 edl . e2sLyRdm,

(2)

where m is known as the “intermittency exponent” [7
The appearance of the outer renormalization scale
Eqs. (1) and (2) has been correctly interpreted as a f
ure of the K41 basic assumption of inertial range scali
The aim of the Letter is to discuss infinite sets of loc
turbulent fields whose correlation functions requiretwo si-
multaneous renormalization scales,L andh whereh is the
viscous scale. One set of these local fields will be deno
below asLlsrd where l is an index that takes on intege
values. The central result of this Letter is that to leadi
order the correlation functions of these fields scale like

kLlsr 1 RdLl0 srdl ,
seRd4y3

hl1l0

√
h

R

!bl1bl0
√

L
R

!d4

. (3)

Other local fields exhibit other exponents from the fam
zn. The point is that these correlation functions demo
strate that K41 fails doubly, once because of infrared a
once due to ultraviolet anomalies. This double anom
results, in addition to an infinite set of multiscaling e
ponentszn, with a second infinite set of exponents th
are denoted here asbl . In fact, one can separately mea
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sure two types of exponents which govern the anom
lous scaling related to theL andh renormalization scales
[in Eq. (3) these arebl 1 bl0 and d4] by keeping the
outer scaleL constant and varyingR and h. The lat-
ter can be done by varying the outer velocity and us
the dependence of the ratioLyh on the Reynolds num-
ber. The scaleh can be changed by varying the vis
cosity (for example, by temperature control in a heliu
gas near the critical point, e.g., [8]). Theoretically w
can computebl exactly in simple models of scalar tur
bulent advection. The phenomenon of doubly anomal
scaling occurs, however, in a similar fashion in Navie
Stokes turbulence where we can estimateb1 and b2.
Since the development of the ideas is simpler in the c
of scalar fields, we will present them in the context of sca
advection and generalize later to turbulent vector fields

First we generate local fields that originate from t
fusion of two points. Consider for that a turbulent sca
field T sr, td and the product of two such fields at tw
adjacent points

Csr, rd ; T sr 1 ry2dT sr 2 ry2d . (4)

It is advantageous to represent this field as a multip
expansionCsr, rd ­

P`
l­0 Clsr, rd, where

Clsr, rd ­
lX

m­2l

Ylmsr̂d
Z

Csrĵ, rdYlmsĵd dĵ . (5)

Here r̂ ­ ryr and ĵ are unit vectors. The orthonorma
spherical harmonicsYlmsr̂d are the eigenfunctions of the
angular momentum operatorL̂ ­ 2ir 3 === which depend
only on the direction ofr: L̂2Ylmsr̂d ­ lsl 1 1dYlmsr̂d.
Next we representClsr, rd in terms of (infinitely many)
local fields depending onr only. To this aim we expand
Csr, rd in a Taylor series inr. This turns Eq. (5) into

Clsr, rd ;
lX

m­2l

Ylmsr̂d
Z

dĵ Ylmsĵd

3
X̀
n­0

r2n

s2nd!
sĵ ? ===0d2nCsr0, rd

Å
r0­0

. (6)
© 1996 The American Physical Society 3963
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Here and below we use the operator=0
a ­ ≠y≠r0

a. Note
that we have only evenn orders since our fieldCsr, rd
is even in r. Performing the angular integrations an
recollecting terms we end up with

Clsr, rd ­ ra1 ra2 · · · ral

X̀
p­0

3
al12p,2p

sl 1 2pd!
r2pL

a1a2···al

l srd .

All the coefficientsam,n here can be computed explicitly
For example,ap,p ­ 1 for any p, a2,0 ­

1
3 , a4,0 ­ 2

3
35 ,

etc. We have introduced the tensorial local fieldsLl,p,
where

L
a1···al
l,p srd ; =2pD

a1a2···al
l T

√
r 1

r

2

!
T

√
r 2

r

2

! É
r­0

,

(7)

with D̂lsrd being local differential operators. For the fir
values ofl these differential operators are

D̂0 ­ 1, D̂
ab
2 ­ =a=b 2

1
3 =2dab ,

D̂
abgd
4 ­ =a=b=g=d 2

1
7 =2sdab=g=d 1 dag=b=d

1 dab=b=g 1 dbg=a=d 1 dbd=a=g 1 dgd=a=dd

1
1
35 =4sdabdgd 1 dagdbd 1 daddbgd . (8)

Here =a ­ ≠y≠ra . The field L0,1 is the dissipation
field. Readers familiar with the representations of L
groups recognize immediately that our local fieldsLl,0 are
nothing but the2l 1 1 rank irreducible representation
of the SO(3) group [9]. This explains the meaning
the index l: Tensorial fieldsLl,p (for any p) have
the same transformation properties under rotation of
coordinate system as the spherical harmonicsYlm. The
procedure described above is a regular way to find s
differential fields. The fact that fieldsLl,0 give irreducible
representation of symmetry groups of the problem
the mathematical reason why these fields demonst
“clean” scaling behavior. Note also that according
(7) and (8) fieldsLl,p have sl 1 2pd-order differential
operator, =l12p . The tensor fields thus obtained a
symmetric to any pairwise exchange of indices. W
will propose now that these gradient fields haveh-
related anomalous scaling which is governed by a
of anomalous exponentsbl. Autocorrelation functions
of these fields, and correlation functions of these fie
together with field differences across a scaleR depend
also onRyL with exponents determined by the setzn.

To study the correlation of the newly defined loc
fields with the fundamentalT field consider the following
correlation function of the tensorial fieldLl,p with 2n 2

2 scalarT fields:

C2n,l,psr, r3, . . . , r2nd ; kLl,psrdT sr3d · · · T sr2ndl . (9)

Note that in this correlation functionr does not appear
However, it is related to the standard 2n-point correlation
function in which two coordinates (sayr1 and r2) are
3964
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separated by a small distancer. By definition

F2nsr 1 ry2, r 2 ry2,r3, . . . , r2nd

­ kCsr, rdT sr3d · · · T sr2ndl .

To connect these functions and (9) we representF2n as
a multipole decompositionF2n ­

P`
l­0 F2n,l. Using (5)

we have

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd

­ kClsr, rdT sr3d · · · T sr2ndl . (10)

We are interested in the scaling properties of this quan
in the regime in which all the separations between
the coordinatesr, r3, . . . , r2n are of the order ofR. For
r ø R we can write

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd ,

√
r

R

!xl

S2nsRd ,

(11)

wherexl is a yet unknown exponent which in general ma
also depend onn. This exponent will be found below in
a particular model and will be shown to ben independent.
For r very small we can use (7) and (9) to write

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd ­ ra1 ra2 . . . ral

3
X̀
p­0

al12p,2p

sl 1 2pd!
r2pC

a1...al
2n,l,p sr, r3, . . . , r2nd . (12)

Finally, in the limit r ø h we use the fact thatF2n is
smooth inr up tor , h to evaluate the differential oper
ator as divisions byh: r2p=2p , sryhd2p . Accordingly,
we have in the limit

lim
r!0

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd

­ ra1 ra2 · · · ral

al,0

l!
C

a1...al

2n,l,0 sr, r3, . . . , r2nd ~ rl . (13)

Next we want to explore the scaling behavior ofF2n,l

for values ofr in the inertial rangeh ø r ø L. This
we cannot do in general. We now need to specialize
a particular dynamical model. We choose Kraichnan
model of passive advection of a scalar fieldTsr, td by a
random velocity field whose statistics are Gaussian, a
whose correlation functions are scale invariant in spa
and d correlated in time [10,11]. The relevance of th
results to Navier-Stokes turbulence will be discussed la
For a scalar diffusivityk the dissipation field isesrd ;
kj=T j2 and the quantities (1) and (2) are replaced by

S2nsRd ; kjTsRd 2 Ts0dj2nl . fS2sRdgnsLyRddn , (14)

KeesRd ­ ksesRd 2 ed ses0d 2 edl . e2sLyRdm. (15)

In the present case the scaling exponent ofS2n is z2n ­
nz2 2 dn.

It was shown in [12] that the correlation functionF2n

solves a particularly simple equation when two of i
coordinates (sayr1 andr2) are much closer to one anothe
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than all the rest. Explicitly, forr small ther dependence
of this function is governed by the equation

B̂srdF2nsr 1 ry2, r2ry2, r3, . . . , r2nd

­ F2n22sr, r3, . . . , r2nd . (16)
Here F2n22sr, r3, . . . , r2nd is a homogeneous functio
with scaling exponentz2n 2 z2. In three dimensions the
operatorB̂srd is given by [10,12]

B̂srd ; H

"
≠

r2≠r
r42z2

≠

≠r
2

s4 2 z2d
2rz2

L̂2

#
. (17)

Here H is a constant. It has been shown [12,13] th
the leading scaling solution for ther dependence o
function F2n is an eigenfunction of the operator̂Bsrd
with eigenvalue 0 and thus can be expanded in sphe
harmonics by
F2nsr 1 ry2, r 2 ry2, r3, . . . , r2nd

­
X̀
l­0

lX
m­2l

A
s2nd
lm sr, r3, . . . , rndrbl Yl,msr̂d , (18)

where A
s2nd
lm sr, r3, . . . , rnd is a homogeneous functio

whose scaling exponent isz2n 2 bl . To compute the
exponentsbl we note that the (right-hand side) of (16
is r independent, and therefore contributes only wh
l ­ 0. In this case we can computeb0 by power count-
ing with the resultb0 ­ z2. For l fi 0 we need to find
a solution of the homogeneous part of (16). By a dir
substitution of (18) into the (left-hand side) of (16) on
findsblsbl 1 3 2 z2d ­ s4 2 z2dlsl 1 1dy2. Note that
the lhs of this relation originates from the radial part
the operatorB̂ , whereas the rhs results from the angu
part that is proportional tôL2. Solving the quadratic
equation forbl we find in three dimensions [12,13]

bl ­
1
2

"
z2 2 3 1

q
s3 2 z2d2 1 2lsl 1 1d s4 2 z2d

#
.

(19)
The multipole decomposition of (18), similarly to (5
leads to

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd

­ rbl

lX
m­2l

Ylmsr̂dAs2nd
lm sr, r3, . . . , rnd . (20)

In the situations in which all the separations betwe
the coordinatesr, r3, . . . , rn are of the same order o
magnitudeR, andR ¿ r ¿ h we can write

F2n,lsr 1 ry2, r 2 ry2, r3, . . . , r2nd ~ rbl Rz2n2bl .

(21)
Comparing with Eq. (11) we identify the exponentxl as
bl and write the final form,

F2n,lsr 1
r

2
, r 2

r

2
, r3, . . . , r2nd ,

√
r

R

!bl

S2nsRd .

(22)
At this point we want to match solution (22), which
valid for r ¿ h, with solution (13) which is valid for
t

al

n

t

f
r

n

r ø h. This can be done if the solution is varying co
tinuously acrossh without any non-monotonic behavior
The rigorous proof of this property is beyond the scope
this Letter. It can be demonstrated numerically by solvi
the ordinary differential equation (16). Equating (21) a
(13) for r ­ h (up to an unknownR-independent coeffi-
cient) we find

C2n,l,0sr, r3, . . . , r2nd ,
1

hl

√
h

R

!
bl

S2nsRd , (23)

where we remind the reader thatR stands for the order of
magnitude of all the separations between the coordina
of C2n,l,0. Comparing with Eq. (14) we conclude that th
correlation function ofLl,0 with any even number ofT
fields separated by distances of the order ofR depends
simultaneously on two renormalization scales,h and L,
and on the two sets of anomalous exponentsbl andzn.

Next examine a cross correlation of two (genera
different) local fields. Repeating the analysis one fin
Eq. (3). We see that, in general, such correlations dep
on the two renormalization scales and on two sets
exponents. It is therefore interesting to ask why th
phenomenon is absent inKee which is closely related
to such correlation functions. We note that in our term
the correlation (15) is given byKeesRd ­ k2kL0,1sr 1

RdL0,1srdl as can be checked by substituting the definiti
of the local fields. This is a very special case among
correlations of the local fields. Using the fact thatb0 ­
z2, and taking into account that forp ­ 1 in Eq. (7) we
have two derivatives, it follows that in this case [11–13

KeesRd ,
k2

h4

√
h

R

!2z2

S4sRd , e2

√
L
R

!2z22z4

. (24)

In the last step we used the fact that by definiti
e ­ 2k limjr12r1j!h=1=2F sr1, r2d. Since F sr1, r2d ,
jr1 2 r2j

z2 we get e ~ khz222. This leads directly to
the final step in (24), in which the renormalization sca
h disappears from the correlator. The deep reason
this is that this is the rate of dissipation of the integral
motion in the passive scalar problem, and therefore i
independent of the value of the diffusivity. Only such
combination ofh andk can appear that cancels in favo
of the constante. In this senseKee is unusual, and all the
generic correlations (3) are simultaneously dependen
two renormalization scales.

One can generate more local fields that will have scal
properties which may depend on new exponents. Inst
of starting with the fusion of two points we can fuse thre
four, or more points [14]. Instead of (4) we can introdu

C3sr1, r2, rd ; T sr 1 r1dT sr 1 r2dTsr 2 r1 2 r2d ,

(25)

C4 ~ T4 etc. Expanding these fields in Taylor series w
respect tor1, r2, etc., we can generate new sets of loc
fields that contain derivatives of three, four, etc.,T fields.
3965
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Their correlation functions will depend on the ultraviol
exponents which appear due to three-point, four-point, e
coalescing clusters, and on the infrared scaling expon
of six, eight, and more, point correlation functions. O
course, the actual values of the exponents depend
the dynamical model, but the structure of the theory
general. To stress this generality we now make a f
comments about the Navier-Stokes problem. In dea
with Navier-Stokes turbulence we need to worry fro
the beginning about Galilean invariance in addition to
SO(3) symmetry group. To this aim we will consider loc
fields that originate from the fusion of gradient fields. T
simplest object is

C
abgd
2 sr, rd ;

≠uasr 1 ry2d
≠rb

≠ugsr 2 ry2d
≠rd

. (26)

From this point on we can proceed following the rou
sketched above for the scalar case. Representing this
as a multipole decomposition with respect to the direct
of r, and considering the Taylor expansion inr, we can
generate infinitely many local fields. These fields ha
two u fields and as many gradients as we want to consi
starting from two. It is interesting to notice that in th
present case we have two different vectors, i.e.,=== andu,
from which we can form antisymmetric combinations, lik
the vorticityva ­ eabg≠uby≠rg (whereeabg is the fully
antisymmetric tensor). Consequently we will have odd
well as evenl components in this scheme. In additio
we have symmetric combinations of velocity derivativ
like the strain tensorsab ­ f≠uay≠rb 1 ≠uby≠ragy2.
In general the tensor (26) has 36 independent compon
serving as a basis for a 36-dimensional reducible repre
tation of the O(3) group [SOs3d 1 inversion]. This ba-
sis may be decomposed into a set of irreducible base
lower dimensions. There are two scalar fields,vava and
s2 ­ sabsba, each of which is a basis for one-dimension
irreducible representation withl ­ 0. The pseudovecto
sabvb is a three-dimensional basis for an irreducible re
resentation withl ­ 1. There exist three traceless tens
fields, each of which is a five-dimensional basis belong
to l ­ 2 and taking care of3 3 5 ­ 15 components. An
example is

O
ab
2 srd ­ vasrdvbsrd 2 dabv2srdy3 . (27)

In addition, we have one 3-rank pseudotensor correspo
ing to l ­ 3 and one 4-rank tensor corresponding
l ­ 4. The last two fields exhaust the remaining7 1 9
components. As in the scalar case there are fields
all values of l which are obtained when more gradien
act on our field (26). Finally, we can also start with
higher number of fusing gradient fields≠uay≠rb to gen-
erate new sets of local fields having three, four, and m
velocity fields. The exploration and utilization of this ric
3966
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structure is beyond the scope of this Letter. It will su
fice here to state that these local fields will have corre
tion function with anomalous scaling properties that ge
erally depend on two renormalization scales and on
sets of anomalous scaling exponents. The correlator
will again be special andh independent since it involve
the rate of dissipation of the integral of motion (energ
Correlations of fields withl fi 0 will be generic. For ex-
ample, the correlation ofnO2 with e ­ 2ns2 is

n2kOab
2 sr 1 Rds2srdl , e2

√
L
R

!x√
h

R

!y

. (28)

Our guess is thatx is numerically close tom and thaty is
numerically close to2

3 , with an accuracy which is of the
order of the difference betweenz2 and its K41 estimate o
2
3 . We stress, however, that the main point of this Lette
not the numerical value of this or that exponent, but th
normal scaling, which is based on dimensional analy
(like K41 for Navier-Stokes turbulence), fails doubly du
to the explicit appearance of two physically importa
scales, the innerand the outer renormalization scales.
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