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Scaling Behavior in Turbulence is Doubly Anomalous
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It is shown that the description of anomalous scaling in turbulent systems requires the simultaneous
use of two normalization scales. This phenomenon stems from the existence of two independent
(infinite) sets of anomalous scaling exponents that appear in leading order, one set due to infrared
anomalies and the other due to ultraviolet anomalies. To expose this clearly we introduce here a set of
local fields whose correlation functions depend simultaneously on the two sets of exponents. Thus the
Kolmogorov picture of “inertial range” scaling is shown to fail because of anomalies that are sensitive
to thetwo endsof this range. [S0031-9007(96)00258-X]

PACS numbers: 47.27.Gs, 05.40.+j, 47.27.Jv

Anomalous multiscaling in turbulence is usually dis- sure two types of exponents which govern the anoma-
cussed [1,2] in terms of the simultaneous structure funclous scaling related to thie and » renormalization scales
tions of velocity differences across a scRle [in Eq. (3) these areB, + B, and 64] by keeping the

5.(R) = (lu(r + R) — u(®)|") = &R)"3(L/R)*, (1) outer scaleL constant and varyingR and . The lat-
ter can be done by varying the outer velocity and using

Where_<- --) stands for a suitably defi_ne_d ensemb!e averihe dependence of the ratio/n on the Reynolds num-
age,€ is the mean energy flux per unit time per unit massyo.  The scalen can be changed by varying the vis-

and g, is the deviation of the scaling exponefjtof the iy (for example, by temperature control in a helium
structure function from the 1941 Kolmogorov (K41) pre- gas near the critical point, e.g., [8]). Theoretically we

diction ¢, = n/3 — 5,. Since K41 follows from dimen- o computes, exactly in simple models of scalar tur-

y> < o "bulent advection. The phenomenon of doubly anomalous
scale, and it is accepted [1,2,4-6] thatSj(R) it is the scaling occurs, however, in a similar fashion in Navier-

outer scale of turbulence that serves this purpose. The gigkes turbulence where we can estimg@te and S,.
same renormalization scale appears in the correlation funG;jnce the development of the ideas is simpler in the case
tion of theztanergy dissipation rager, 1) (which is roughly ¢ scaiar fields, we will present them in the context of scalar
v|Vu(r, 1)|* with » the kinematic viscosity) [7]: advection and generalize later to turbulent vector fields.
Kee(R) = ((e(r + R) — €) (e(r) — €)) = €(L/R)*, F_irst we generate local _fields that originate from the
fusion of two points. Consider for that a turbulent scalar
2 field T(r,t) and the product of two such fields at two
where u is known as the “intermittency exponent” [7]. adjacent points
The appearance of the outer renormalization scale in
Egs. (1p)pand (2) has been correctly interpreted as a fail- Yip.r) =T + p/2T( = p/2). )
ure of the K41 basic assumption of inertial range scalingjt is advantageous to represent this field as a multipole
The aim of the Letter is to discuss infinite sets of localexpansion¥(p,r) = > o ¥i(p,r), where
turbulent fields whose correlation functions requise si- ;
multaneous renormalization scalesandn wheren is the — A 2 2\ g2
viscous scale. One set of these local f?elds Willnbe denoted Yilp.r) leYlm(p)/ Vlps.ol¥in(@)de. ()
below asL,(r) wherel is an index that takes on integer R N .
values. The central result of this Letter is that to leadind€®? =p/p and ¢ are unit vectors. The orthonormal

order the correlation functions of these fields scale like SPherical harmonic), (p) are the eigenfunctions of the
angular momentum operatér= —ip X V which depend

1+ B 84
(L(r + R)L,(r)) ~ (Elf)“/3 (lf g (£> . (3) Only on the direction ofp: LY, (p) = 1L+ DYy (p)-
n!t" \ R R Next we represen?;(p,r) in terms of (infinitely many)
Other local fields exhibit other exponents from the family!ocal fields depending ononly. To this aim we expand
.. The point is that these correlation functions demon-¥ (p.r) in a Taylor series ip. This turns Eg. (5) into
strate that K41 fails doubly, once because of infrared and ! R R
once due to ultraviolet anomalies. This double anomaly ¥i(p.1) = > Yzm(f))] d§ Yim(€)

results, in addition to an infinite set of multiscaling ex- m=-1
ponents{,, with a second infinite set of exponents that « Z p* (& - V"W (' r) (6)
are denoted here &3;. In fact, one can separately mea- “— (2n)! A PR
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Here and below we use the opera¥dy = 9/dp!,. Note separated by a small distange By definition
that we have only even orders since our fieldV(p,r) B
is even inp. Performing the angular integrations and Fonle + p/2.x = p/205. .. 12)

recollecting terms we end up with = (W(p,r)T(rs3) - -T(ry,)).
V(0. T) = PP Pa To connect these functions and (9) we represght as
(poT) = Parpa:* Pay [,ZO a multipole decompositiotfs, = >~ Fons. Using (5)
ar+2p2p szLa]azmal(I’) we have
(I +2p)! ! ' Fousx + p/2,x — p/2.13,...,12,)
All the coefficientsa,, , here can be computed explicitly.
- i, omputed explizty = (Wy(p,1)T(x3) - T(r2,)). (10)
or examplea, , = 1 for anyp, aro = 3, aspo = — 33, . _ _ ' _ .
etc. We have introduced the tensorial local fields,, ~We are interested in the scaling properties of this quantity
where in the regime in which all the separations between all
. N P o the coordinates, rs,...,ry, are of the order oR.  For
Ly, (xr) = VD" ’T<r + 7>T<r - 7) ., p < R we can write
p=0 X1
(7) Foni(x + p/2,x — p/2,¥3,...,12,) ~ (%) S2q(R),
with D, (r) being local differential operators. For the first (11)

values ofl these differential operators are ) o
Po=1 D¥—v.v._lvs wherex; is a yet unknown exponent which in general may
5 o= 5 2 Ya¥p 3V Cabo also depend on. This exponent will be found below in
D5PY =V, VeV, Vs = AV2(8,5V, Vs + 84y Vs Vs a particular model and will be shown to héndependent.

T SugVeV, + 85,VaVs + 845VaV, + 8,5VaVs) For p very small we can use (7) and (9) to write

+ 3V (8apSys + Suydps + Susdpy). (8) S
Here Vo, = 3/dp,. The field Lo, is the dissipation x> %pwcgﬁ;/(r,mw_,r2n)_ (12)
field. Readers familiar with the representations of Lie p=0 (I +2p)!
groups recognize immediately that our local fieldg are
nothing but the2/ + 1 rank irreducible representations
of the SO(3) group [9]. This explains the meaning of ;.. a5 divisions bw: 027 V27 ~ 2p  Accordinal
the index|: Tensorial fieldsL;, (for any p) have o1 vein the Iimi)'?- p (p /)" gy
the same transformation properties under rotation of the

.’FZn,l(r + P/Zvl’ - P/271’3,---,1’2n) = PaPa---Pa

Finally, in the limit p < we use the fact thatf, is
smooth inp up top ~ n to evaluate the differential oper-

coordinate system as the spherical harmortigs The  lim Fo (r + p/2,r = p/2,135,...,12)
procedure described above is a regular way to find sucH’ 410 o .
differential fields. The fact that fields;o give ireducible = papa, == Pa; ;- Canio (013, 12) < pl - (13)

representation of symmetry groups of the problem is , )
the mathematical reason why these fields demonstragext we want to explpre 'ghe scaling behavior ﬁngl
“clean” scaling behavior. Note also that according to'°" values ofp in the inertial rangen <« p < L. This

(7) and (8) fieldsL,, have (I + 2p)-order differential W€ cannot do in general. We now need to specialize to
operator, V/*27.  The tensor fields thus obtained are 2 particular dynamical model. We choose Kraichnan's

symmetric to any pairwise exchange of indices. wemodel of pass.ive.advection of a.sc_alar figidr, 1) by a
will propose now that these gradient fields have random velocity field whose statistics are Gaussian, and

related anomalous scaling which is governed by a saWhose correlation functions are scale invariant in space
of anomalous exponents;. Autocorrelation functions and 5 correla‘ged in time [10,11]. Th_e releyance of the
of these fields, and correlation functions of these ﬁeldgesults to Navier-Stokes turbulence will be discussed later.

together with field differences across a scRalepend For azscalar difoSiVit.y.K the dissipation field is(r) =
also onR/L with exponents determined by the ggt «|VT|* and the quantities (1) and (2) are replaced by
To study the correlation of the newly defined local §,,(R) = (IT(R) — T(0)*") = [S»(R)]"(L/R)?", (14)
fields with the fundamentar field consider the following
correlation function of the tensorial fiel; , with 2n — Kee(R) = {(e(R) — €) (e(0) — ©) = gZ(L/R)M, (15)
2 scalarT fields: . .
In the present case the scaling exponensgfis {, =
C2n,l,p(rs r3,..., r2n) = <Ll,p(r)T(r3) T T(r2n)> . (9) né, — 6,.
Note that in this correlation functiop does not appear. It was shown in [12] that the correlation functigh,,

However, it is related to the standard-@oint correlation solves a particularly simple equation when two of its
function in which two coordinates (say; and r;) are  coordinates (say; andr2) are much closer to one another
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than all the rest. Explicitly, fop small thep dependence p <« 5. This can be done if the solution is varying con-
of this function is governed by the equation tinuously across; without any non-monotonic behavior.
B(p) Fou(r + p/2,x=p/2,13,...,12) The rigorous proof of this property is beyond the scope of
this Letter. It can be demonstrated numerically by solving
~ Dy, —o(r,13,...,12,) . (16_) the ordinary differential equation (16). Equating (21) and
Here ®;,(r,rs,....ry,) is a homogeneous function (13)for p = 7 (up to an unknowrR-independent coeffi-
with scaling exponents, — . In three dimensions the cient) we find

operatorB(p) is given by [10,12] L)
YT B TS R Gl ¢V Conio(r,rs,....12) ~ — <—> S2.(R), (23)
Blp) = H —p* o~ B D) 2\ &

Here H is a constant. It has been shown [12,13] thatwhere we remind the reader tHatstands for the order of
the leading scaling solution for the dependence of magnitude of all the separations between the coordinates
function >, is an eigenfunction of the operat@®(p) of C,,;0. Comparing with Eq. (14) we conclude that the
with eigenvalue 0 and thus can be expanded in sphericabrrelation function ofL;, with any even number of

harmonics by fields separated by distances of the ordeRoflepends
Pl + p/2,xr — p/2,13,...,12,) simultaneously on two renormalization scalesand L,
© ] and on the two sets of anomalous exponghtand .
= Z Z Agi")(r,m,,,,rn)pﬁlyl’m(ﬁ), (18) Next examine a cross correlation of two (generally
I=0 m=—1 different) local fields. Repeating the analysis one finds
where Agi")(r’r3’_“’rn) is a homogeneous function Ed. (3). We see that, in general, such correlations depend

whose Scaling exponent iSZn — Bl' To Compute the ON the two renormalization scales and on two sets of

exponentsB; we note that the (right-hand side) of (16) exponents. It is therefore interesting to ask why this
is p independent, and therefore contributes only wherPhenomenon is absent ik which is closely related

I = 0. Inthis case we can compuf® by power count- {0 such correlation functions. We note that in our terms
ing with the result@y = &. Forl # 0 we need to find the correlation (15) is given bce(R) = x*(Lo,(r +

a solution of the homogeneous part of (16). By a directR)Lo,1(r)) as can be checked by substituting the definition
substitution of (18) into the (left-hand side) of (16) one of the local fields. This is a very special case among the
finds B,(8; + 3 — &) = (4 — &)I(I + 1)/2. Note that ~ correlations of the local fields. Using the fact that =

the |hs of this relation originates from the radial part of ¢2, and taking into account that for = 1 in Eq. (7) we
the operatorB, whereas the rhs results from the angularhaVe two derivatives, it follows that in this case [11-13]
part that is proportional td.2. Solving the quadratic 27\ L\ ¢

equation forg; we find in three dimensions [12,13] Kee(R) ~ o (F) S4(R) ~ ?2(—> . (24)

B = %[52 -3+ \/(3 - L2 +20+1)4 - 05) :| In the last step we used the fact that by definition
€= —klimp, =, ViVo F(ri,rp). Since F(ri,ry) ~
(19) Ir; — r2|% we gete « kn%~2. This leads directly to
leads to n disappears from the correlator. The deep reason for
this is that this is the rate of dissipation of the integral of
n + 23 - 23 ) . n . . . ay w
Fonale + p/ rl p/2.13 ran) motion in the passive scalar problem, and therefore it is
— B Y ()43 _ . 20 independent of the value of the diffusivity. Only such a
p m:Z—l m(P)A (X35, X2) (20) combination ofyp and «x can appear that cancels in favor
In the situations in which all the separations betweerpf the constang. In this sense& .. is unusual, and all the
the coordinatesr,rs,...,r, are of the same order of generic correlations (3) are simultaneously dependent on

magnitudeR, andR > p > xn we can write two renormalization scales.
1ol One can generate more local fields that will have scaling
Fona(c + p/2,x = p/2,13,...,12,) % pPI RO TP properties which may depend on new exponents. Instead

(21)  of starting with the fusion of two points we can fuse three,

Comparing with Eq. (11) we identify the exponentas four, or more points [14]. Instead of (4) we can introduce

B; and write the final form, 5 Wi(p1, paor) = T(x + p)T(r + p)T(x — p1 — p2),
Fona(x + %,l‘ - %,1‘3,--.,1‘2;1) ~ (%) S (R). (25)

(22) W, « T*etc. Expanding these fields in Taylor series with
At this point we want to match solution (22), which is respect top, p», €tc., we can generate new sets of local
valid for p > 7, with solution (13) which is valid for fields that contain derivatives of three, four, eitfjelds.
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Their correlation functions will depend on the ultraviolet structure is beyond the scope of this Letter. It will suf-
exponents which appear due to three-point, four-point, etcfice here to state that these local fields will have correla-
coalescing clusters, and on the infrared scaling exponent®n function with anomalous scaling properties that gen-
of six, eight, and more, point correlation functions. Oferally depend on two renormalization scales and on two
course, the actual values of the exponents depend wets of anomalous scaling exponents. The correlator (2)
the dynamical model, but the structure of the theory iswill again be special andy independent since it involves
general. To stress this generality we now make a fevthe rate of dissipation of the integral of motion (energy).
comments about the Navier-Stokes problem. In dealingorrelations of fields withi # 0 will be generic. For ex-
with Navier-Stokes turbulence we need to worry fromample, the correlation afQ, with € = 2vs? is

the beginning about Galilean invariance in addition to the x y

SO(3) symmetry group. To this aim we will consider local yHO%P (r + R)s2(r)) ~ g2<£) (1) _ (28)
fields that originate from the fusion of gradient fields. The R R

simplest object is . . . .
Our guess is that is numerically close tq. and thaty is
_ dualr + p/2) duy(r — p/2) : ycose Y

v (p.r) = . (26) numerically close tcs, with an accuracy which is of the
o Ipp Ips order of the difference betweeh and its K41 estimate of

From this point on we can proceed following the route2 e stress, however, that the main point of this Letter is
sketched above for the scalar case. Representing this fiefght the numerical value of this or that exponent, but that
as a multipole decomposition with respect to the directiomormal scaling, which is based on dimensional analysis
of p, and considering the Taylor expansiondnwe can  (jike K41 for Navier-Stokes turbulence), fails doubly due
generate infinitely many Ioca_l fields. These fields h_avqo the explicit appearance of two physically important
two u fields and as many gradients as we want to considekcales, the inneaindthe outer renormalization scales.
starting from two. It is interesting to notice that in the  Thjs work has been supported by the U.S.-Israel BSF,
present case we have two different vectors, Meandu,  The German-Israeli Foundation, the Minerva Center for
from which we can form antisymmetric combinations, like Nonlinear Physics, and the Naftali and Anna Backenroth-

the vorticityw, = €apydupg/dry (Whereeap, isthefully  Bronicki Fund for Research in Chaos and Complexity.
antisymmetric tensor). Consequently we will have odd as

well as evenl components in this scheme. In addition
we have symmetric combinations of velocity derivatives
like the strain tensot,g = [dua/drg + dug/dre]/2. .
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