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Local Scaling in Homogeneous Hamiltonian Systems
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We study the local scaling properties associated with straight line periodic orbits in homogeneous
Hamiltonian systems, whose stability undergoes repeated oscillations as a function of one parameter.
We give strong evidence of local scaling of the Poincaré section with exponents depending simply on
the degree of homogeneity of the potential.

PACS numbers: 05.45.+b

It has been recognized for some time now that periodienonodromy matrix is the linearization of the Poincaré
orbits play a crucial role, whether in classical or semiclasmap in the neighborhood of the periodic orbit. To fix
sical dynamics. Of the infinite periodic orbits the mostideas and introduce the scaling associated with these
important ones are those with the shortest periods andrbits, we will begin with the well studied model of the
highest stabilities. Gutzwiller’s trace formula in the semi-quartic oscillator given by the Hamiltonian [6]
classical quantization of chaotic systems [1] as well as 1 1 1 1
the zeta function approaches in classical and semiclassical Hi = Epf + Epg + 7 Big} + y B245
mechanics of such systems [2] accord them the highest
weights. The bifurcation properties of these orbits also L
assume considerable signifi i [ i- T adids: @

gnificance. Certain atomic experi 2
ments have revealed the importance of bifurcations ofvhereg,, 8,,« > 0. For fixed values of the parameters
closed orbits even when the dynamics is chaotic [3]. Bi2, as a is increased the phase space is known to

Most studies of classical Hamiltonian systems havebecome more chaotic. Although even at= « there
focused upon single parameter systems, upon whos#&e islands of stability, these are of miniscule proportions.
variation the system smoothly undergoes a transition fronThe straight line periodic orbit, the “channel orbit,”
regular motion to chaotic motion via stages of mixedspecified by the initial condition&?, ¢%,0,0), is clearly
phase spaces. It can so happen that integrability may bene of the simplest orbits of the system and is known
suddenly recovered for certain values of the parameteto play a crucial part in the semiclassics and quantum
However, even while the parameter variation is over amechanics of the oscillator; for instance, they scar a series
range in which the remnant tori are being destroyed andf eigenfunctions which form a near-WKB series even in
replaced by chaotic trajectories, there could be perioditighly chaotic regimes [7].
orbits that are rapidly undergoing stability oscillations The channel periodic orbits do not increasingly become
implying the creation of secondary tori and regularunstable asa is increased; they recover stability by
regions in the phase space. This has been known for somepeated oscillations. This implies that over whole ranges
time and seems to be more generic with homogeneousf o, however chaotic the rest of phase space may be,
Hamiltonian systems [4]. there are islands of stability around this periodic orbit and

Such stability oscillations occur in very simple periodic that in the stable regions various bifurcations give rise to
orbits and as stated above these are of importanc@ew periodic orbits. For the instance of the Hamiltonian
Homogeneous Hamiltonian systems, while rather speciagpecified by Eq. (1), the Yoshida formula [4] gives
allow certain simplifications that make their study useful. - =
While in general Hamiltonian systems the orbits form TrJ(a) = 242 CO<— 1+ 8—), (2)
one-parameter families with energy being the parameter 4 B
[5], in homogeneous systems varying the energy simplyhere/(«) is the monodromy matrix for thiealf Poincaré
scales the orbits without changing the orbit structure in thenap [8] of the oscillator. Thug(a) is the linearized
phase space, that is, bifurcations and related phenomensap about the channel periodic orbits specified 4y =€
cannot occur as a function of energy, in general. Thus we, = 0). Because of the symmetries of the system
resort to changing the Hamiltonian itself in the form of we are considering, namely, reflection symmetries about
parameter variations. the various axes, the half map defined as successive

For homogeneous Hamiltonian systems, Yoshida [4]ntersections of the trajectories with the plage = 0,
has given an exact and simple expression for the tracerespective of whethep, is positive or negativas a one-
of the monodromy matrix of certain straight line periodic to-one area-preserving map. We thus note that the orbit
orbits which have in general low periods and highcan change stability whenever= g8;m(1 + 2m) where
stability, or are among the least unstable orbits. Then is any integer, as at these valueg{w) = *2.

396 0031-900796/76(3)/396(4)$06.00 © 1996 The American Physical Society



VOLUME 76, NUMBER 3 PHYSICAL REVIEW LETTERS 15 ANUARY 1996

For large enouglw, the phase space is mostly chaotic; present only in the form of numerical explorations, as
hence when the channel orbit is stable, its island ofollows.
stability must be rapidly shrinking withw. We can Let
compare the stable areas on the half Poincaré sections [ . a) R  a) 3
at variousa, such that the central orbit stability is the @ = @ pra), P2 = 8@ pna (3)
same at these values, and the slope of the stability curvée the half Poincaré map. As a consequence of the
dTr[J(a)]/da, has the same sign. For instance Fig. 1reflection symmetries in the oscillator, the functigh
shows the neighborhood of the origin, corresponding tds such thatf(g, p2; @) = —f(—q2, —p2; @), with a
the channel orbit{, = p, = 0), when its stability is just similar relation forg. Then the scaling of the section
about to be lost in a pitchfork bifurcation, i.e., when implies the scaling of the above functions. Let us choose
TrJ(a) = 2 and the trace is increasing. It is clear thattwo values of the parametex and «’, such that say
while the islands are shrinking with the parameter, theyr’ > a. If @ anda’ are related by THa) = TrJ(a),
are essentially similar and would possibly scale with  and the stability is either increasing at bathand «’ or
We thus formulate our principal results, which are atdecreasing, then

() sorio=o{ ()0 (2) e

(4)

Here y; andy, are the scaling exponents for the and
p» directions, respectively.

For the class of Hamiltonians (we call it class | here),
given by

1 1 1
Hy, = EP% + Ep% + %(qu%n + :82‘1%”)

o _ _
+ 7((1%61%” >+ 397" 7).,

of which the quartic oscillator used above is a special
case, we conjecture the following, based on numerical
evidence to be presented below:

2n + 1 2n — 1
Y1 i Y2 yranE (5)
Thus for the Hamiltonian of Eq. (1); = 5/8 andy, =
3/8. One of the consequences of the above is that the area
of the sections scales simply as', independently of the
degree of homogeneity of the potential. A similar scaling
relation is found to be true for the functigrigs, ps; a).

The validity of the above scaling relationships is
restricted to a certain region around the periodic orbit,
in this case around the origin of the section. The
scaling is in this sense only local. We have observed
that the area of stability may be safely taken as the
region in which the scaling holds, although this can be
a serious underestimation, as will be shown below. We
will illustrate the validity of the scaling by taking one of
the outermost points of the stable region of the sections
when TU(a) = 2 and is increasing. In this case there
is one island chain consisting of eight islands that have
been created earlier and have grown out and are near the
chaotic sea (Fig. 1). We will take the distances between
the origin and the central period-8 orbit to verify scaling.
Let the period-8 orbit’s intersection with the positiye
FIG. 1. Poincaré surface of section around the origin for thea?(es be ail, (a) and with _the positive, axes be aﬂ;(a).
quartic oscillator cases (ax = 66 and (b) @ = 120, with  Figure 2 shows the scaling of these distances withe.,

B =pB=1 di(a) ~ a7 andd,(a) ~ a7, The lines shown are
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the trace is 2.0 and increasing when the stability is about
to be lost in a pitchfork bifurcation and there are large
stable islands (Fig. 1). Comparing Figs. 1(a) and 1(b)
with Fig. 3 indicates that the area over which the scaling
remains valid is much larger than the “area of stability.”
A similar result is obtained in the case of the functign

as well.

To emphasize this we may take the case when
TrJ(a) = 2 and is decreasing, when the channel orbit is
about to gain stability and create two new unstable orbits
(for instancea’ = 136 anda = 78) . In this case there
is no stable island, yet the scaling of the functions is
valid over a large range and the picture obtained is very
close to that of Fig. 3. The scaling relation is found to
be true even in the case when the central channel orbit
is unstable. At this stage we note that the scaling of
the functionsf and g does not necessarily imply scaling
of the orbits, as in a chaotic flow which is ergodic the
phase points will explore regions in which the scaling
FIG. 2. Scaling of the distances for the quartic oscillator,is invalid. However, in the case when the orbits never
whena' = 120 ande = 66, and a similar case wheBy = 0.5 |eave the region of valid scaling, we can expect the orbits
is also shown. The upper two and lower two lines corresponqhemselVeS to be scaling. This would happen if the
to d(a) andd;(«), respectively. - . - .

central orbit were to be stable, and explains our interest in

this range of parameter values, as well as the likeness in

the sections of Fig. 1.
those of best fit. Their slopes are equal-t0.621 and Verifying scaling of the functions is much easier than
—0.372 and are very close to those predicted by Eq. (5)measuring the distances implied in Fig. 2. Using the
The scaling seems to become better with increasingo ~ €xponents found when Tta) = 2, we have verified
that the first few points were neglected while calculatingusing Eq. (4) the scaling laws with identical exponents
the slope. Increasing leads to a deterioration of the independentof the value of the trace. Another rather
accuracy of the numerical integrations. Hence we havéfficient method of determining the exponents based on
used smaller step sizes of the orden 6 in a fifth order ~ Eq. (4) is to assume a fixed initial condition with = 0
Runge-Kutta integrator for converging the exponents afnd search along a range in the exponent for as
these high parameter ranges. this is unaffected by the value of,, and then search

The exponents found from the above can be used tfr y2 using they, obtained from such a procedure.
directly verify the scaling of the half first-return maps ldentical scaling behavior with the exponents given by
as given by Eq. (4). In the case of the Hamiltonian ofEd. (5) is observed wheg; # B, i.e., when theCy,

Eq. (1), Fig. 3 shows the absolute value of the differencéymmetry of the above examples is broken iotg, and

of the two sides of Eq. (4) for the functiofi, for the this is illustrated also in Fig. 2 for the cagg = 0.5 and
case wher’ = 120 anda = 66. At these values ot B2 = 1.0, when the lines of best fit have slopes equal to
—0.622 and —0.372.

An almost identical picture is obtained when we
take other class | systems. For instance, we consider
the HamiltoniansHs and Hg whose potential energies
correspond ta = 3 andn = 4, respectively, within class
I. The figure analogous to Fig. 2 is shown in Fig. 4 for
these oscillators. The lines are once more those of best
fit, and the slopes for the sextic are).589 and —0.422,
while for the octic potential they are0.566 and —0.442,
which are very close to the values given by Eq. (5), when

,=1.0

8,=05
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~3 f;{';._.J we consider that by definitiory;, are the negatives of
& e, ’ the slope. Once more we find that the scaling gets to be
2 8.5 /"5 nearly perfect for large values of.

FIG. 3. The absolute value of the difference between the left Pqt_entials that contain te_rms WhiCh_ do not affect the
and right hand sides of Eq. (4) for the case wher(&) = 2  Stability of the channel orbits form different classes of
and is increasingg’ = 120 anda = 66. Hamiltonians from those considered above. For instance,
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"o Sextic 1 example, in the case of the Hamiltonian specified by
the potentialg® + ¢5)/6 + aqiqg3/3, the phase space is
largely chaotic for seemingly low values of the coupling
parameters near unity. Complete chaos is, however,
absent, not only because of the channel orbit but also due
to the existence of one more stable island. In this case
the exponents were found, using the methods specified
above, to bey; = vy, = 1. The generalization Eq. (6) is
based on similar computations for larger values:diup

ton =7).

We have briefly noted some, what we believe are new,
local scaling behaviors of certain homogeneous Hamilton-
ian systems. The above being in the nature of preliminary
numerical exploration, we cannot exhaustively comment
on the classes of Hamiltonian systems with distinct scaling
laws, even within the subclass of homogeneous systems.
The number of degrees of freedom we have considered in
this Letter is only 2 and higher dimensional generaliza-
FIG. 4. Scaling of the distances for the cases of the sextic antions, while interesting, have not yet been explored. Itis
octic oscillators g, = 1.0). also not clear if such scaling behaviors can be observed in

nonhomogeneous systems with similar periodic orbits. In
future work we hope to address some of these questions
one simple set of Hamiltonians we call class Il is of theas well as study the semiclassical implications, if any, of

Log(d, 5(a))

Log(a)

form such scaling.
1 5 1 5 1 2 2
H,, = 5 Pi + 5P + E(ﬂlﬂhn + Bagy"
+ L oagrgr n>?2 ; i
n @q19>, : *Electronic address: arul@prl.ernet.in

The channel orbit is always marginally stable JTa) = ¢E::gg82:g Zggﬁz? zﬁggﬁ?g'ﬁﬁﬁg in
2], independent otx and there is a stable region around . A i
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