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Local Scaling in Homogeneous Hamiltonian Systems
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We study the local scaling properties associated with straight line periodic orbits in homoge
Hamiltonian systems, whose stability undergoes repeated oscillations as a function of one par
We give strong evidence of local scaling of the Poincaré section with exponents depending sim
the degree of homogeneity of the potential.
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It has been recognized for some time now that period
orbits play a crucial role, whether in classical or semicla
sical dynamics. Of the infinite periodic orbits the mo
important ones are those with the shortest periods a
highest stabilities. Gutzwiller’s trace formula in the sem
classical quantization of chaotic systems [1] as well
the zeta function approaches in classical and semiclass
mechanics of such systems [2] accord them the high
weights. The bifurcation properties of these orbits al
assume considerable significance. Certain atomic exp
ments have revealed the importance of bifurcations
closed orbits even when the dynamics is chaotic [3].

Most studies of classical Hamiltonian systems ha
focused upon single parameter systems, upon wh
variation the system smoothly undergoes a transition fro
regular motion to chaotic motion via stages of mixe
phase spaces. It can so happen that integrability may
suddenly recovered for certain values of the parame
However, even while the parameter variation is over
range in which the remnant tori are being destroyed a
replaced by chaotic trajectories, there could be perio
orbits that are rapidly undergoing stability oscillation
implying the creation of secondary tori and regula
regions in the phase space. This has been known for so
time and seems to be more generic with homogene
Hamiltonian systems [4].

Such stability oscillations occur in very simple period
orbits and as stated above these are of importan
Homogeneous Hamiltonian systems, while rather spec
allow certain simplifications that make their study usefu
While in general Hamiltonian systems the orbits for
one-parameter families with energy being the parame
[5], in homogeneous systems varying the energy simp
scales the orbits without changing the orbit structure in t
phase space, that is, bifurcations and related phenom
cannot occur as a function of energy, in general. Thus
resort to changing the Hamiltonian itself in the form o
parameter variations.

For homogeneous Hamiltonian systems, Yoshida
has given an exact and simple expression for the tra
of the monodromy matrix of certain straight line period
orbits which have in general low periods and hig
stability, or are among the least unstable orbits. T
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monodromy matrix is the linearization of the Poinca
map in the neighborhood of the periodic orbit. To fi
ideas and introduce the scaling associated with th
orbits, we will begin with the well studied model of the
quartic oscillator given by the Hamiltonian [6]

H4 ­
1
2

p2
1 1

1
2

p2
2 1

1
4

b1q4
1 1

1
4

b2q4
2

1
1
2

aq2
1q2

2 , (1)

whereb1, b2, a . 0. For fixed values of the parameter
b1,2, as a is increased the phase space is known
become more chaotic. Although even ata ­ ` there
are islands of stability, these are of miniscule proportion
The straight line periodic orbit, the “channel orbit,
specified by the initial conditionssp0

1 , q0
1, 0, 0d, is clearly

one of the simplest orbits of the system and is know
to play a crucial part in the semiclassics and quantu
mechanics of the oscillator; for instance, they scar a ser
of eigenfunctions which form a near-WKB series even
highly chaotic regimes [7].

The channel periodic orbits do not increasingly becom
unstable asa is increased; they recover stability b
repeated oscillations. This implies that over whole rang
of a, however chaotic the rest of phase space may
there are islands of stability around this periodic orbit a
that in the stable regions various bifurcations give rise
new periodic orbits. For the instance of the Hamiltonia
specified by Eq. (1), the Yoshida formula [4] gives

TrJsad ­ 2
p

2 cos

√
p

4

r
1 1 8

a

b1

!
, (2)

whereJsad is the monodromy matrix for thehalf Poincaré
map [8] of the oscillator. ThusJsad is the linearized
map about the channel periodic orbits specified by (q2 ­
p2 ­ 0). Because of the symmetries of the syste
we are considering, namely, reflection symmetries ab
the various axes, the half map defined as success
intersections of the trajectories with the planeq1 ­ 0,
irrespective of whetherp1 is positive or negative,is a one-
to-one area-preserving map. We thus note that the o
can change stability whenevera ­ b1ms1 1 2md where
m is any integer, as at these values TrJsad ­ 62.
© 1996 The American Physical Society
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For large enougha, the phase space is mostly chaoti
hence when the channel orbit is stable, its island
stability must be rapidly shrinking witha. We can
compare the stable areas on the half Poincaré sect
at variousa, such that the central orbit stability is the
same at these values, and the slope of the stability cu
d TrfJsadgyda, has the same sign. For instance Fig.
shows the neighborhood of the origin, corresponding
the channel orbit (q2 ­ p2 ­ 0), when its stability is just
about to be lost in a pitchfork bifurcation, i.e., whe
TrJsad ­ 2 and the trace is increasing. It is clear tha
while the islands are shrinking with the parameter, th
are essentially similar and would possibly scale witha.
We thus formulate our principal results, which are

FIG. 1. Poincaré surface of section around the origin for t
quartic oscillator cases (a)a ­ 66 and (b) a ­ 120, with
b1 ­ b2 ­ 1.
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present only in the form of numerical explorations,
follows.

Let

q0
2 ­ fsq2, p2; ad, p0

2 ­ gsq2, p2; ad (3)

be the half Poincaré map. As a consequence of
reflection symmetries in the oscillator, the functionf
is such that fsq2, p2; ad ­ 2fs2q2, 2p2; ad, with a
similar relation forg. Then the scaling of the section
implies the scaling of the above functions. Let us choo
two values of the parametera and a0, such that say
a0 . a. If a and a0 are related by TrJsad ­ TrJsa0d,
and the stability is either increasing at botha and a0 or
decreasing, thenµ

a0

a

∂2g1

fsq2, p2; ad ­ f

0B@
0B@
0B@µ

a0

a

∂2g1

q2,

µ
a0

a

∂2g2

p2; a0

1CA
1CA
1CA.

(4)

Hereg1 andg2 are the scaling exponents for theq2 and
p2 directions, respectively.

For the class of Hamiltonians (we call it class I here
given by

H2n ­
1
2

p2
1 1

1
2

p2
2 1

1
2n

sb1q2n
1 1 b2q2n

2 d

1
a

2
sq2

1q2n22
2 1 q2

2q2n22
1 d ,

of which the quartic oscillator used above is a spec
case, we conjecture the following, based on numeri
evidence to be presented below:

g1 ­
2n 1 1

4n
, g2 ­

2n 2 1
4n

. (5)

Thus for the Hamiltonian of Eq. (1),g1 ­ 5y8 andg2 ­
3y8. One of the consequences of the above is that the a
of the sections scales simply asa21, independently of the
degree of homogeneity of the potential. A similar scalin
relation is found to be true for the functiongsq2, p2; ad.

The validity of the above scaling relationships
restricted to a certain region around the periodic orb
in this case around the origin of the section. Th
scaling is in this sense only local. We have observ
that the area of stability may be safely taken as t
region in which the scaling holds, although this can
a serious underestimation, as will be shown below. W
will illustrate the validity of the scaling by taking one o
the outermost points of the stable region of the sectio
when TrJsad ­ 2 and is increasing. In this case ther
is one island chain consisting of eight islands that ha
been created earlier and have grown out and are near
chaotic sea (Fig. 1). We will take the distances betwe
the origin and the central period-8 orbit to verify scalin
Let the period-8 orbit’s intersection with the positiveq2

axes be atd1sad and with the positivep2 axes be atd2sad.
Figure 2 shows the scaling of these distances witha, i.e.,
d1sad , a2g1 and d2sad , a2g2 . The lines shown are
397
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FIG. 2. Scaling of the distances for the quartic oscillat
whena0 ­ 120 anda ­ 66, and a similar case whenb1 ­ 0.5
is also shown. The upper two and lower two lines correspo
to d2sad andd1sad, respectively.

those of best fit. Their slopes are equal to20.621 and
20.372 and are very close to those predicted by Eq. (
The scaling seems to become better with increasinga, so
that the first few points were neglected while calculati
the slope. Increasinga leads to a deterioration of th
accuracy of the numerical integrations. Hence we h
used smaller step sizes of the order of1026 in a fifth order
Runge-Kutta integrator for converging the exponents
these high parameter ranges.

The exponents found from the above can be used
directly verify the scaling of the half first-return map
as given by Eq. (4). In the case of the Hamiltonian
Eq. (1), Fig. 3 shows the absolute value of the differen
of the two sides of Eq. (4) for the functionf, for the
case whena0 ­ 120 anda ­ 66. At these values ofa

FIG. 3. The absolute value of the difference between the
and right hand sides of Eq. (4) for the case when TrJsad ­ 2
and is increasing,a0 ­ 120 anda ­ 66.
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the trace is 2.0 and increasing when the stability is abo
to be lost in a pitchfork bifurcation and there are larg
stable islands (Fig. 1). Comparing Figs. 1(a) and 1(b
with Fig. 3 indicates that the area over which the scalin
remains valid is much larger than the “area of stability.
A similar result is obtained in the case of the functiong
as well.

To emphasize this we may take the case whe
TrJsad ­ 2 and is decreasing, when the channel orbit
about to gain stability and create two new unstable orb
(for instance,a0 ­ 136 anda ­ 78) . In this case there
is no stable island, yet the scaling of the functions
valid over a large range and the picture obtained is ve
close to that of Fig. 3. The scaling relation is found t
be true even in the case when the central channel or
is unstable. At this stage we note that the scaling
the functionsf andg does not necessarily imply scaling
of the orbits, as in a chaotic flow which is ergodic the
phase points will explore regions in which the scalin
is invalid. However, in the case when the orbits neve
leave the region of valid scaling, we can expect the orbi
themselves to be scaling. This would happen if th
central orbit were to be stable, and explains our interest
this range of parameter values, as well as the likeness
the sections of Fig. 1.

Verifying scaling of the functions is much easier tha
measuring the distances implied in Fig. 2. Using th
exponents found when TrJsad ­ 2, we have verified
using Eq. (4) the scaling laws with identical exponent
independentof the value of the trace. Another rather
efficient method of determining the exponents based
Eq. (4) is to assume a fixed initial condition withp2 ­ 0
and search along a range in the exponent forg1, as
this is unaffected by the value ofg2, and then search
for g2 using the g1 obtained from such a procedure
Identical scaling behavior with the exponents given b
Eq. (5) is observed whenb1 fi b2, i.e., when theC4y

symmetry of the above examples is broken intoC2y, and
this is illustrated also in Fig. 2 for the caseb1 ­ 0.5 and
b2 ­ 1.0, when the lines of best fit have slopes equal t
20.622 and20.372.

An almost identical picture is obtained when we
take other class I systems. For instance, we consid
the HamiltoniansH6 and H8 whose potential energies
correspond ton ­ 3 andn ­ 4, respectively, within class
I. The figure analogous to Fig. 2 is shown in Fig. 4 fo
these oscillators. The lines are once more those of b
fit, and the slopes for the sextic are20.589 and20.422,
while for the octic potential they are20.566 and20.442,
which are very close to the values given by Eq. (5), whe
we consider that by definitiong1,2 are the negatives of
the slope. Once more we find that the scaling gets to
nearly perfect for large values ofa.

Potentials that contain terms which do not affect th
stability of the channel orbits form different classes o
Hamiltonians from those considered above. For instanc
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FIG. 4. Scaling of the distances for the cases of the sextic a
octic oscillators (b1,2 ­ 1.0).

one simple set of Hamiltonians we call class II is of th
form

H 0
2n ­

1
2

p2
1 1

1
2

p2
2 1

1
2n

sb1q2n
1 1 b2q2n

2 d

1
1
n

aqn
1 qn

2 , n . 2 .

The channel orbit is always marginally stable [TrJsad ­
2], independent ofa and there is a stable region aroun
this orbit which continuously scales witha. We found
the corresponding exponents to be well predicted by
rule

g1 ­ g2 ­
1

n 2 2
, (6)

so that the area still scales asa21 only in the case when
n ­ 4. The termqn

1 qn
2 (n . 2) is like a “gauge term”

as far as the stability of the central orbit is concerne
In this class of Hamiltonians the symmetry of parity
broken whenn is odd, and the potential in these case
is bounded only if21 , a , 1. If n is odd, thehalf
Poincaré map defined earlier for class I Hamiltonians
not valid, and hence we use the usual definition of thefull
Poincaré map, namely, as the successive intersection
nd

e

d

he

d.
s
s

is

of

the trajectory with the planeq1 ­ 0 and p1 . 0. For
example, in the case of the Hamiltonian specified
the potentialsq6

1 1 q6
2dy6 1 aq3

1q3
2y3, the phase space is

largely chaotic for seemingly low values of the couplin
parameters near unity. Complete chaos is, howev
absent, not only because of the channel orbit but also
to the existence of one more stable island. In this ca
the exponents were found, using the methods speci
above, to beg1 ­ g2 ­ 1. The generalization Eq. (6) is
based on similar computations for larger values ofn (up
to n ­ 7).

We have briefly noted some, what we believe are ne
local scaling behaviors of certain homogeneous Hamilto
ian systems. The above being in the nature of prelimin
numerical exploration, we cannot exhaustively comme
on the classes of Hamiltonian systems with distinct scal
laws, even within the subclass of homogeneous syste
The number of degrees of freedom we have considere
this Letter is only 2 and higher dimensional generaliz
tions, while interesting, have not yet been explored. It
also not clear if such scaling behaviors can be observe
nonhomogeneous systems with similar periodic orbits.
future work we hope to address some of these questi
as well as study the semiclassical implications, if any,
such scaling.
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