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Dissipative Solitary States in Driven Surface Waves
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We present an experimental study of highly localized, solitonlike structures that propagate on the
two-dimensional surface of highly dissipative fluids. Like the well-known Faraday instability, these
highly dissipative structures are driven by means of the spatially uniform, vertical acceleration of a
thin fluid layer. These structures, harmonically coupled to the external driving frequency, are observed
above a critical ratio of the viscous boundary layer height to the depth of the fluid layer for a wide
range of fluid viscosities and system parameters. [S0031-9007(96)00186-X]

PACS numbers: 47.20.Gv, 47.20.Ky, 47.35.—i, 47.54.+r

Driven nonlinear systems have been the subject olow dissipation (where the dissipation rate’/A\?> < ).
substantial interest over the past decade. A large class dhese studies include nonlinear mode interactions [4] in
such systems, at a critical driving amplitude, bifurcate fromsmall aspect ratio (defined as the ratio between the hori-
an initial featureless state to a global state characterizezbntal size of the system and systems where the excited
by a well-defined mode or pattern which retains a certairmodes are well separated and the dynamics and disorder
symmetry of the system. As the driving is increased, theof patterns [5] in larger aspect ratio systems.
initial pattern may become unstable, undergoing additional Recent work [6,7] has shown the utility of using more
bifurcations which further reduce the system’s symmetryhighly dissipative fluids to reduce mode quantization ef-
Dissipation in these systems is not confined to a singléects due to the lateral boundaries together with relatively
region but, following the pattern, is uniformly distributed thin fluid layers(z < A) to damp out long wavelength
throughout the medium. modes (for a detailed discussion see [6b]). Linear sta-

Uniformly distributed patterns are not the only types ofbility analysis for finiteh and » has recently [8] yielded
structures that arise in driven nonlinear systems. In two opredictions fora. and A that match experiments [7] for
three spatial dimensions (2D or 3D), long-lived, localizedthe high», shallow fluid layer regime.
modes such as vortices [1] in turbulent systems or spiral An important parameter in this system is the size of the
waves in pattern-forming systems [2] appear to be wideviscous boundary laye? = (v/w)'/2. We view a highly
spread in driven dissipative systems. Localized, solitondissipative system as one where the characteristic time
like structures, ubiquitous in nonlinear conservative sysfor dissipationi?/v is on the order of the driving period
tems, are rarely if at all observed [3] in highly dissipative1/w. In this regiond is on the order ofi. The ratio
2D or 3D systems. In this paper, we observe the appeaé/h (or, equivalently, the ratio between the forcing and
ance of such states in the well-known pattern-forming sysdissipative time scales) will turn out to be critical for the
tem generally used in studies of the Faraday instabilityselection of the fluid state. The work described here was
As the system becomes highly dissipative, it undergoes performed for larger values af/h (0.15 < §/h < 1.2)
sharp transition from one of states characterized by globahan in previous experiments [6,7).03 < §/h < 0.27)
patterns to one of highly localized, propagating, particle-on viscous fluids and thin fluid layers.
like states. These states raise the intriguing question of In our experiments we used a 144.0 mm diameter cir-
why, when sufficiently dissipative, will a system prefer to cular cell where the fluid rests on an aluminum plate,
localizerather than uniformly distribute its dissipation.  diamond machined to a flatness of better thagam and

Our experimental system consists of a thin, horizontapolished to a mirror surface. The cell’s lateral boundaries
(normal to gravity), 2D fluid layer subjected to uniform, were made of Delrin with, as in [7], walls sloped at & 20
externally imposed oscillations in the vertical (parallel toangle to reduce meniscus formation on the fluid surface.
gravity) direction. The acceleration amplitudeof the  Although a variety of fluids were used, most of our quan-
fluid layer can be viewed as the system’s control parametitative results were obtained using a hydrocarbon flushing
ter. Ata critical valuez, the initial spatially uniform fluid ~ fluid [9], TKO-FF, with 1.0 < A < 3.0 mm. This non-
state loses its stability. The system is further characterhygroscopic, Newtonian fluid has a low vapor pressure
ized by the quantities, &, v, p, and o defined as the (1 X 107> torr @ 25°C) enabling us to work with the fluid
externally imposed angular frequency, fluid depth, kine-exposed to air. The temperature was regulated to within
matic viscosity, fluid density, and surface tension, respec®©.01°C by IR lamps controlled by a temperature probe
tively. As a pattern-forming system, this system has beeimbedded in the bottom plate. By adjusting the working
widely studied with most previous experiments performedemperature of the fluidg varies [10] between 29.6 and
in the regime of large fluid depth\ (<« & where i is the  31.0 dyrycm andy was varied from 1.7 to 0.4 St between
wavelength of the pattern excited on the fluid surface) an@0 and 45C.
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The working cell was mounted on a mechanical shaketative; their basic structure is independent of the driving
(Unholtz-Dickie 5PM) providing vertical acceleration frequency, fluid parameters, or, to a large degree, the
from 0 to 3@s. The range of driving frequencies useddriving acceleration. At a well-defined value @f these
(20—80 Hz) was limited by its maximum output (225 Nt) states bifurcate with a large and finite initial amplitude.
and stroke (12.5 mm). The acceleration, regulated tdheir vertical amplitude is not strongly dependentcend
within 0.01g, was monitored by a calibrated accelerometeiis typically an order of magnitude larger than The width
(Bruel & Kajer 4394) mounted on the cell. Visualization in the propagation direction of the fingerlike structures seen
of the system from above was performed by shadowgrapim Fig. 2 is extremely small<#). Increasing the driving
and from the side by the scattering of a diffuse backlightamplitude leads to increased spontaneous formation of
by the fluid. Because of its high sensitivity to minute these states with necking and eventual drop ejection at high
curvature of the fluid surface, shadowgraph visualizatiordriving amplitudes [15].
was used to determine the onset of instability [11]. The The characteristic profiles of SS, photographed normal
side visualization was used for the quantitative study oto their propagation direction at a single phase relative to
high amplitude states. Both methods used stroboscopite driving signal, are shown in Fig. 3. Their horizontal
lighting (1 ws illumination time) with variable period and size scales ad.34 = 0.04)A. These states are stable and
phase relative to the driving. single SS have been observed to circle the cell perimeter

The primary bifurcation to a spatially confined patternfor thousands of driving periods until experimental con-
(“confined state”), shown in Fig. 1, was observed through<ditions are changed. The main mechanism for their de-
out the entire parameter space. This state, composed sfruction is by collision with either other SS or the lateral
spatially stationary standing waves, had been seen pr&oundaries. The existence of these states is not due to the
viously, but its localized nature was ascribed to apparalateral boundary of the system. Generated by either colli-
tus inhomogeneities [12]. Our observations indicate thasions or external perturbations to the system, they can ex-
this subharmonic state is intrinsic to the system and noist far from the system boundaries, as Fig. 2 shows, with
a boundary effect, as this state can appear in either theo apparent difference in form or properties relative to
cell’'s center or sides. The state can be pinned by smafitates that propagate adjacent to the cell boundaries.
nonuniformities in the cell or fluid depth; a 0.2 mrad shift The onset of the solitary structures occurs in the near
in the leveling of the apparatus is sufficient to shift itsvicinity of a.. Inthe phase diagram in Fig. 4 we compare

position.
As a is increased past,, the confined state loses sta- . |
bility in one of three scenarios. For low values &fh ", ’

the system will bifurcate to a subharmonic global patterr ' "
similar to those observed in previous work [6,7], interme- -
diate values oB/h lead to a subharmonic ringlike stand- "
ing wave encompassing the circumference of the cell, an
large values ofs /h give rise to the propagating solitary
structures that are the subject of this Letter [13].
Photographs of a typical propagating solitary structure
are displayed in Fig. 2. Whereas the stationary state
observed are composed of subharmonic standing waves-
which oscillate at an angular frequency®jf2, these soli-
tary states (SS) are harmonic [14] with the driving, as theil _...#
structure repeats itself with a basic perio2af/w. The
3D structure of the states shown in the figure is represen s sy |

FIG. 1. View of the spatially confined, primary instability FIG. 2. Typical propagating solitary states visualized from
(right) from above via shadowgraph visualization when thethe side. The system was driven at 41 Hz,= 0.86 St,
pattern was observed in the center of the eelR7 = 36 Hz, h = 1.3 mm, and visualized at 20 msec intervals. The spatial
v = 1.25 St, h = 2.1 mm (left) from the side with the pattern form of these states changes harmonically with the driving.
confined near the lateral boundary of the cell27 = 42 Hz, One repetition period of states propagating from right to left
v = 0.63 St,h = 1.0 mm. (right side) and away from the camera (left side) is shown.
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FIG. 3. Scaling of the solitary state. (Left) Transverse views of the solitary stat@sr = 20 Hz, v = 1.4 St, h = 2.9 mm
(top), w /27 = 26 Hz, v = 1.25 St, h = 2.1 mm (center), andv /27 = 41 Hz, v = 0.86 St, 2 = 1.0 mm (lower). (Right)d/A

vs the wavelength of the primary pattern, where! (see figure) is the distance between the fingerlike structures composing the
solitary state. The dotted line indicates the mean valug/af = 1.34.

the acceleration threshold values [16] of the SS withmechanically striking the fluid layer) SS can be excited
those of the global patterns for different valuesroind  prior to the onset of the confined pattern.
w. Defininge = (a — a.)/a. we see that, for a given How general are these SS and why have they not been
fluid depth, the threshold values ef as a function of observed in previous experiments? The disappearance of
w, coincide for fluids of differentr for both the SS the SS branch at lower viscosities, observed in Fig. 4,
and patterns. The (lower) SS branch does exist for indicates the importance of dissipation on the stability of
low v although the global patterns (upper branch) arghe SS. Over the entire range ©f 2, andw used, no SS
unperturbed, occurring at the same valuessoés the are observed above a critical value®@f A dimensionless
higher viscosity states (the SS observed in Figaldove number relating these quantities is the ratio of the boundary
the global patterns correspond to the transition region)ayer thicknesss to 4. Plotting §/4 as a function ofw
This indicates that the global states cannot be vieweffFig. 5(a)], we observe that below a critical valié/ 7).,
as a secondary instability of the SS. At the instability(dashed line), SS will give way to the global patterns
threshold for the global patterns, a region of coexistencebserved in previous studies. In Fig. 5(b) we show that
of the two states is observed. The bifurcation to the(d/h).. is indeed constant for a variety of fluid viscosities
solitary branch from the (primary) confined state displaysand depths. The critical valug/4)..i; = 0.30 explains
a large degree of hysteres{s>10%) indicating a first why SS were not observed in previous experiments where
order transition. For sufficiently large perturbations (e.g.,8/k < 0.27.

The paramete(s/h)~2 can be viewed as analogous to a

0.15 - i - T T Reynolds number of the flow. This is seen by scaling [17]
012 1 the externally forced Navier-Stokes equations by the length
' . v ] scaleh, the time scale» . (8/h).i Occurs in the region

0.09 « * g% o _ where the forced oscillation of the fluid surface approaches
we® %G 8 °° critical damping (when the viscous and driving time scales

0.06 7 vz, v ) are comparable or, equivalently, approaches). This
0.03 4 ® l;' Tagivy v 4 indicates that the SS are crucially linked to the system
1 LRI e : dissipation. In this regime, the symmetry between upward
000 T 0 50 60 7o 80 90 and downward perturbations of the fluid surface is broken

as the fluid surface “feels” the lower boundary. This up-
down symmetry breaking may play an essential role in the
FIG. 4. Phase diagram of the solitary states (lower branchgreation of these highly asymmetric states. The value of
and global patterns (upper branch) as a function of the drivings /1).,;, underlines the qualitative difference between the
frequencyw/2m. & = (a — ac)/a., wherea, is the critical  gigqinative SS observed here and “trough” solitons [18].
driving acceleration of the primary instability. The data Were . ce described by a nonlinear Schrodinger equation
all for » = 1.3 mm with fluid viscosities of 0.86 SfJ), 0.74 St ' Yy 9 q '

(V), 0.63 St(O), and 0.52 St<). Solid symbols represent Were observed in a nearly conservative, 1D system for
solitary states and open symbols represent patterns. 8/h ~ 0.01, a value far belows/h)ci; .

Driving Frequency (Hz)
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FIG. 5. (a) Boundary layer thickness to fluid depth raifg's

[1]

(2]

(3]

[4]

[5]

observed for solitary states (solid symbols) and global patterns

(open symbols)O A = 2.1 mm,» = 0.86 St;[J = = 1.5 mm,
v = 0.63 St; and® £ = 1.0 mm,» = 0.41 St. Note the value

(8/h)eiv = 0.30 (dashed line) at which the transition between

states occurs. (b)5/h).;; as a function of fluid viscosity for
fluid depths of 1.0 mm(d), 1.3 mm(O), 1.5 mm (<), and
2.1 mm(V).

(6]
[7]

Although a detailed description [19] is beyond the scope [8]

of this Letter, we will briefly mention a few interest-
ing properties of SS. Unlike many types of solitary struc-
tures (e.g., Korteweg—de Vries solitons whose propagation

(9]
[10]

J. Sommeria, S.D. Meyers, and H.L. Swinney, Nature
(London)331, 689 (1988); Z-S. She, E. Jackson, and S. A.
Orszag, Proc. R. Soc. London 484, 101 (1991).

See, e.g., W.Y. Tam, W. Horsthemke, Z. Noszticzius,
and H.L. Swinney, J. Chem. Phy488 3395 (1988);

E. Bodenschatz, J. R. DeBruyn, D. S. Cannell, and G. Ah-
lers, Phys. Rev. LetZ1, 2026 (1993).

Possible candidates are localized states in the convection
of binary fluid mixtures in 2D [see V. Steinberg, J. Fine-
berg, E. Moses, and |. Rehberg, Physica (Amsterdam)
37D, 359 (1989) and K. Lerman, E. Bodenschatz, D.S.
Cannell, and G. Ahlers, Phys. Rev. LetD, 3572 (1993)]
and in a flowing viscous film [V.I. Petviashvilli and O.Y.
Tsevelodub, Sov. Phys. Dok23, 117 (1978)].

See, e.g., J.P. Gollub and C.W. Meyer, Physica (Amster-
dam) 6D, 337 (1983); J.P. Gollub and S. Ciliberto, Phys.
Rev. Lett.52, 922 (1984); F. Simonella and J.P. Gollub,
J. Fluid Mech.199, 471 (1989).

See, e.g., A.B. Ezerskii, P.l. Korotin, and M.I. Rabi-
novich, Sov. Phys. JETR1, 157 (1986); N.B. Tufillaro,

R. Ramshankar, and J.P. Gollub, Phys. Rev. Lé%.
422 (1989); S. Ciliberto, S. Douady, and S. Fauve, Euro-
phys. Lett.15, 23 (1991); B. Christiansen, P. Alstrom, and
M. Levinsen, Phys. Rev. Let68, 2157 (1992); E. Bosch
and W. van der Water, Phys. Rev. Let0, 3420 (1993).

(&) W.S. Edwards and S. Fauve, Phys. Rev4E 788
(1993); (b) J. Fluid Mech278 123 (1994).

J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson,
J. Fluid Mech.288 325 (1995).

K. Kumar and L.S. Tuckerman, J. Fluid Mech79 49
(1994).

The fluid is obtainable from the Kurt J. Lesker Co.

o is fit well by o =332 - 0.117T + 7 X 107472
whereT is the temperature ifiC.

velocity is amplitude dependent or nonlinear Schrédingef11] At the frequencies used, deflections on the ordeiofim
equation solitons whose propagation velocity can vary) we

observe no dependence of their propagation veldéitn
either the amplitude of the state ar V is steady with
a constant value for a given value of The scale ofV
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In conclusion, we have observed a novel, highly

localized fluid state which existsolelywhen the system

is sufficiently dissipative. It remains a challenge to find al17]
theoretical description of both the existence and selection
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responsible for its localization.
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