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We present an experimental study of highly localized, solitonlike structures that propagate o
two-dimensional surface of highly dissipative fluids. Like the well-known Faraday instability, t
highly dissipative structures are driven by means of the spatially uniform, vertical acceleration
thin fluid layer. These structures, harmonically coupled to the external driving frequency, are obs
above a critical ratio of the viscous boundary layer height to the depth of the fluid layer for a
range of fluid viscosities and system parameters. [S0031-9007(96)00186-X]

PACS numbers: 47.20.Gv, 47.20.Ky, 47.35.–i, 47.54.+r
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Driven nonlinear systems have been the subject
substantial interest over the past decade. A large clas
such systems, at a critical driving amplitude, bifurcate fro
an initial featureless state to a global state character
by a well-defined mode or pattern which retains a cert
symmetry of the system. As the driving is increased,
initial pattern may become unstable, undergoing additio
bifurcations which further reduce the system’s symme
Dissipation in these systems is not confined to a sin
region but, following the pattern, is uniformly distribute
throughout the medium.

Uniformly distributed patterns are not the only types
structures that arise in driven nonlinear systems. In two
three spatial dimensions (2D or 3D), long-lived, localiz
modes such as vortices [1] in turbulent systems or sp
waves in pattern-forming systems [2] appear to be wi
spread in driven dissipative systems. Localized, solit
like structures, ubiquitous in nonlinear conservative s
tems, are rarely if at all observed [3] in highly dissipati
2D or 3D systems. In this paper, we observe the app
ance of such states in the well-known pattern-forming s
tem generally used in studies of the Faraday instabil
As the system becomes highly dissipative, it undergoe
sharp transition from one of states characterized by glo
patterns to one of highly localized, propagating, partic
like states. These states raise the intriguing question
why, when sufficiently dissipative, will a system prefer
localizerather than uniformly distribute its dissipation.

Our experimental system consists of a thin, horizon
(normal to gravity), 2D fluid layer subjected to uniform
externally imposed oscillations in the vertical (parallel
gravity) direction. The acceleration amplitudea of the
fluid layer can be viewed as the system’s control param
ter. At a critical valueac the initial spatially uniform fluid
state loses its stability. The system is further charac
ized by the quantitiesv, h, n, r, and s defined as the
externally imposed angular frequency, fluid depth, kin
matic viscosity, fluid density, and surface tension, resp
tively. As a pattern-forming system, this system has b
widely studied with most previous experiments perform
in the regime of large fluid depth (l ø h wherel is the
wavelength of the pattern excited on the fluid surface) a
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low dissipation (where the dissipation rate,nyl2 ø v).
These studies include nonlinear mode interactions [4
small aspect ratio (defined as the ratio between the h
zontal size of the system andl) systems where the excite
modes are well separated and the dynamics and diso
of patterns [5] in larger aspect ratio systems.

Recent work [6,7] has shown the utility of using mo
highly dissipative fluids to reduce mode quantization
fects due to the lateral boundaries together with relativ
thin fluid layers sh , ld to damp out long wavelength
modes (for a detailed discussion see [6b]). Linear s
bility analysis for finiteh andn has recently [8] yielded
predictions forac and l that match experiments [7] fo
the highn, shallow fluid layer regime.

An important parameter in this system is the size of
viscous boundary layerd ; snyvd1y2. We view a highly
dissipative system as one where the characteristic t
for dissipationh2yn is on the order of the driving period
1yv. In this regiond is on the order ofh. The ratio
dyh (or, equivalently, the ratio between the forcing a
dissipative time scales) will turn out to be critical for th
selection of the fluid state. The work described here w
performed for larger values ofdyh s0.15 , dyh , 1.2d
than in previous experiments [6,7]s0.03 , dyh , 0.27d
on viscous fluids and thin fluid layers.

In our experiments we used a 144.0 mm diameter
cular cell where the fluid rests on an aluminum pla
diamond machined to a flatness of better than1 mm and
polished to a mirror surface. The cell’s lateral boundar
were made of Delrin with, as in [7], walls sloped at a 2±

angle to reduce meniscus formation on the fluid surfa
Although a variety of fluids were used, most of our qua
titative results were obtained using a hydrocarbon flush
fluid [9], TKO-FF, with 1.0 , h , 3.0 mm. This non-
hygroscopic, Newtonian fluid has a low vapor press
(1 3 1025 torr @ 25±C) enabling us to work with the fluid
exposed to air. The temperature was regulated to wi
0.01±C by IR lamps controlled by a temperature pro
imbedded in the bottom plate. By adjusting the worki
temperature of the fluid,s varies [10] between 29.6 an
31.0 dynycm andn was varied from 1.7 to 0.4 St betwee
20 and 45±C.
© 1996 The American Physical Society 3959
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The working cell was mounted on a mechanical sha
(Unholtz-Dickie 5PM) providing vertical acceleratio
from 0 to 30gs. The range of driving frequencies use
(20–80 Hz) was limited by its maximum output (225 N
and stroke (12.5 mm). The acceleration, regulated
within 0.01g, was monitored by a calibrated accelerome
(Bruel & Kajer 4394) mounted on the cell. Visualizatio
of the system from above was performed by shadowgr
and from the side by the scattering of a diffuse backlig
by the fluid. Because of its high sensitivity to minu
curvature of the fluid surface, shadowgraph visualizat
was used to determine the onset of instability [11]. T
side visualization was used for the quantitative study
high amplitude states. Both methods used strobosco
lighting (1 ms illumination time) with variable period and
phase relative to the driving.

The primary bifurcation to a spatially confined patte
(“confined state”), shown in Fig. 1, was observed throug
out the entire parameter space. This state, compose
spatially stationary standing waves, had been seen
viously, but its localized nature was ascribed to appa
tus inhomogeneities [12]. Our observations indicate t
this subharmonic state is intrinsic to the system and
a boundary effect, as this state can appear in either
cell’s center or sides. The state can be pinned by sm
nonuniformities in the cell or fluid depth; a 0.2 mrad sh
in the leveling of the apparatus is sufficient to shift i
position.

As a is increased pastac, the confined state loses sta
bility in one of three scenarios. For low values ofdyh
the system will bifurcate to a subharmonic global patte
similar to those observed in previous work [6,7], interm
diate values ofdyh lead to a subharmonic ringlike stand
ing wave encompassing the circumference of the cell,
large values ofdyh give rise to the propagating solitar
structures that are the subject of this Letter [13].

Photographs of a typical propagating solitary structu
are displayed in Fig. 2. Whereas the stationary sta
observed are composed of subharmonic standing wa
which oscillate at an angular frequency ofvy2, these soli-
tary states (SS) are harmonic [14] with the driving, as th
structure repeats itself with a basic period of2pyv. The
3D structure of the states shown in the figure is repres

FIG. 1. View of the spatially confined, primary instabilit
(right) from above via shadowgraph visualization when t
pattern was observed in the center of the cellvy2p ­ 36 Hz,
n ­ 1.25 St, h ­ 2.1 mm (left) from the side with the pattern
confined near the lateral boundary of the cell,vy2p ­ 42 Hz,
n ­ 0.63 St, h ­ 1.0 mm.
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tative; their basic structure is independent of the drivin
frequency, fluid parameters, or, to a large degree,
driving acceleration. At a well-defined value ofa, these
states bifurcate with a large and finite initial amplitud
Their vertical amplitude is not strongly dependent ona and
is typically an order of magnitude larger thanh. The width
in the propagation direction of the fingerlike structures se
in Fig. 2 is extremely smalls,hd. Increasing the driving
amplitude leads to increased spontaneous formation
these states with necking and eventual drop ejection at h
driving amplitudes [15].

The characteristic profiles of SS, photographed norm
to their propagation direction at a single phase relative
the driving signal, are shown in Fig. 3. Their horizonta
size scales ass1.34 6 0.04dl. These states are stable an
single SS have been observed to circle the cell perime
for thousands of driving periods until experimental co
ditions are changed. The main mechanism for their d
struction is by collision with either other SS or the later
boundaries. The existence of these states is not due to
lateral boundary of the system. Generated by either co
sions or external perturbations to the system, they can
ist far from the system boundaries, as Fig. 2 shows, w
no apparent difference in form or properties relative
states that propagate adjacent to the cell boundaries.

The onset of the solitary structures occurs in the ne
vicinity of ac. In the phase diagram in Fig. 4 we compa

FIG. 2. Typical propagating solitary states visualized fro
the side. The system was driven at 41 Hz,n ­ 0.86 St,
h ­ 1.3 mm, and visualized at 20 msec intervals. The spat
form of these states changes harmonically with the drivin
One repetition period of states propagating from right to le
(right side) and away from the camera (left side) is shown.
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g the
FIG. 3. Scaling of the solitary state. (Left) Transverse views of the solitary statesvy2p ­ 20 Hz, n ­ 1.4 St, h ­ 2.9 mm
(top), vy2p ­ 26 Hz, n ­ 1.25 St, h ­ 2.1 mm (center), andvy2p ­ 41 Hz, n ­ 0.86 St, h ­ 1.0 mm (lower). (Right)dyl
vs the wavelengthl of the primary pattern, whered (see figure) is the distance between the fingerlike structures composin
solitary state. The dotted line indicates the mean value ofdyl ­ 1.34.
it

ar

n
e

lity
nc
th
y

.g

c
in

re

t

ed

een
e of

. 4,
of

ary

ns
at
s

ere

a
7]
gth

es
les

em
ard
en
p-
the

of
he
8].
ion,
for
the acceleration threshold values [16] of the SS w
those of the global patterns for different values ofn and
v. Defining ´ ; sa 2 acdyac we see that, for a given
fluid depth, the threshold values of́, as a function of
v, coincide for fluids of differentn for both the SS
and patterns. The (lower) SS branch doesnot exist for
low n although the global patterns (upper branch)
unperturbed, occurring at the same values of´ as the
higher viscosity states (the SS observed in Fig. 4,above
the global patterns correspond to the transition regio
This indicates that the global states cannot be view
as a secondary instability of the SS. At the instabi
threshold for the global patterns, a region of coexiste
of the two states is observed. The bifurcation to
solitary branch from the (primary) confined state displa
a large degree of hysteresiss.10%d indicating a first
order transition. For sufficiently large perturbations (e

FIG. 4. Phase diagram of the solitary states (lower bran
and global patterns (upper branch) as a function of the driv
frequencyvy2p. ´ ; sa 2 acdyac, where ac is the critical
driving acceleration of the primary instability. The data we
all for h ­ 1.3 mm with fluid viscosities of 0.86 Stshd, 0.74 St
s,d, 0.63 St ssd, and 0.52 Stsed. Solid symbols represen
solitary states and open symbols represent patterns.
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mechanically striking the fluid layer) SS can be excit
prior to the onset of the confined pattern.

How general are these SS and why have they not b
observed in previous experiments? The disappearanc
the SS branch at lower viscosities, observed in Fig
indicates the importance of dissipation on the stability
the SS. Over the entire range ofn, h, andv used, no SS
are observed above a critical value ofv. A dimensionless
number relating these quantities is the ratio of the bound
layer thicknessd to h. Plotting dyh as a function ofv
[Fig. 5(a)], we observe that below a critical valuesdyhdcrit
(dashed line), SS will give way to the global patter
observed in previous studies. In Fig. 5(b) we show th
sdyhdcrit is indeed constant for a variety of fluid viscositie
and depths. The critical valuesdyhdcrit ­ 0.30 explains
why SS were not observed in previous experiments wh
dyh , 0.27.

The parametersdyhd22 can be viewed as analogous to
Reynolds number of the flow. This is seen by scaling [1
the externally forced Navier-Stokes equations by the len
scaleh, the time scalev21. sdyhdcrit occurs in the region
where the forced oscillation of the fluid surface approach
critical damping (when the viscous and driving time sca
are comparable or, equivalently,d approachesh). This
indicates that the SS are crucially linked to the syst
dissipation. In this regime, the symmetry between upw
and downward perturbations of the fluid surface is brok
as the fluid surface “feels” the lower boundary. This u
down symmetry breaking may play an essential role in
creation of these highly asymmetric states. The value
sdyhdcrit underlines the qualitative difference between t
dissipative SS observed here and “trough” solitons [1
These, described by a nonlinear Schrödinger equat
were observed in a nearly conservative, 1D system
dyh , 0.01, a value far belowsdyhdcrit.
3961
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FIG. 5. (a) Boundary layer thickness to fluid depth ratiosdyh
observed for solitary states (solid symbols) and global patte
(open symbols):s h ­ 2.1 mm, n ­ 0.86 St; h h ­ 1.5 mm,
n ­ 0.63 St; ande h ­ 1.0 mm,n ­ 0.41 St. Note the value
sdyhdcrit ­ 0.30 (dashed line) at which the transition betwe
states occurs. (b)sdyhdcrit as a function of fluid viscosity for
fluid depths of 1.0 mmshd, 1.3 mm ssd, 1.5 mm sed, and
2.1 mms,d.

Although a detailed description [19] is beyond the sco
of this Letter, we will briefly mention a few interest
ing properties of SS. Unlike many types of solitary stru
tures (e.g., Korteweg–de Vries solitons whose propaga
velocity is amplitude dependent or nonlinear Schrödin
equation solitons whose propagation velocity can vary)
observe no dependence of their propagation velocityV on
either the amplitude of the state ora. V is steady with
a constant value for a given value ofv. The scale ofV
is that of the group velocity of linear surface waves b
with a differentv dependence. Unlike classic soliton
whose interaction results in a simple phase change,
upon colliding, appear particlelike and can either mutua
annihilate, pass through each other with a slight loss of
plitude, or “collide” to create a new state whose directi
of propagation is at an angle to that of the original sta
In addition to single SS, “multiple-particle” bound stat
have been observed.

In conclusion, we have observed a novel, high
localized fluid state which existssolely when the system
is sufficiently dissipative. It remains a challenge to find
theoretical description of both the existence and selec
of this state together with the nonlinear mechani
responsible for its localization.
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