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We consider the higher order nonlinear Schrödinger (HNLS) equation describing nonlinear
propagation in light guides with all higher order effects such as higher order dispersion, Kerr dispe
and stimulated inelastic scattering. Using the Painlevé analysis, we derive all parametric conditio
soliton-type pulse propagation in HNLS fiber system. We generalize the Ablowitz-Kaup-Newell-S
method to the3 3 3 eigenvalue problem, and constructed the Lax pair for the integrable case.
one soliton solution is generated from a Bäcklund transformation and an exactN-soliton solution
is explicitly obtained from the Hirota bilinearization. The significance of the soliton solution
discussed. [S0031-9007(96)00071-3]
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Intelligence transmission using optical fibers is t
technology of choice for the next generation of optic
fiber communication. The recent progress of resea
on all-optical soliton transmission systems have revea
that they can overcome the limitations on the speed
distance of linear wave transmission systems. Look
into the growth of the technology behind optical soliton
it took nearly seven years for an experimental observa
of optical solitons [1], since its first theoretical report b
Hasegawa and Tappert [2]. The reason for this is beca
the amount of constraints in conducting an experiment
optical solitons are enormous.

Optical soliton in fiber is possible because of the ex
balancing between the group velocity dispersion (GV
and its counterpart self-phase modulation (SPM) [2
SPM is the nonlinear effect due to the lowest domin
nonlinear susceptibilityx s3d in silica fibers [3]. Most of
the nonlinear effects due tox s3d will not be in fibers
as they need a phase matching condition to be satis
But for ultrashort pulses, in addition to the SPM,x s3d

will produce higher order nonlinear effects like the se
steepening (otherwise called the Kerr dispersion) and
stimulated Raman scattering (SRS). Apart from GVD,
ultrashort pulse will also suffer from third order dispersi
(TOD).

Wave propagation in optical fibers with these effe
is governed by the higher order nonlinear Schrödin
(HNLS) equation. Kodamaet al. [4–6] derived this
HNLS equation, and using perturbation theory th
treated all higher order terms as perturbation to
nonlinear Schrödinger (NLS) soliton. In 1986 Mitschk
and Mollenauer [7] reported the self-frequency shift
the NLS soliton due to Raman effect. For large chan
handling capacity and for high speed it is necessary
transmit solitons at a high bit rate of ultrashort puls
So it is very important that all higher order effects
considered in the propagation of femtosecond pulses.
optical pulses higher order effects such as TOD, K
dispersion, and SRS give asymmetrical broadening ei
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temporally or spectrally. In contrast GVD and SP
produce symmetric broadening in the time and frequen
domain, respectively, and counterbalance for a parame
condition (anomalous dispersion regime) to propag
bright solitons. Similarly there can be some possibiliti
to have soliton propagation with all higher order effec
which induce asymmetrical broadening. In recent yea
many authors have analyzed the HNLS equation fr
different points of view [5–7,9]. To our knowledg
nobody has reported the Lax pair,N-soliton solutions,
and other related properties of solitons in the HNL
system.

In this Letter, using the Painlevé analysis, we deri
the parametric conditions for soliton-type pulse propag
tion in the HNLS fiber system. To construct the line
eigenvalue problem for the integrable case, we gene
ize the2 3 2 Ablowitz-Kaup-Newell-Segur (AKNS) [8]
method to the3 3 3 eigenvalue problem, and the Lax pa
is constructed. We also generate the one soliton solu
from a Bäcklund transformation and, for the first time, w
obtain explicitly exactN-soliton solutions from the Hirota
bilinearization. Finally, we discuss the significance of t
soliton solution.

Kodama and Hasegawa [4] in 1985 derived the HN
equation which describes wave propagation in a nonlin
fiber medium with higher order effects such as TOD, Ke
dispersion, and SRS. Normally the dispersion due
TOD will be negligible when compared to GVD. But
considerable amount of asymmetrical broadening in
time domain will be produced by TOD for ultrasho
pulses. The self-steepening, otherwise called the K
dispersion, is due to the intensity dependence of gro
velocity. This forces the peak of the pulse to travel slow
than the wings, which causes an asymmetrical spec
broadening of the pulse. SRS gives a self-frequency s
to the pulse. The self-frequency shift is a self-induc
redshift in the pulse spectrum arising from SRS. The lo
wavelength components of the pulse experience Ram
gain at the expense of the short wavelength compone
© 1996 The American Physical Society 3955
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resulting in an increasing redshift as the pulse propaga
It has been recognized that the self-frequency shift
potentially detrimental effect in soliton communicatio
systems because power fluctuations at the source tran
into frequency fluctuations in the fiber through the pow
dependence of the soliton self-frequency shift and he
into timing jitter at the receiver [10]. With all these effec
the governing dimensionless envelope wave equat
(HNLS) takes the form

Ez ­ isa1Ett 1 a2jEj2Ed 1 ´fa3Ettt 1 a4sjEj2Edt

1 a5EsjEj2dtg , (1)

whereE is the slowly varying envelope of the electric fiel
the subscriptsz and t are the spatial and temporal part
derivatives, anda1, a2, a3, a4, anda5 are the parameter
related to GVD, SPM, TOD, self-steepening, and SR
respectively.

Equation (1) for´ ­ 0 reduces to the NLS equatio
[2,3]. The NLS equation includes only the GVD an
SPM effects well known in the fiber, and it allow
soliton-type wave propagation in the anomalous disp
sion regime (bright soliton useful for optical communic
tion). Fora3 ­ a5 ­ 0, Eq. (1) describes the derivativ
NLS (DNLS) equation. DNLS governs the propagation
NLS soliton in the presence of Kerr dispersion. The K
dispersion is seldom treated as a perturbation to so
propagation. But the DNLS system also allows solito
type pulse propagation. So, the HNLS system in gen
does not admit soliton-type pulse propagation but in
limiting cases admits several soliton possessing syste
In order to identify the conditions for soliton-type pul
propagation, we apply the Painlevé analysis [11–16].

The parametric conditions for which any NPDE a
lows soliton-type pulse propagation can be systematic
derived using the Painlevé analysis. For the Painl
analysis, we introduce a new set of variablesa s­Ed and
b s­Epd. Using this in (1),a andb can be written as

az ­ isa1att 1 a2a2bd

1 ´fa3attt 1 a4sa2bdt 1 a5asabdtg ,

bz ­ 2isa1btt 1 a2b2ad

1 ´fa3bttt 1 a4sb2adt 1 a5bsbadtg .

(2)

The generalized Laurent series expansions ofa andb are

a ­ wm
X̀
r­0

ar sz, tdwr ,

b ­ wd
X̀
r­0

br sz, tdwr ,
(3)

with a0, b0 fi 0, where m and d are negative integers
andar andbr are the set of expansion coefficients whi
are analytic in the neighborhood of the noncharacteri
singular manifoldwsz, td. Looking at the leading order
we substitutea ø a0wm and b ø b0wd into Eq. (2),
and upon balancing the dominant terms we obtain
following results:
3956
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m ­ d ­ 21 and a0b0 ­
26a3

3a4 1 2a5
w2

t . (4)

Substituting the full expansion of the Laurent series a
keeping only the leading order terms, we obtain
following resonances:

r ­ 21, 0, 3, 4, 3 6 2
r

2a5

3a4 1 2a5
. (5)

The resonancer ­ 21 corresponds to the arbitrariness
the singularity manifold andr ­ 0 corresponds to the fac
that eithera0 or b0 is arbitrary. Upon substituting the fu
Laurent series into Eq. (2) and collecting the coefficie
of the different powers ofw we find that Eq. (2) admits
a sufficient number of arbitrary functions only for th
conditions

a1 ­
1
2 , a2 ­ 2 anda3:a4:sa4 1 a5d ­ 1:6:3 , (6a)

a1 ­ 1, a2 ­ 4 anda3:a4:sa4 1 a5d ­ 1:6:3 . (6b)

Hence we can say that the HNLS equation allo
soliton-type pulse propagation only for these parame
restrictions. With the conditions (6a) and (6b) the HN
equation takes the following form:

Ez ­ i
≥

1
2 Ett 1 2jEj2E

¥
1 ´fEttt 1 6jEj2Et 1 3EsjEj2dtg , (7a)

Ez ­ isEtt 1 4jEj2Ed 1 ´fEttt 1 6jEj2Et 1 3EsjEj2dtg .

(7b)

In Ref. [17] Sasa and Satsuma have shown that Eq.
can be transformed into a complex modified Kortewe
de Vries (KdV) equation (with the SPM parameter­ 1).
Using the suitable transformations, they have transform
the HNLS equation to the complex modified KdV equ
tion and then solved the complex modified KdV equat
for the soliton solution using IST. The shape of the o
soliton they have reported is very peculiar (singular) w
two peaks. From the optical soliton communication po
of view it is very difficult to generate such a kind of so
ton pulse shape using soliton lasers. Here we deriv
simple sech shape for the HNLS soliton. Before co
structing the soliton solutions, first we derive the Lax p
of Eq. (7a).

We generalize the2 3 2 AKNS method to the3 3 3
eigenvalue problem, and we derive the Lax pair for
HNLS equation (7a) in the form

Ct ­ UC , C ­ sC1C2C3dT ,

Cz ­ VC , (8)

where

U ­

0B@ 2il E Ep

2Ep il 0
2E 0 il

1CA , (9a)
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V ­ s2il2 2 8i´l3d

0B@ 0 0 0
0 1 0
0 0 1

1CA 1

0B@ 0 E Ep

2Ep 0 0
2E 0 0

1CA sl 2 4´l2d

1

µ
i
2

2 2i´l

∂ 0B@ 2jEj2 Et Ep
t

Ep
t 2jEj2 2sEpd2

Et 2E2 2jEj2

1CA 1 ´

0B@ 0 Ett 1 4jEj2E Ep
tt 1 4jEj2Ep

2sEp
tt 1 4jEj2Epd 2sEtEp 2 EEp

t d 0
2sEtt 1 4jEj2Ed 0 2sEp

t E 2 EpEtd

1CA ,

(9b)
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wherel is the isospectral parameter. Using the comp
bility condition Uz 2 Vt 1 fU, V g ­ 0, one can derive
the HNLS equation (7a).

To obtain the soliton solution from the Lax pair, we u
the Darboux-Bäcklund transformation method [18,1
The one soliton solution of Eq. (7a) is obtained in t
form

E ­
p

2 b sechf2bt 1 8´b3zg exps2ib2zd , (10)

where l ­ ib and the ratio of integration constants
assumed to be equal to

p
2.

Because of the complicated structure of the Lax p
it is tedious to generate multisoliton solutions. So,
obtain the exactN-soliton solution for the HNLS equation
using the Hirota direct method [20]. For this we use t
dependent variable transformations [20,21]

Esz, td ­
Gsz, td
Fsz, td

, (11)

where Gsz, td is a complex function andFsz, td is a
real function with respect toz and t. Using Eq. (11),
Eq. (1) may be decoupled into bilinear equations, with
conditiona1s3a4 1 2a5d ­ 3a2a3, in the form
i-

].

ir
e

e

e

siDz 1 a1D2
t 2 i´a3D3

t dG ? F ­ 0 , (12a)

a1D2
t F ? F ­ a2GGp, (12b)

DtG ? Gp ­ 0 . (12c)
In Eq. (12) we use the HirotaD operator defined by

Dm
z Dn

t sG ? Fd ­

∑
≠

≠z
2

≠

≠z0

∏m∑
≠

≠t
2

≠

≠t0

∏n

3 Gsz, tdFsz0, t0d
Ç
z0­z,t0­t

. (13)

However, from the results of Painlevé analysis, t
HNLS equation is integrable only for conditions (6a) an
(6b). Hence substituting conditions (6a) and (6b) in
Eq. (12) the bilinear form for Eqs. (7a) and (7b) can
obtained.

The exact solutions of the bilinear form of Eq. (7a) c
be expressed as

Fsz, td ­
X

b­0,1

exp

24 s2NdX
i,jsi,jd

rijbibj 1

2NX
i­1

bizi

35 , (14a)

Gsz, td ­
X

g­0,1

exp

24 s2NdX
i,jsi,jd

rijgigj 1

2NX
i­1

gizi

35 , (14b)

with
zj ­ Xjz 1 hjt 1 z 0
j , Xj ­

ih2
j

2
1 ´h3

j ,

zj1N ­ z p
j , Xj1N ­ Xp

j , hj1N ­ hj for j ­ 1, 2, . . . , N ,
(15)

ry ­

8>><>>:
ln 2

shi1hjd2 for i ­ 1, 2, . . . , N andj ­ N 1 1, N 1 2, . . . , 2N ,

ln
shi2hjd2

2 for i ­ 1, 2, . . . , N andj ­ 1, 2, . . . , N ,
or i ­ N 1 1, N 1 2, . . . , 2N andj ­ N 1 1, N 1 2, . . . , 2N ,

(16)
s-

e (with
where hj is a real parameter,z 0
j is a complex constant;

P
b­0,1 indicates the summation over all the po

sible combinations ofb1 ­ 0, 1, b2 ­ 0, 1, . . . , b2N ­ 0, 1 under the condition
PN

i­1 bi ­
PN

i­1 bi1N ;
P

g­0,1 indi-
cates the summation over all the possible combinations ofg1 ­ 0, 1, g2 ­ 0, 1, . . . , g2N ­ 0, 1 under the conditionPN

i­1 gi ­
PN

i­1 gi1N ; and
Ps2Nd

i,j.i­1 indicates the summation over all the possible pairs taken from2N elements with
the specified conditionj . 1, as indicated. We assume allhi are different from each other.

From Eqs. (14)–(16), we generate the one soliton solution of Eq. (7a) in the form

Esz, td ­
h
p

2
sechfhst 1 ´h2zdg exp

√
ih2z

2

!
. (17)

From Eqs. (10) and (17) it is clear that the one soliton solution obtained for the HNLS equation (7a) is the sam
h ­ 2b).
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For completeness, we also give the two soliton solution of Eq. (7a) which reads

E ­

°p
2 h1yjh2j

¢
hh1 coshfh2t 1 ´h

3
2zg expsih2

1 zy2d 1 h2 coshfh1t 1 ´h
3
1zg expsih2

2zy2dj
coshfh1t 1 ´sh3

1 1 h
3
2dzg 1 sh1yh2d2 coshfh2t 1 ´sh3

1 2 h
3
2 dzg 1 f4h1h2ysh2d2g cosfsh1h2y2dzg

,

(18)
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whereh1 ­ h1 1 h2 andh2 ­ h1 2 h2.
From the (integrability) conditiona1s3a4 1 2a5d ­

3a2a3 (or 4a1 ­ a2), it is clear that one can also
construct theN-soliton solutions for the above parametri
condition and Eq. (7b) can be related to Eq. (7a) und
certain transformation inE.

Thus the one soliton shape of the HNLS fiber system
a simple sech shaped one, unlike the results of Sasa
Satsuma [17]. So the simple sech shaped initial solit
pulse can be easily produced from a soliton laser.

In Eqs. (10) and (17) if we take the limit́ ! 0, the
solution becomes the NLS equation soliton solution [3].
is interesting to see that if we puta5 ­ 0 in Eq. (1), the
system reduces to the extended NLS equation explai
by Liu and Wang [21], and the corresponding solito
solution is also found to be the same.

To conclude, for the first time, from the Painlev
analysis we derived two parametric conditions betwe
the parameters of GVD, SPM, TOD, Kerr dispersio
and SRS, for which the HNLS fiber system allow
soliton-type pulse propagation. Thus the asymmetric
broadening between the three higher order effects bala
themselves, giving rise to soliton pulse propagation. W
have generalized the3 3 3 linear eigenvalue problem for
the AKNS method and systematically derived the La
pair for the HNLS equation. The exactN-soliton solution
for the HNLS fiber system is explicitly generated usin
the Hirota direct method, and the one soliton solution
compared with that of the soliton solution obtained fro
Bäcklund transformations. The single soliton is a simp
sech shape (unlike the peculiar shape given in [17]),
it can be easily produced in a soliton laser. Hence w
believe that all the results we have presented in t
Letter will be very useful for the reality of all soliton
communication links.
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