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Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift
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We consider the higher order nonlinear Schrédinger (HNLS) equation describing nonlinear wave
propagation in light guides with all higher order effects such as higher order dispersion, Kerr dispersion,
and stimulated inelastic scattering. Using the Painlevé analysis, we derive all parametric conditions for
soliton-type pulse propagation in HNLS fiber system. We generalize the Ablowitz-Kaup-Newell-Segur
method to the3 X 3 eigenvalue problem, and constructed the Lax pair for the integrable case. The
one soliton solution is generated from a Béacklund transformation and an Bksaliton solution
is explicitly obtained from the Hirota bilinearization. The significance of the soliton solution is
discussed. [S0031-9007(96)00071-3]

PACS numbers: 42.81.Dp, 02.30.Jr, 42.65.Tg, 42.79.Sz

Intelligence transmission using optical fibers is thetemporally or spectrally. In contrast GVD and SPM
technology of choice for the next generation of opticalproduce symmetric broadening in the time and frequency
fiber communication. The recent progress of researcdomain, respectively, and counterbalance for a parametric
on all-optical soliton transmission systems have revealedondition (anomalous dispersion regime) to propagate
that they can overcome the limitations on the speed anHright solitons. Similarly there can be some possibilities
distance of linear wave transmission systems. Lookindo have soliton propagation with all higher order effects
into the growth of the technology behind optical solitons,which induce asymmetrical broadening. In recent years,
it took nearly seven years for an experimental observatiomany authors have analyzed the HNLS equation from
of optical solitons [1], since its first theoretical report by different points of view [5-7,9]. To our knowledge
Hasegawa and Tappert [2]. The reason for this is becauseobody has reported the Lax pai¥-soliton solutions,
the amount of constraints in conducting an experiment oand other related properties of solitons in the HNLS
optical solitons are enormous. system.

Optical soliton in fiber is possible because of the exact In this Letter, using the Painlevé analysis, we derive
balancing between the group velocity dispersion (GVD)the parametric conditions for soliton-type pulse propaga-
and its counterpart self-phase modulation (SPM) [2,3]tion in the HNLS fiber system. To construct the linear
SPM is the nonlinear effect due to the lowest dominankigenvalue problem for the integrable case, we general-
nonlinear susceptibility® in silica fibers [3]. Most of ize the2 X 2 Ablowitz-Kaup-Newell-Segur (AKNS) [8]
the nonlinear effects due tg® will not be in fibers method to th& X 3 eigenvalue problem, and the Lax pair
as they need a phase matching condition to be satisfiets constructed. We also generate the one soliton solution
But for ultrashort pulses, in addition to the SPM®  from a Backlund transformation and, for the first time, we
will produce higher order nonlinear effects like the self- obtain explicitly exactV-soliton solutions from the Hirota
steepening (otherwise called the Kerr dispersion) and thbilinearization. Finally, we discuss the significance of the
stimulated Raman scattering (SRS). Apart from GVD, thesoliton solution.
ultrashort pulse will also suffer from third order dispersion Kodama and Hasegawa [4] in 1985 derived the HNLS
(TOD). equation which describes wave propagation in a nonlinear

Wave propagation in optical fibers with these effectsfiber medium with higher order effects such as TOD, Kerr
is governed by the higher order nonlinear Schrodingedispersion, and SRS. Normally the dispersion due to
(HNLS) equation. Kodameet al.[4—6] derived this TOD will be negligible when compared to GVD. But a
HNLS equation, and using perturbation theory theyconsiderable amount of asymmetrical broadening in the
treated all higher order terms as perturbation to thé¢ime domain will be produced by TOD for ultrashort
nonlinear Schrodinger (NLS) soliton. In 1986 Mitschke pulses. The self-steepening, otherwise called the Kerr
and Mollenauer [7] reported the self-frequency shift ofdispersion, is due to the intensity dependence of group
the NLS soliton due to Raman effect. For large channeVelocity. This forces the peak of the pulse to travel slower
handling capacity and for high speed it is necessary téhan the wings, which causes an asymmetrical spectral
transmit solitons at a high bit rate of ultrashort pulsesbroadening of the pulse. SRS gives a self-frequency shift
So it is very important that all higher order effects beto the pulse. The self-frequency shift is a self-induced
considered in the propagation of femtosecond pulses. Foedshift in the pulse spectrum arising from SRS. The long
optical pulses higher order effects such as TOD, Kermwavelength components of the pulse experience Raman
dispersion, and SRS give asymmetrical broadening eithagain at the expense of the short wavelength components,
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resulting in an increasing redshift as the pulse propagates. —6a3

. i =8=-1 and ahg = ————¢}. (4)
It has been recognized that the self-frequency shift is a# 0%0 = 34, + 2a5 !
potentially detrimental effect in soliton communication o _ '
systems because power fluctuations at the source transladgbstituting the full expansion of the Laurent series and
into frequency fluctuations in the fiber through the powerkeeping only the leading order terms, we obtain the
dependence of the soliton self-frequency shift and henctollowing resonances:
into timing jitter at the receiver [10]. With all these effects,

the governing dimensionless envelope wave equations r=-1,0,3,43+2 [~ ) (5)
(HNLS) takes the form 3as + 2as
E. = i(a1Ey + a2|EPE) + elazEy + au(|EIPE), The resonance = —1 corresponds to the arbitrariness of

+ asE(EP)], Q) the singularity manifold'and =0 correspor)ds_to the fact
that eitherag or by is arbitrary. Upon substituting the full

Laurent series into Eq. (2) and collecting the coefficients

of the different powers ofp we find that Eq. (2) admits

a sufficient number of arbitrary functions only for the

conditions

whereE is the slowly varying envelope of the electric field,
the subscriptg andr are the spatial and temporal partial
derivatives, andv;, a,, a3, a4, andas are the parameters
related to GVD, SPM, TOD, self-steepening, and SRS
respectively.

Equation (1) fore = 0 reduces to the NLS equation «; = %,az =2 andas:as(ay + as) = 1:6:3, (6a)
2,3]. The NLS equation includes only the GVD and
[SPI\]/I effects well qknown in the fiber,y and it allows @ = Lax =4 andasas(ay + as) =1:6:3. (6b)

soliton-type wave propagation in the anomalous disper- Hence we can say that the HNLS equation allows

sion regime (bright soliton useful for optical communica- soliton-type pulse propagation only for these parametric

tion). Fora; = as = 0, Eq. (1) describes the derivative restrictions. With the conditions (6a) and (6b) the HNLS
NLS (DNLS) equation. DNLS governs the propagation Ofequation takes the following form:

NLS soliton in the presence of Kerr dispersion. The Kerr

dispersion is seldom treated as a perturbation to solitofi, = i(%Et, + 2|E|2E)

propagation. But the DNLS system also allows soliton- 2 2

type pulse propagation. So, the HNLS system in general * elBu + OIEFE, + 3E(EP),], (72)

does not admit soliton-type pulse propagation but in th&, = i(E;, + 4|EI’E) + [E.; + 6|EI’E, + 3E(E|*),].

limiting cases admits several soliton possessing systems. (7b)

In order to identify the conditions for soliton-type pulse

propagation, we apply the Painlevé analysis [11-16].  In Ref. [17] Sasa and Satsuma have shown that Eq. (7a)
The parametric conditions for which any NPDE al- can be transformed into a complex modified Korteweg—

lows soliton-type pulse propagation can be systematicallgle Vries (KdV) equation (with the SPM parameterl).

derived using the Painlevé analysis. For the Painlevé&/sing the suitable transformations, they have transformed

analysis, we introduce a new set of variable6=E) and  the HNLS equation to the complex modified KdV equa-
b (=E*). Using this in (1)« andb can be written as tion and then solved the complex modified KdV equation

for the soliton solution using IST. The shape of the one
soliton they have reported is very peculiar (singular) with
+ glazay + ag(a’b), + asalab),], two peaks. From the optical soliton communication point

a, = i(a1a,; + ara’b)

. 2 (2)  of view it is very difficult to generate such a kind of soli-
b, = i(a1b; + arb”a) . . .
ton pulse shape using soliton lasers. Here we derive a
+ elazhby + as(b®a), + asb(ba),]. simple sech shape for the HNLS soliton. Before con-
The genera”zed Laurent series expansion@ ahdb are Structing the soliton Solutions, first we derive the Lax pair
* of Eq. (7a).
a=¢"> a,(z,0¢", We generalize the X 2 AKNS method to the3 X 3
r=0 (3)  eigenvalue problem, and we derive the Lax pair for the
b= ¢° Z bo(z,1)e" HNLS equation (7a) in the form
r=0

= — T
with ag, by # 0, where u and & are negative integers, Ye=U¥, W= (WhYs),
anda, andb, are the set of expansion coefficients which v, =VvVV¥, (8)
are analytic in the neighborhood of the noncharacteristic

singular manifolde(z, 7). Looking at the leading order, Where

we substitutea = age® and b = bye? into Eq. (2), —iA E E*

and upon balancing the dominant terms we obtain the U=|—-E" ix 0|, (9a)
following results: —E 0 iA
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0 0 0 0 E E*
V=02 =8igA’)|0 1 0|+ | —-E* 0 0 |(A—4e)?)
0 0 1 —-E 0 O
; 2lE*  E Ef 0 E, + 4|EE  Ej, + 4|E|*E*
+ <— - 2isA> Ef  —|E>? —(E*)? | + e| —(E}, + 4|E|*E*) —(E,E* — EE}) 0 ,
2 E, —E> —|EP —(Ey + 4EPE) 0 —(E'E — E'E,)
(9b)
where A\ is the isospectral parameter. Using the compati=
bility condition U, — V, + [U,V] = 0, one can derive (iD, + a\D? — ieazD})G - F = 0, (12a)
the HNLS equation (7a). 5 B By
To obtain the soliton solution from the Lax pair, we use a\DiF - F = &xGG",  (12Db)
the Darboux-Backlund transformation method [18,19]. D,G - G* = 0. (12c)

The one soliton solution of Eq. (7a) is obtained in the|, Eq. (12) we use the Hirot operator defined by

form D?Dtn(G ' F) _ |:i B ii|m|:i B i:|n
E = V2 Bseci2pr + 8zB3z]exp2iB%z),  (10) az  az'] Lar o

where A = i and the ratio of integration constants is X G(z,)F (7, 1) . (13)

assumed to be equal t@. _ However, from the results of Painlevé analysis, the
_ Because of the complicated structure of the Lax paifyNLs equation is integrable only for conditions (6a) and
it is tedious to generate multisoliton solutions. So, wegp). Hence substituting conditions (6a) and (6b) into
obtain the exac-soliton solution for the HNLS equation gq_ (12) the bilinear form for Egs. (7a) and (7b) can be
using the Hirota direct method [20]. For this we use thegptained.

dependent variable transformations [20,21] The exact solutions of the bilinear form of Eq. (7a) can
be expressed as

G(z,1) " @N) 2N
E(z,t) = ——=, 11
F(z,1) (1) F(z,t) = Z exp, Z PijBiB; + Z,Bifi:|s (14a)
B=0,1 | i.j(i<)) i=1
where G(z,t) is a complex function andf(z,t) is a ™ N N
real function with respect ta and:. Using Eq. (11), G(;. ) = ex vy + G|, (4b
Eq. (1) may be decoupled into bilinear equations, with the &0 y:zo,l P i’j(iz<.,-)p VY le vié (140)

conditiona;(3as + 2as) = 3asas, in the form .
| with

v =14 Xjan =X;, mjry=m; forj=12,....N,

2 . .
|nm fori=1,2,...,.N andj =N+ 1,N +2,...,2N,
Py =122l fori=1,2,...,N andj=1.2,...,N, (16)

ori=N+1,N+2,...,2N andj =N+ 1,N +2,...,2N,

where n; is a real parameterg}’ is a complex constantZB:o,1 indicates the summation over all the pos-
sible combinations of3; = 0,1, 8, = 0,1,..., By = 0,1 under the conditior>; B; = >1_; Bi+n; 2y—o, indi-
cates the summation over all the possible combinationy 0= 0,1,v, = 0,1,..., v,y = 0,1 under the condition
SN v =N view; andzgff\gizl indicates the summation over all the possible pairs taken ftdnelements with
the specified conditiori > 1, as indicated. We assume ajll are different from each other.

From Egs. (14)—(16), we generate the one soliton solution of Eq. (7a) in the form

E(z.1) = %seclﬁn(t + en?2)] ex;{%). (17)

From Egs. (10) and (17) it is clear that the one soliton solution obtained for the HNLS equation (7a) is the same (with

n = 2pB).
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For completeness, we also give the two soliton solution of Eq. (7a) which reads
(V21" /In ") {n: costinar + en>zlexpliniz/2) + macoshinit + enizlexpliniz/2)}
costin®t + e(ni + n3)z] + (n*/n-)2coslin~t + e(ni — 13)z] + [4nm1m2/(n ™) cod(n*n=/2)z]’
(18)

E =

wheren™ = n; + pyandn™ = n; — n. |
From the (integrability) conditione;(B3ays + 2as) =
3asas (Or 4ay = ay), it is clear that one can also
construct theV-soliton solutions for the above parametric
condition and Eq. (7b)_ can be related to Eq. (7a) under University, Madras 600 025, India.
certain transformation i&. _ . TElectronic address: ponz@itp.uni-hannover.de
Thus the one soliton shape of the HNLS fiber system is[1] L. F. Mollenauer, R.H. Stolen, and J.P. Gordon, Phys.
a simple sech shaped one, unlike the results of Sasa and Rev. Lett.45, 1095 (1980).
Satsuma [17]. So the simple sech shaped initial soliton[2] A. Hasegawa and F. Tappert, Appl. Phys. L& 142
pulse can be easily produced from a soliton laser. (1973).
In Egs. (10) and (17) if we take the limi — 0, the [3] G.P. Agrawal, Nonlinear Fiber Optics(Academic, San
solution becomes the NLS equation soliton solution [3]. It  Diego, 1989).
is interesting to see that if we pats = 0 in Eq. (1), the [4] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron.
system reduces to the extended NLS equation explaineqs] QE-23, 510 (1987).

. : . Y. Kodama, J. Stat. Phy89, 597 (1985).
by L!u a_md Wang [21], and the corresponding soliton [6] A. Hasegawa, Optical Solitons in Fibers (Springer,
solution is also found to be the same.

i - . 3 Heidelberg, 1989); A. Hasegawa and Y. Kodar8alitons
To conclude, for the first time, from the Painlevé in Optical Communications(Oxford University Press,
analysis we derived two parametric conditions between  Oxford, 1996).

the parameters of GVD, SPM, TOD, Kerr dispersion, [7] F.M. Mitschke and L.F. Mollenauer, Opt. Lett1, 657
and SRS, for which the HNLS fiber system allows (1986).
soliton-type pulse propagation. Thus the asymmetrical[8] M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur,
broadening between the three higher order effects balance Phys. Rev. Lett31, 125 (1973).
themselves, giving rise to soliton pulse propagation. Wel9] K. Porsezian, P. Shanmugha Sundaram, and A.
have generalized the X 3 linear eigenvalue problem for Mahalingham, Phys. Rev. E50, 1543 (1994); K.
the AKNS method and systematically derived the Lax  'vakkeeran and K. Porsezian, Opt. Commd23 169

: ; . . (1996).
pair for the HNL_S equation. _The exa{&tsollton solutlon. [10] D Wood, IEEE J. Lightwave Teclg, 1097 (1990).
for th_e HNL_S fiber system is explicitly ge.nerated 95'”9[11] J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys.
the Hirota direct method, and the one soliton solution s~ Ny ) 24, 522 (1983).
compared with that of the soliton solution obtained from[12] M. D. Kruskal (private communication).
Backlund transformations. The single soliton is a simplg13] M. Musette and R. Conte, J. Math. Phys. (N.$2, 1450
sech shape (unlike the peculiar shape given in [17]), sO  (1991).
it can be easily produced in a soliton laser. Hence wé¢l4] K. Porsezian and M. Lakshmanan, J. Math. Phys. (N.Y.)
believe that all the results we have presented in this 32 2932 (1991).
Letter will be very useful for the reality of all soliton [15] K. Porsezian and K. Nakkeeran, Phys. Rev. L&#.2941
communication links. (1995). )

We thank Professor H.J. Mikeska for his kind hos-[16] K- Nakkeeran and K. Porsezian, J. Phys.28, 3817

Y . . (1995).

pitality and for allowing us to use the library facilities 17] N. Sasa and J. Satsuma, J. Phys. Soc.8am09 (1991)
in Universitat Hannover. K.P. expresses his thanks t 18] K Porsezian. J. Phys. 24 337 ('1991)'_ '
DAAD for offering the fellowship and to DST and CSIR, [19] K. Porsezian and K. Nakkeeran, J. Mod. Ogg, 1953

Govt. of India, for the financial support through projects. (1995).
K.N. thanks CSIR, Govt. of India, for awarding him the [20] R. Hirota, J. Math. Phys. (N.Y}4, 805 (1973).
Junior Research Fellowship. [21] S. Liu and W.Z. Wang, Phys. Rev. 49, 5726 (1994).

*Permanent address: Department of Physics, Anna

3958



