VOLUME 76, NUMBER 21 PHYSICAL REVIEW LETTERS 20 My 1996

Generic Behavior of Grazing Impact Oscillators
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We give experimental evidence for a new bifurcation structure that arises when smooth dynamical
systems cross a boundary. Our experiment concerns a driven impacting leaf-spring oscillator with a
very precise control of the driving amplitude. The results are in surprisingly good agreement with
the predictions of a simple nonlinear mapping that is valid near grazing impact (i.e., impact with zero
velocity). The agreement is surprising because a multitude of vibration modes of the spring is excited
upon impact whereas the mapping is two dimensional. These findings point to the universality of the
observed bifurcation structure. [S0031-9007(96)00276-1]

PACS numbers: 05.45.+b, 46.30.My, 46.30.Pa, 61.16.Ch

Impact oscillators have an oscillating mass that impacts The experiment is sketched in Fig. 1. The oscillator
with a fixed boundary when its amplitude is large enoughconsists of a 13 cm long brass leaf spring that is mounted
In between impacts the dynamics is smooth and oftemn a large electromagnetic exciter which oscillates hori-
linear, but it derives a strong nonlinearity from the merezontally. The beam is weakly damped by strips of damp-
presence of the impact. These systems are known timg material that are glued to it. Itis U shaped to suppress
exhibit a richness of bifurcation phenomena [1,2], but atorsional modes but the excitation of higher-order bending
strong guiding principle has, so far, been lacking. Impacmodes is unavoidable. Collisions occur between a ceramic
oscillators are prototypical for nonlinear phenomena inball that is attached to the end of the beam and a hardened
engineering systems that are often designed with loossteel plate that is attached to the exciter. The motion of
fittings. A timely application of impact oscillators is in the beam is registered by reflecting a laser beam off the
atomic force microscopy [3]. beam onto a position sensitive photodiode. The measure-

A grazing impact is a boundary impact with zero ve-ment and control of the excitation amplitude is a crucial
locity. In order to describe the events that occur when amspect of the experiment. The excitation amplitude (typi-
orbit evolves to grazing impact and beyond, let us defineally 2 mm) is measured using a laser interferometer and
p as the bifurcation parameter. When the driving ampli-fringe counter and is digitally controlled with a long-term
tude is increased from zero, impacts first occupat 0.  stability of 0.5 wm [6].

These impacts may be with a relatively large velocity and
the transition that has taken place may be hysteretic; i.e.,
impacts may remain whem is subsequently smoothly de-
creased and may vanish only at a negative valug .of Laser beam
When the impacts are about to disappear, the orbit is clos- Ffjﬁ (wt)
3:/ Fringe counter

estto grazing. In arecent paper Nordmark [4] has reduced
the dynamics of impact oscillators to a simple nonlinear
mapping that is valid for orbits close to grazing ones. A
striking phenomenon in this mapping is the emergence of
a square-root singularity.

An extensive bifurcation analysis of this mapping has
recently been reported by Chiet al.[5]. Among the
found characteristic phenomena are an infinite series of
period addings for the overdamped oscillator and an
infinite series of period-1y;) to periodm (p), m =
3,4,... transitions for the underdamped case. These
phenomena are a direct consequence of the square-rqQis. 1. A U-shaped leaf spring is brought into oscillation
singularity of the mapping and are independent of theby horizontally oscillating its support. At a large enough
details of the dynamics in between collisions. They areforcing amplitude F, the attached mass impacts with a
therefore, predicted to baniversal In this Letter we stop. Collisions take place between a hard ceramic ball

t for the first ti . tal evid f and a hardened steel plate. The amplitude of the exciter is
present for the nirst ume experimental evidence 10r ON&ya a5 red interferometrically. The deflection of the leaf spring

of these universal phenomena, namely, the infinite serigg registered by reflecting a laser beam off the spring onto a
of p; to p,, transitions. position sensitive diode.

Laser beam

Position sensitive detector
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The experiment is approximately described by the A measured series of transitions < p,, for m =

differential equation (overdots denote time derivatives) 3 to m = 10 is shown in Fig. 2. In our experiments
£+ pé + Q%% = Fsinlor), (1) the period-1 orbit is the trivial periodic motion of the

noncolliding beam. The highest observed peripg)) is
' at the limit of our experimental resolution and stability.
3Phe shown series of bifurcations accurately follows the
prediction of the mapping.

The p; < p,, transitions occur in bands in tHer, y)

where ) is the eigenfrequency of the free oscillator
u represents the damping, and the excitation force h
amplitude F and frequencyw. When the positioné(r)

comes to the boundary at, say,the velocity reflects as

£(19+) = —7£(19-), wherer is the restitution coefficient. 5ameter plane of the mapping [5] that are crossed ap-
Equation (1) is approximate in that small oscillation , o imately transversely by scanning the excitation fre-

amplitudes are assumed and, more importantly, highelg,ency in our experiment. At the upper boundary of the

order modes of the beam are ignored. For near-grazing, region, thep,, saddle node is born exactly at= 0 and

orbits in a broad class of second-order dynamical SysteMgere s no hysteresis. The hysteresis increases towards the
[one of which would be Eq. (1)] the following mapping upper boundary of the lower-lying — 1 boundary. Fig-

can be derived [4] (see also [5]): ure 3 compares the predicted hysterdgjg’F, — 1 with

Xp+1 = QXy + yp T p for x. = 0 @) that found experimentally, whet€, is the excitation am-
L=

Y+l = — VX, plitude at which the perio@: orbit vanishes in a smooth

Xps1 = —Tn + yn ¥ p downward scan of". All experimental resonances are
il 'é " for x, > 0, (3) found in place, but the measured hysteresis differs from
Yntl = VT An the prediction. We believe that the discrepancy is due to

wherex, andy, are transformed coordinates of thig £)  higher-order vibrational modes of the beam.
space at stroboscopic times=n27/w, and wherep
is the bifurcation parameter that measures the distance
to the point of grazing impact. If no collision occurs
betweent, and t,4+,, the linear map Eq. (2) applies,
whereas Eg. (3) describes the dynamics in the case
that an impact will occur on,,t,+1]. For oscillators
described by Eg. (1), the parameters of the mapping
can be expressed explicitly in those/zof the differen- 2%y,
tial equation, y =exp(—u/f), a=2y'?2cod2xw/fT) I
[5, and p=(F/F,~ D[l — a + yl/2y(fTP(1 + e e A e
)2 sit(2w/fT), where f=w/27 is the excitation ) IR (d) _, sporto ™"
frequency,T = 27 /[Q2 — (u/2)?]'/? is the period of 3 ougr 2ot ? #
the free damped oscillations of the beam, dndis the
excitation amplitude at grazing impact. However, we
emphasize again that Egs. (2) and (3) apply to more gen-
eral impacting oscillators than those described by Eq. (1). F L e e
The presence of the square root in Eq. (3) is a key aspect 1125 1130 1135 1140 0920  0.925
of the mapping; it causes the Jacobian to be singular [7] ;'(e‘) L
atx, = 0, and it gives rise to the characteristorder- c
collision bifurcations[8] that are reported in this Letter.
The nature of the square root is simply the relation
between elapsed time and traveled distance in systems
with constant acceleration but the precise derivation of
the mapping is highly nontrivial.

Our experiment corresponds to the underdamped case
02> (u/2)? and analysis of the mapping predicts an infi- Excitation amplitude (mm)

nite series ofp,,(m =3,...,), saddle-node bifurcations FIG. 2. Experimental bifurcation diagrams pf < p,, tran-

atp = p,, =0 as the parameter is varied from 0t@2./¥  gjtions withm = 3,4,5,6.8, 10 for (a)(f), respectively. The

[9]. The stable period: orbit has a single impact per pe- displacement of the beam is measured at stroboscopic times
riod and is called anaximalperiodic orbit [5]. Atp =0 ¢, = n27/w. The closed circles are for the upward scan of
the unstablen saddle collides with the, orbit. Because the excitation amplitude; the open circles are for the down-

A ; i ward scan. The period of the free swinging beamTis=
the p,, orbit is born away from t.h_@l orbit, the tranSItlo_n 40.80 = 0.02 ms. The excitation frequencies aye=20.90,
p1 < pn @ppearsto be hysteretic: Whereas the transition 51 50 2720, 22.60, 23.05, and 23.40 Hz, for (a)—(f), respec-
p1 < pn takes place ap = 0, the transitionp,, = p1 in tively. In all cases the observed periodicity agrees with the
a smooth downward scan pftakes place ap,, = 0. prediction from the Nordmark map [Egs. (2) and (3)].
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FIG. 3. Hysteresis of “maximal’p,, orbits as a function of FIG. 4. Time trace of a period-4 orbit gt = F/F, — 1 =
excitation frequency. Full lines: as computed from the Nord-0.013. At impact a multitude of high-order modes is excited in
mark map Egs. (2) and (3). Dotted lines: stability boundarieshe beam.

of the p,, orbits as predicted by the Nordmark map; the corre-

sponding periodsn are indicated. Open circles connected by

dashed lines: experimental results. In a few casgsorbits . . .
continue to exist in the lower-lying,,_; regions. This coexis- €Stimated to be ~ 0.1 and thep, — p,, bifurcations could

tence is actually predicted by the mapping Egs. (2) and (3). be found in a fairly large region of the predicted stability
band in thela, v) plane. Outside this region, i.e., towards
the upper stability boundary of thg,—; orbit, other tran-

The excitation of higher-order modes upon impact is asitions than the predictegh — p,, bifurcation occur; these
characteristic feature of impacting in continuous systemanay even be to chaotic states. In these casep thsta-
The energy in these modes is quickly dissipated, for exble periodic orbit is found only at some negative value of
ample, by the radiation of sound. As a consequence, the and thep,, — p; bifurcation is encountered whem is
collision is highly inelastic. This is accounted for by a decreased further. These other transitions are caused by
nonunity restitution coefficient. The presence of a mul- secondary bifurcations om,, < p <0 that are due to sec-
titude of higher-order modes on impact is demonstrated ilond impacts. In the mapping these secondary bifurcations
Fig. 4, which shows the measured deflection as a functioalways occur ap > 0. In Eqg. (1) secondary bifurcations
of time for a period-4 orbit. It therefore appears that themay occur at values < 0 that become smaller if collisions
dynamics in our experiment is much more complex tharbecome more elastic.
described by Eg. (1) and the very favorable agreement with The breakdown of the mapping near= 0 is illus-
the mapping becomes a surprise. We will show that it isfrated in Fig. 5, which shows an experimental bifurcation
perhaps paradoxically, precisely one of the nonidealities ofliagram at parameter values where the mapping predicts
the experiment that makes the mapping more appropriatéhe p; orbit to be stable. Ap = 0 the trivial noncolliding

It is important to realize that the mapping is derived p; orbit gives way to a period-6 orbit. The stable periodic
for orbits that have a collision that is near grazingp; orbit is found only at the very end of the downward
and the predicted bifurcations occur when the orbitscan of the driving amplitude. Incidentally, Eq. (1) pre-
near a particular grazing collision point evolves fromdicts for this case a chaotic state@t= —0.0707 that is
near grazing to nonimpacting and back again when aot connected to the state that is borrpat= 0. Clearly,
parameter is smoothly varied. The proximity of an orbitthe experimental result is also strongly influenced by the
to one containing a grazing collision is, therefore, theexcitation of higher-order modes. The prediction of the
key parameter that determines the applicability of themapping applies only when the orbit is closest to grazing.
mapping. Obviously, @,, orbit that results from @, — The observed bifurcation phenomena are a consequence
pn bifurcation with a large hysteresis will at = 0 be far  of the square-root singularity of the mapping. This
away from a grazing collision; the distance increases asingularity may be smoothed by the excitation of higher-
the hysteresis becomes larger. order modes that introduce a time delay at impact. A

The magnitude of the hysteresjs,, | decreases with in- crude model results if the impacts of the system described
creasing energy loss per collision. Therefore, for impactby Eq. (1) are imaged to occur with a soft wall such that
ing systems with a large energy loss at each impact, that impact the spring constant changes by a faktos 1
mapping [Egs. (2) and (3)] is applicable in larger areas 0of10]. We have studied numerically the influence of a
parameter space than for impacting systems with smalldinite value of K on the observed bifurcation phenomena
energy loss. In our experiment the restitution coefficientigll]. A large value ofK affects the bifurcations close
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FIG. 5. Experimental bifurcation diagram measured in the

region where the mapping predicts the — p; transition. For
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In conclusion, we have given experimental evidence
for a new class of universal bifurcations that arises
when smooth dynamical systems cross a boundary. These
bifurcations are predicted by a mapping that reduces the
dynamics to its essentials: namely, the occurrence of a
singularity. Surprisingly, our evidence has been aided10]
by the increased damping in the experiment that is a
consequence of the excitation of higher-order modes. wt
expect that these phenomena should be observed in a wide
class of experimental boundary crossing systems. The
energy loss and time delay at impact are two parameters
to effectively represent higher-order modes in a single-
mode description. Obviously, when impacts are hard and
these modes become an essential part of the dynamics, the

analysis presented here no longer applies.
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The p, — p, transition occurs at-2./7 < a < 0. In
addition, the transitiop; — p, that is the bifurcation to

a (grazing) impact orbit with period 1, is predicted by the
mapping Eq. (3), but with a plus sign in front of thgéc
term. Both predictedp; — p; and p; — p, transitions
agree with experimental results. These phenomena will be
discussed in detail in a forthcoming paper.

A very similar model, but not for grazing collisions, was
studied in [2].

1] An efficient numerical scheme for solving Eqg. (1) in the

presence of grazing impacts uses the analytical solutions
for the motion between impacts. The (exact) positions
£(r) are computed in a small number of discrete points
t1,...,t in each drive period. It is crucial not to
miss boundary crossings of(z). These crossings are
detected both directly by checkirg(r,),..., £(zx) and by
computing the positioré(¢) at the turning points of the
velocity &.



