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Quantum Chaos, Irreversible Classical Dynamics, and Random Matrix Theory

A.V. Andreev!? O. Agam! B.D. Simons} and B. L. Altshulet?
INEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

’Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

3Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom
(Received 21 December 1995

The Bohigas-Giannoni-Schmit conjecture stating that the statistical spectral properties of systems
which are chaotic in their classical limit coincide with random matrix theory (RMT) is proved. A
new semiclassical field theory for individual chaotic systems is constructed in the framework of a
nonlinearo model. The low lying modes are shown to be associated with the Perron-Frobenius (PF)
spectrum of the underlying irreversible classical dynamics. It is shown that the existence of a gap in
the PF spectrum results in RMT behavior. Moreover, our formalism offers a way of calculating system
specific corrections beyond RMT. [S0031-9007(96)00191-3]

PACS numbers: 05.45.+b

Random matrix theory (RMT) [1] emerged from the tially large and clearly contains information that is redun-
need to characterize complex quantum systems in whictlant from the quantum mechanical point of view. This
knowledge of the Hamiltonian is minimal, e.g., complexdetailed information conceals the way of drawing a con-
nuclei. The basic hypothesis is that the Hamiltoniannection between the quantum behavior of chaotic systems
may be treated as one drawn from an ensemble aind RMT. Indeed, the success of the periodic orbit the-
random matrices with appropriate symmetries. It has beeary approach in reproducing RMT results [5,6] appears to
proposed by invoking the complexity of systems whichbe limited.
have many degrees of freedom with unknown interaction Here we develop a new semiclassical approach in
coupling among them. which the basic ingredients are global modes of the

The study of the statistical quantum properties oftime evolution of the underlying classical system rather
systems with amall numberof degrees of freedom and than periodic orbits. It is possible to construct a field
their relation to RMT has developed along two lines. Thetheory in which the effective action is associated with
first was by considering an ensemble of random systemthe classical flow in phase space. We argue that the
such as disordered metallic grains [2]. Randomness istatistical quantum properties of the system are intimately
this case is introduced on the level of the Hamiltonianrelated to theirreversible classical dynamics or, more
itself, often as a consequence of an unknown impurityprecisely, to the Perron-Frobenius (PF) modes in which a
configuration. In the second approach, RMT was usedlisturbance in the classical probability density of a chaotic
in order to understand the level statistics of nonstochastisystem relaxes into the ergodic distribution. These modes
systems which are chaotic in their classical limit such aslecay at different rates. This enables a description of the
the Sinai or the stadium billiards [3]. Here “randomness”system at levels of increasing complexity by incorporating
is generated by the underlying deterministic classicahigher and higher modes. The “zero mode” manifests the
dynamics itself. Nevertheless, it has been conjecturedonservation of classical probability and corresponds to a
[3] that “spectrum fluctuations of quantal time-reversal-uniform distribution over the energy shell. Taking into
invariant systems whose classical analogs are stronglgccount only this mode one obtains RMT. Deviations
chaotic have the Gaussian orthogonal ensembles patterrffom the universal RMT behavior emerge from the

Despite being supported by extensive numerical studeonsideration of the higher PF modes.
ies, the origin of the success of RMT as well as its do- Our approach is analogous to that of disordered systems
main of validity are still not completely resolved. In this where the diffusion modes account for the classical
Letter we show that, in the semiclassical limit, this con-relaxation. However, in the field theoretic description of
jecture is indeed valid for systems with exponential decaylisordered systems [7] averaging is performed over an
of classical correlation functions in time. Moreover, theensemble. By contrast, in order to charactenmbvidual
formalism which we introduce offers a way of calculating systems, only energy averaging will be employed here.
system specific corrections beyond RMT. To establish the Bohigas-Giannoni-Schmit (BGS) con-

So far the main attempts to establish the relationship bgecture we first show that quantum statistical correlators
tween nonstochastic chaotic systems and RMT have beeare described by a functional nonlinearmodel. Its low
based onperiodic orbit theory[4]. Gutzwiller's trace lying modes are identified with the PF eigenmodes of the
formula expresses the density of states (DOS) as sumnderlying classical dynamics. We then argue that, pro-
over the classical periodic orbits of the system. How-vided classical correlation functions decay exponentially
ever, the number of relevant periodic orbits is exponenin time, there is an energy domain where the zero mode
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contribution governs the behavior. This follows from the Z(0) = 1. To evaluate the two-point density correlator
fact that in such systems the PF spectrum has a gap. Fene can choosé to be constant, then

nally we establish the relation to RMT by identifying it as ! 3 Z(T))

the zero mode of the constructed field theory. R(s) = — >R > € _ (5)
Let A define a quantum Hamiltonian having no discrete 167 aJ J=0

symmetries and whose classical counterpaffx), is Energy averaging (2) ofZ(J) generates a quartic

chaotic. Here we adopt the notatien= (q, p) to denote  jnteraction of theW fields: S(¥,e) = S(V, &) + Si,
a vector defined in & X 4 dimensional phase space. yhere
We restrict attention to a system in which all classical 2
trajectories are unstable, and there are no islands of N’ d j

’ Si= dq¥(q@)¥(q) | . (6)

regular motion in phase space. At sufficiently high energy 2

oo e Saemed santant and Sxorssed throuoh the WALy CONITast to impurity averaging [7] energy averaging
P 9 n)(éluces anonlocalinteraction of the? fields. This inter-

formula, action term can be decoupled by means of the Hubbard-
1 _ 1 f A xS8[E — H(x)] 1) Stratonovich transformation, with the introductiondof<
A (2mh) ' 4 supermatrix field€)(q, q’) which depend on two coor-

Henceforth energy and time will be measured in units ofdinates,

A and the Heisenberg time/ A, respectively. 02

The energy averaging is taken over an energy bandexp(—S;) = f DO ex;{—STrq<— - iNQ‘I”P)]

containing a large number of level§ such thatl <« 2

N < € = Ey/A. For simplicity we choose to work with (7)

Gaussian averagés = E/A): Here STr, denotes the trace operation for supermatrices,
_ de (e €0)? 5 while the subscripiy implies a further extension of the

¢ e = V27 N ex 2N2 (). (@ trace to include integration over all spatial variables, e.g.,

The basic quantity calculated within the field theoreticSTraQ> = [ d“qd’q' STrQ(q.q')Q(d’,q).  Integrating
approach is the generating functid@(J)).,. Any n-  Over'w we obtain
point correlation function can be obtained by taking its 1
derivatives with respect to the various components of the (Z(/))e, = ] Do eXF<—5 STr,Q* + STy |nG>,
sourceJ. To keep the discussion simple, we will restrict
attention to systems belonging to the unitary ensemble (8)
(i.e., those with brokef" invariance) and focus on two- _ st .
point correlation functions such as the correlator of DOS, G Q) =€ - ) A—H—JkA - NQ. ©)
R(s) = (p(e + s)p(€))e, — 1, where p(e) = Tro(e — . . i .
H). As long ass is sufficiently small compared to the Further progress is possible only within a saddle-point
bandwidth N, the final results are independent of the@PProximation which relies on an expansion IN.

particular form of energy averaging. Varying the total action with respect t@ one obtains
One can expres¢Z(J)), as a functional integral the saddle-point equation,
in the usual way [7]. Introducing the four component 00G"'(Qy) = N, (10)

supervector fieldW7(q) = (¢, ¥, ¢4 x*), where ¢
(y) denote commuting (anticommuting) components, andvhereQo andG(Qo) are operators. _ _
the superscriptd (R) denotes the advanced (retarded) TO understand the structure of the saddle-point mani-

components [7], we can define pfold it is useful to employ the Wigner representa-
tion of operators. Given an operatd® as a set of

ZJ) = ] DYe SVl (3) matrix elementsO(q;,q,) between two position states

at q; and q,, its Wigner representation is a func-
where the action is given by tion of the phase space variablesdefined byO(x) =

[diq’ explipq'/R)O(q + q'/2,q — q'/2). We will use

the result that, in the semiclassical limit, the Wigner trans-

% W(q) (@) form of a product of operators is equal to the prod-
Q. uct of the Wigner transformed operatof€),0,) (x) —

Here s* = s + i0, while A = diag(1,1,—1,—1) and  O;(x)O,(x), where O;,(x) are smooth slowly varying

k = diag(l, —1,1, —1) break the symmetry between re- functions on the quantum scale.

tarded or advanced field components and supersymme- Treatings andJ as small compared to the bandwidth

try, respectively, and? = WtA. The use of fermionic N, and introducing the phase space variablgspn the

as well as bosonic components ensures the normalizati@nergy shell and; = H(x) perpendicular to the energy

S[¥,e] = i] ddq‘If(q)[e - %A - H - JkA}
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shell, the solution of Eq. (10) can be expressed in the@perator defined by the Poisson bracket
Wigner representation as

= B 241/2 L= nr{ H}. (16)
0ox) = L1 i[l — (60 H) } A. (11)

N IN For a stochastic Hamiltonian, an action equivalent to
However, this solution is not unique. In fact, the Eq: (14) _has bee_n proposed rgcen_tly using an argL_Jment
. . : - which relies on disorder averaging in the limit of vanish-
saddle-point solutions form a degenerate manifold |nIng disorder [10]
superspace associated with the group of pseudounitary To interpret the functional integral in Eq. (13) we must

rotations. Both the integration measure and the action in, _ . . .
. . . 1dentify the low lying modes of the action. In the case of
Eq. (8) are invariant under the group of transformations

0(x) — U~'(x,)O(x)U(x,), where U(x,) belongs to impurities, the low lying degrees of freedom correspond

; to the eigenvalues of the diffusion operator that form
the pseudounitary supergroup(1,1/2) [8]. Thus, any ; s .
matrix of the form0(x,) = U~ (x.)Qo(x ) U(x, ) is a a discrete spectrum. In the present case it is tempting

solution of the saddle-point equation (8). to associate the low energy degrees of freedom with

. . ; eigenmodes of the unitary (reversible) evolution operator
When integrating over the fluctuation, near the ~L7_ However, this identification is incorrect.

. . . e
Zﬁ?scz)lfr;)poméf Thzngzldéno dneenQ:?)ft?h(teaggtigslooﬁct%oeuﬁa(:?ue- As with any functional integral there is a need to define

. Py P . : . an appropriate regularization. For example, the functional
ations Q. Those quc'tuatlons on which thfe action de_integral in Eq. (13) may be understood as the limit> 0
pgnds strongly (_masswe modes) can be_lnte.grated 0% a product of definite integrations over a discretized
within a conventional saddle-point approximation. The pace, where denotes the discretization cell size. This
remaining fluctuations describe the Goldstone modes Ozdmits: tosmoothand sauare intearable functioﬂ'é{y; )
the system, and their integration must be performed X 1ore generally, a reg?ﬂarizationg can be perform”ea by
actly. These degrees of freedom can be parametrized q f
0(x) = T"'(x)Qy(x,)T(x). However, integration over
the massive modes [9] shows that, in the linvit> 1,
the only nonvanishing contribution comes from matri-
ces T which are independent of the energy. The
Goldstone modes can therefore be parametrized by

0(x) = T~ (x))Qolx )T (x)), (12)
where T(x)) belong to the coset spac&(l,1/2)/
U(1/1) X U(1/1) [8].

The derivation of the effective field theory can be ob-
tained by (i) substituting Eq. (12) into Eq. (8), approxi-
mating commutators by Poisson brackgfy, 0,] (x) —
in{0,(x), 0,(x)}, and replacing the trace by the phase
space integralTrq(0) = h~? [dx O(x) (this is the en-
try point of the semiclassical analysis); (ii) expanding th
logarithm to first order ins™, J, and the Poisson bracket
{H,T(x))} (higher order terms of this expansion are small
as1/N); (iii) performing thex, integration of the result-
ing action. The last step relies on the fact that within th
energy band, where averaging takes place, the classi
dynamics is independent of the energy. As a result we,
obtain thes model:

Yuncating an arbitrary complete basis.

In seeking such a basis, the eigenfunctions of the
classical evolution operatof seem to be the natural
choice. However, the intricate nature of chaotic classical
evolution causes these eigenfunctions to lie generally
outside the Hilbert space. Indeed, chaotic dynamics of
probability densities involves contraction along stable
manifolds, together with stretching along unstable ones.
Thus, an initially nonuniform distribution eventually turns
into a function singular along the stable manifold, which
in turn covers the whole energy shell densely. Therefore
the eigenfunctions ofL, which require the infinite time
limit, are not square integrable and their contribution
to the functional integral cannot be recovered by the
€discretization procedure.

In the present case, a convenient basis is that associated
with the classical evolution operator subject to a small
noise. The primary effect of the noise is to stop the con-
Sraction along the stable manifold, and thereby render the
C@]%enfunctions well behaved. The truncated madri¥’,
hich is nearly diagonal in this basis, is no longer unitary.
Apart from one eigenvalue, the modulus of the others, in

(Z(J))e, = f DT (x) exp(—S), (13) the limit where the size of this matrix tends to infinity, is
smaller than unity. These eigenvalues constitute the PF
_ - st spectrum and reflect intrinsic irreversible properties of the
= ﬁ[ x| ST’K? + Jk>AQ purely classical dynamics They coincide with those of

the evolution operator with noise in the limit where the
+iQT7 'L T}, (14)  strength of the noise tends to zero [11]. Other approaches
which recover this spectrum involve the use of symbolic
; dynamics [12], course graining of the flow dynamics in
9 =-—— f dx, T~ N(x))Qo(x )T (x) = T 'AT, phase space [13], and methods of analytic continuation
TN [14]. We remark that the physical spectrum of the classi-
(15)  cal operatorL appears when it propagates smooth proba-
and £ is the dimensionless infinitesimal time evolution bility densities. Thus the matricd¥x)) on which £ acts

where
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are understood to be smooth. In this respect, one can view In conclusion, we have established the BGS conjecture
guantum mechanics as the natural framework for calculatfor chaotic systems with sufficiently fast decay of classical
ing irreversible properties of classically chaotic systems. correlation functions and no discrete symmetries. More-

Let {y,} be the set of eigenvalues of the generatorpver, the field theoretic approach allows us to study sta-
L, of the PF operator. In ergodic systems the leadindistical characteristics on a much wider energy scale than
eigenvaluey, = 0 is nondegenerate, and manifests thethat in which RMT applies. These statistics are deter-
conservation of probability density. Thus any initial mined by the analytic properties of the classical resolvent
density eventually relaxes to the state associated withperatorl/(z — £). This theory, in principle, offers a
vo. If, in addition, this relaxation is exponential in time, systematic controlled way of investigating quantum cor-
then the slowest decay rate determines the gap in thections to the leading semiclassical description.

PF spectrum. Thus, for the first nonzero eigenvajyge We are grateful to D. E. Khmel'nitskii, B.A. Muzy-
we havey; = R(y;) > 0. This gap sets the ergodic kantskii, A. M. Polyakov, D. Ruelle, Ya. G. Sinai, and N.
time scale,r. = 1/, over which the classical dynamics Taniguchi for stimulating discussions. This work was
relaxes to equilibrium. In the case of disordered metallicsupported in part by JSEP Grant No. DAAL 03-89-
grains it coincides with the Thouless time, while in 0001 and by NSF Grant No. DMR 92-14480. O.A.
ballistic systems or billiards it is of the order of the time acknowledges the support of the Rothschild Fellowship.
of flight across the system.

In the limit s < y; the dominant contribution to
Eqg. (13) comes from the ergodic classical distribution, the
zero modeL T, = 0. With this contribution alone the
functional integral (13) becomes definite,
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