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Electromagnetic Splittings and Light Quark Masses in Lattice QCD

A. Duncan,1 E. Eichten,2 and H. Thacker3
1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15

2Fermilab, P.O. Box 500, Batavia, Illinois 60510
3Department of Physics, University of Virginia, Charlottesville, Virginia 22901

(Received 5 February 1996)

A method for computing electromagnetic properties of hadrons in lattice QCD is describe
preliminary numerical results are presented. The electromagnetic field is introduced dynamically
a noncompact formulation. Employing enhanced electric charges, the dependence of the pseu
meson mass on the (anti)quark charges and masses can be accurately calculated. Atb ­ 5.7 with
Wilson action, thep1-p0 splitting is found to be 4.9(3) MeV. Using the measuredK0-K1 splitting,
we also findmuymd ­ 0.512s6d. Systematic errors are discussed. [S0031-9007(96)00274-8]

PACS numbers: 12.38.Gc, 13.40.Dk, 14.65.Bt
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If a fundamental theory of quark masses ever emer
it may be as important to resolve the theoretical unc
tainty in the light quark masses as it is to accurat
measure the top quark mass. Moreover, an accurate
termination of the up quark mass might finally resolve t
question of whether nature avoids the strongCP problem
via a massless up quark. The Particle Data Tables [1] g
wide ranges for the up (2 , mu , 8 MeV) and down (5 ,

md , 15 MeV) quarks, while lowest order chiral perturba
tion theory [2–4] givesmuymd ­ 0.57 6 0.04. Numer-
ical lattice calculations provide, in principle, a very pr
cise way of studying the dependence of hadron masse
the Lagrangian quark mass parameters [5]. However,
contribution to hadronic mass splittings within isomul
plets from electromagnetic (virtual photon) effects is co
parable to the size of the up-down quark mass differen
Thus an accurate determination of the light quark mas
requires the calculation of electromagnetic effects in
context of nonperturbative QCD dynamics. In this Lett
we discuss a method for studying electromagnetic effe
in the hadron spectrum. In addition to the SU(3) co
gauge field, we introduce a U(1) electromagnetic field
the lattice which is also treated by Monte Carlo metho
The resulting SUs3d 3 Us1d gauge configurations are the
analyzed by standard hadron propagator techniques.

The small size of electromagnetic mass splittings ma
their accurate determination by conventional lattice te
niques difficult if the electromagnetic coupling is taken
its physical value. One of the main results of this L
ter is to demonstrate that calculations done at larger
ues of the quark electric charges (roughly 2 to 6 tim
physical values) lead to accurately measurable electrom
netic splittings in the light pseudoscalar meson spectr
while still allowing perturbative extrapolation to physic
values.

The strategy of the calculation is as follows. Qua
propagators are generated in the presence of backgr
SUs3d 3 Us1d fields where the SU(3) component repr
sents the usual gluonic gauge degrees of freedom, while
0031-9007y96y76(21)y3894(4)$10.00
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U(1) component incorporates an Abelian photon field (w
a noncompact gauge action) which interacts with quarks
specified electric charge. All calculations are performed
the quenched approximation and Coulomb gauge is u
throughout for both components. Quark propagators
calculated for a variety of electric charges and light qua
mass values. The gauge configurations were generate
b ­ 5.7 on a123 3 24 lattice. 200 configurations eac
separated by 1000 Monte Carlo sweeps were used.
the results reported here, we have used four different
ues of charge given byeq ­ 0, 20.4, 10.8, and 2 1.2
in units in which the electron charge ise ­

p
4py137 ­

0.3028 . . .. For each quark charge we calculate propa
tors for three light quark mass values in order to allow
chiral extrapolation. From the resulting 12 quark prop
gators, 144 quark-antiquark combinations can be form
The meson propagators are then computed and masse
the 78 independent states extracted.

Once the full set of meson masses is computed,
analysis proceeds by a combination of chiral and QE
perturbation theory. In pure QCD it is known that,
the range of masses considered here, the square o
pseudoscalar meson mass is quite accurately fit b
linear function of the bare quark masses [6]. We ha
found that this linearity in the bare quark mass persi
even in the presence of electromagnetism. For each
the charge combinations studied, the dependence of
squared meson mass on the bare quark mass is
described by lowest order chiral perturbation theory. Th
we write the pseudoscalar mass squared as

m2
P ­ Aseq, eq̄d 1 mqBseq, eq̄d 1 mq̄Bseq̄, eqd , (1)

where eq, eq̄ are the quark and antiquark charges, a
mq, mq̄ are the bare quark masses, defined in terms of
Wilson hopping parameter bysk21 2 k21

c dy2a. (Here
a is the lattice spacing.) Because of the electromagn
self-energy shift, the value of the critical hopping para
eter must be determined independently for each qu
charge. This is done by requiring that the mass of
© 1996 The American Physical Society
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neutral pseudoscalar meson vanish atk ­ kc, as dis-
cussed below. The results for the neutral pseudosca
are shown in Fig. 1. For the physical values of the qu
charges, we expect that an expansion of the coefficienA
andB in (1) to first order ine2 should be quite accurate
For the larger values of QED coupling that we use in o
numerical investigation, the accuracy of first order pert
bation theory is less clear: in fact, a good fit to all our d
requires small but nonzero terms of ordere4, correspond-
ing to two-photon diagrams. Comparison of the ordere4

terms with those of ordere2 provides a quantitative chec
on the accuracy of QED perturbation theory. We ha
tried including all possiblee4 terms in the fit, but retained
only those which significantly reduce thex2 per degree of
freedom.

According to a theorem of Dashen [7], in the limit o
vanishing quark mass, the value ofm2

P is proportional
to the square of the total charge. Thus, we have a
allowed the values of the critical hopping parameters
each of the quark charges to be fit parameters, requi
that the mass of the neutral mesons vanish in the ch
limit. Thus A takes the formAs1dseq 1 eq̄d2 to order
e2. (Ordere4 terms were not found necessary to fit t
data.) The coefficientB in (1) which parametrizes the
slope ofm2

P may also be expanded in perturbation theo
Of the five possiblee4 terms inBs2dseq, eq̄d, only thee4

q,
e3

qeq̄, ande2
qe2

q̄ terms were found to improve thex2. The
coefficients inA andB, along with the four values ofkc

for the four quark charges, constitute a 12-parameter fi
the meson mass values.

Before discussing the numerical results, we brie
describe the formulation of lattice QED which we ha
employed in these calculations. The gauge group in
case is Abelian, and one has the choice of either a com
or noncompact formulation for the Abelian gauge actio
Lattice gauge invariance still requires a compact gau
fermion coupling, but we are at liberty to employ
noncompact form of the pure photon actionSem. Then
the theory is free in the absence of fermions, and is alw

FIG. 1. The mass squaredM2
P (in GeV2) for neutral pseu-

doscalar meson vs lattice bare quark massesmq 1 mq̄ (in GeV)
is shown for various quark chargeseq ­ 0.0, 20.4, 0.8, and
21.2.
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in the nonconfining, massless phase. An important asp
of a noncompact formalism is the necessity for a gau
choice. We use QCD lattice configurations which ha
all been converted to Coulomb gauge for previous stud
of heavy-light mesons. Coulomb gauge turns out to
both practically and conceptually convenient in the QE
sector as well.

For the electromagnetic action, we take

Sem ­
1

4e2

X
nmn

s=mAnn 2 =nAnmd2, (2)

with e the bare electric coupling,n specifies a lattice
site, =m the discrete lattice right gradient in them
direction, andAnm takes on values between2` and1`.
Electromagnetic configurations were generated using
as a Boltzmann weight, subject to the linear Coulom
constraint

=̄iAni ­ 0 , (3)

with =̄ a lattice left-gradient operator. The action
Gaussian distributed so it is a trivial matter to genera
a completely independent set in momentum space, rec
ering the real space Coulomb-gauge configuration by f
Fourier transform. We fixed the global gauge freedo
remaining after condition (3) is imposed by setting th
p ­ 0 mode equal to zero for the transverse modes, a
the $p ­ 0 mode to zero for the Coulomb modes on ea
time slice. (This implies a specific treatment of finite vo
ume effects which will be discussed below.) The resulti
Coulomb gauge fieldAnm is then promoted to a compac
link variableUem

nm ­ e6iqAnm coupled to the quark field in
order to describe a quark of electric charge6qe. Quark
propagators are then computed for propagation throu
the combined SUs3d 3 Us1d gauge field.

Next we discuss the evaluation of critical hoppin
parameters for nonzero quark charge. The self-ene
shift induced by electromagnetic tadpole graphs may
computed perturbatively. The one-loop tadpole graph
(for Wilson parameterr ­ 1 and at zero momentum in
Coulomb gauge)

dmEM ­
e2

L4

X
kfi0

(
1

4
P

m k̂2
m

1
1

8
P

i k̂2
i

)
, (4)

wherekm are the discrete lattice momentum componen
for a L4 lattice and k̂m ­ sinskmy2d. This is entirely
analogous to the well known QCD termdmQCD [8].
The mass shift is then given by the sum over multip
insertions at the same point, which exponentiates
one-loop graph. The usual strong QCD corrections
b ­ 5.7 are given in this approximation by an overa
multiplicative factor of1y8ke­0

c . Together this produces
a shift of the critical inverse hopping parameter of

Dmc ;

√
1

2kc
2

1
2ke­0

c

!
­

1
8ke­0

c
s1 2 e2dmEM d . (5)

The contribution from the conventional one-loop radiati
correction graph is found to be about one-third the size
3895
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the tadpole. In Table I, our numerical results forkc and
the associatedDmc are compared with the results usin
only the perturbative tadpole resummed result for the E
interactions (5).

For charge zero quarks, propagators were calculate
hopping parameter 0.161, 0.165, and 0.1667, correspo
ing to bare quark masses of 175, 83, and 53 MeV,
spectively. The gauge configurations are generated
b ­ 5.7, and we have taken the lattice spacing to
a21 ­ 1.15 GeV as determined in Ref. [9]. After shift
ing by the improved perturbative values listed in T
ble I, we select the same three hopping parameters for
nonzero charge quarks. Because this shift turns out to
very close to the observed shift ofkc, the quark masses
for nonzero charge are nearly the same as those for
charge. For all charge combinations, meson masses w
extracted by a two-exponential fit to the pseudosca
propagator over the time ranget ­ 3 to 11. Smeared as
well as local quark propagator sources were used to
prove the accuracy of the ground state mesons ma
extracted. Errors on each mass value are obtained b
single-elimination jackknife. The resulting data are fitt
by the chiral-QED perturbative formula (1) byx2 mini-
mization. Using the full covariance matrix to take in
account correlations between all meson masses, thex2

per degree of freedom was found to be 1.6. Because
full covariance matrix is somewhat noisy, more statist
will be valuable in order to increase our confidence
this estimate. The fitted parameters are given in Table
Errors were obtained by performing the fit on each jac
knifed subensemble.

Aside from very small corrections of ordersmd 2

mud2, the p1-p0 mass splitting is of purely electromag
netic origin, and thus should be directly calculable by o
method. Because we have used the quenched app
imation, uū and dd̄ mesons do not mix. The neutra
pion mass is obtained by averaging the squared ma
of the uū and dd̄ states. [In full QCD theuū and dd̄
mix in such a way that the neutral octet state remain
Goldstone boson of approximate chiral SUs3d 3 SUs3d.
By averaging the squared masses ofuū and dd̄ in the
quenched calculation, we respect the chiral symmetry
pected from the full theory. By contrast, linear averagi
of the masses would give ap0 mass squared nonanalyti
in the quark masses.] Thus, to zeroth order ine2, the
terms proportional to quark mass [2] cancel in the d

TABLE I. Calculated shift of critical massDmc vs tadpole
estimate for neutral pseudoscalar mesons with various qu
chargeseq. All masses are in lattice units.

eq kc dmc S tadpole

0.0 0.16923(3) · · · · · ·
-0.4 0.17130(2) 0.289(5) 0.251
0.8 0.17763(3) 1.118(5) 0.942
-1.2 0.18541(4) 2.063(6) 1.912
3896
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p1 2 m2

p0 . This difference is then given quite
accurately by the single term

m2
p1 2 m2

p0 ø As1de2. (6)

Using the coefficients listed in Table II, and the expe
mental values of thep0, K0, andK1 masses, we may di
rectly solve the resulting three equations for the up, dow
and strange masses. Thep1-p0 splitting may then be
calculated, including the very small contributions from t
ordere2mq terms. We obtain

mp1 2 mp0 ­ 4.9 6 0.3 MeV (7)

compared to the experimental value of 4.6 MeV. (T
electromagnetic contribution to this splitting is estimat
[10] to be 4.43 6 0.03 MeV.) Our calculation can be
compared to the value 4.4 MeV (forLQCD ­ 0.3 GeV
and ms ­ 120 MeV) obtained by Bardeen, Bijnens, an
Gerard [11] using large-N methods. The values obtaine
for the bare quark masses are

mu ­ 3.86s3d, md ­ 7.54s5d, ms ­ 147s1d .

(8)

The errors quoted are statistical only, and are compu
by a standard jackknife procedure. Theextremelysmall
statistical errors reflect the accuracy of the pseudosc
mass determinations, and should facilitate the future st
of systematic errors (primarily finite volume, continuu
extrapolation [12], and quark loop effects), which are e
pected to be considerably larger. The relationship
tween lattice bare quark masses and the familiar curr
quark masses in the minimal subtraction scheme con
uum regularization is perturbatively calculable [13].

The presence of massless, unconfined degrees of
dom implies that the finite volume effects in the presen
of electromagnetism may be much larger than for pu
QCD. In fact, the corrections are expected to fall as
verse powers of the lattice size, instead of exponentia
We have estimated the size of the finite volume corr
tion phenomenologically by considering the discussion
Bardeen, Bijnens, and Gerard [11], which models the lo
q2 contribution to thep1-p0 splitting in terms ofp , r,
andA1 intermediate states. This gives the splitting as
integral,

dm2
p ­

3e2

16p2

Z M2

0

m2
Am2

r

sq2 1 m2
rd sq2 1 m2

Ad
dq2. (9)

TABLE II. Coefficients of fitting function, Eq. (1). Terms o
ordereqe3

q̄ ande4
q̄ in Bs2d ande4 in A were consistent with zero

and dropped from this fit. Numerical values are in GeV2 and
GeV for A andB terms, respectively.

Parameter Fit

A 0.0143(10)seq 1 eqd2

Bs0d 1.594(11)

Bs1d 0.205s22de2
q 1 0.071s9deqeq 1 0.050s7de2

q

Bs2d 0.064s17de4
q 1 0.033s6de3

qeq 2 0.031s4de2
qe2

q
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If the upper limitM2 is taken to infinity, this reproduce
the result of Ref. [14], which givesdmp ­ 5.1 MeV.
Even better agreement with experiment is obtained
matching the low-q2 behavior with the large-q2 behav-
ior from large-N perturbative QCD [11]. Here we only
use the expression to estimate the finite volume cor
tion, for which the low-q2 expression above should be a
equate. To estimate the finite volume effect, we cast
expression as a four-dimensional integral overd4q and
then construct the finite volume version of it by repla
ing the integrals with discrete sums (excluding theq ­ 0
mode). For a123 3 24 box with a21 ­ 1.15 GeV, we
find that the infinite volume value of 5.1 MeV is change
to dmp ­ 4.8 MeV, indicating that the result we hav
obtained in our lattice calculation should be corrected
ward by about 0.3 MeV, or about 6%. In further nume
ical studies, we will be able to determine the accuracy
this estimate directly by calculations on larger box siz
A study of other systematics such as finite lattice spac
effects is also in progress, and will be reported in a sub
quent publication.

For comparison with other results [2–4], we quo
the following mass ratios, which are independent
renormalization prescription,

md 2 mu

ms
­ 0.0249s3d,

mu

md
­ 0.512s6d . (10)

With the errors shown, which are statistical only, the
results differ significantly from the lowest order estima
[2] which uses Dashen’s theorem to estimate the elec
magnetic contribution to the kaon splitting to zeroth o
der. This lowest order estimate neglects the quark m
dependence of the electromagnetic terms, which we h
determined by our procedure. Specifically, the import
corrections to the lowest order result come from ter
involving the strange quark mass times the difference
up and down quark charges. These corrections are
termined by the second and third terms inBs1d in Ta-
ble II. The Weinberg analysis predicts that the 4.0 M
kaon splitting consists of 5.3 MeV from the up-dow
mass difference and21.3 MeV from EM. In our results,
the up-down mass difference contributes 5.9 MeV, w
21.9 MeV from EM. This goes in the direction indicate
by theh ! 3p decay rate [4], although our results do n
deviate as much from the lowest order analysis as th
of Ref. [4], where the quark mass contribution to the ka
splitting is estimated to be 7.0 MeV.

In the present work we have focused on the ps
doscalar meson masses. This is the most precise wa
determining the quark masses as well as providing an
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portant test of the method in thep1-p0 splitting. Fur-
ther calculations of electromagnetic splittings in the ve
tor mesons and the baryons, as well as in heavy-light s
tems, are possible using the present method. This
provide an extensive opportunity to test the precision
the method and gain confidence in the results. Furt
study of electromagnetic properties of hadrons in latt
QCD, such as magnetic moments and form factors [15]
also anticipated.
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