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The threshold behavior of thi€-satisfiability problem is studied in the framework of the statistical
mechanics of random diluted systems. We find that at the transition the entropy is finite and hence that
the transition itself is due to the abrupt appearance of logical contradictions in all solutions and not to
the progressive decreasing of the number of these solutions down to zero. A physical interpretation is
given for the different casek = 1, K = 2, andK = 3. [S0031-9007(96)00244-X]
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Many famous computational issues concerning opti-due to the very peculiar nature of the glassy transition
mization problems, discrete structures (such as graphs anaking place therein.
networks), and formal logic are classified by complexity The model we shall study is a version of SAT, called
theory, according to the running time scaling of their al-SAT and defined as follows. Let us considérBoolean
gorithms and memory requirements [1]. In the past fewariables{x; = 0, 1},—; . We first randomly choosg
years, it has been realized that the statistical physics among theV possible indices$ and then, for each of them,
frustrated models could be helpful to acquire a better una literal that is the corresponding or its negatiork; with
derstanding of complexity, by mapping the optimizationequal probabilities one half. A clauggis the logicalor
problems onto the study of the ground states of disorderedf the K previously chosen literals; that i€, will be true
models [2]. The tools and concepts of statistical mechantor satisfied) if and only if at least one literal is true. Next,
ics have therefore opened the way to the analysis of thee repeat this process to obtaih independently chosen
typical properties of optimization problems as well as toclausedC¢}¢—;.. . and ask for all of them to be true at the
the definition and to successive improvements of searchkame time (i.e., we take the logicalD of the M clauses).
algorithms in which temperature is the main control pa-A logical assignment of théx;}'s satisfying all clauses, if
rameter [3]. any, is called a solution of thi€-satisfiability problem.

More recently, the observation of threshold phenomena When the number of clauses becomes of the same
in random mathematical and computer science problemsyrder as the number of variablé® = aN) and in the
and mainly in one of the most basic [1] of them, thelarge N limit (indeed the case of interest also in the
satisfiability (SAT) problem [1,4-7], has shown that not fields of computer science [5,6 -SAT exhibits striking
only ground state properties but also the critical behaviothreshold phenomena. Numerical simulations show that
at glassy phase transitions occurring in disordered systentse probability of finding a solution falls abruptly from
could be relevant for complexity theory, due to the so-one down to zero when crosses a critical value.(K)
called intractability concentration phenomena [7]. Theof the number of clauses per variable. Abowe(K),
purpose of this Letter is to provide a stronger supportll clauses cannot be satisfied any longer and one would
to this statement, by giving an analytical study of therather minimize the number of unsatisfiable clauses,
properties of SAT near its transition. In turn, the resultswhich is the optimization version d{-SAT also referred
will be shown to be of interest for statistical mechanics,to as the MAXK-SAT.
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This scenario has been proven to be true in thafter having introduced a finite “temperature/8. The
K =2 case. It has been possible to derive rigorouslytypical ground state free energin Z[C] = lim,_, X
the threshold valuex. = 1 [8], and an explicit 2-SAT (Z[C]* — 1)/n, where(---) stands for the average over
algorithm working for @« < @, has been developed, the random clauses, is then recovered in the limit of zero
whose running time scales polynomially with[9]. For  temperaturg8 — . For brevity, we limit ourselves to a
K = 3, much less is known an#-SAT belongs to the general description of the method [2,11] and focus on the
class of hard computational problems, the so-called NPdiscussion of the results (the complete calculation will be
complete class [1], roughly meaning that running timespresented in [12]).
of search algorithms are thought to scale exponentially Once we have introduced replicassS{, a = 1,...,n,
in N (notice that fora > 1 also MAX-2-SAT is NP  of the system, the average over the disordercou-
complete [1]). Some bounds en.(K) have been derived ples all replicas together through the overlaysS =
[6] and a remarkable application of finite size scaling(1/N)3N | s{" ... 5> and their conjugated Lagrange pa-
techniques has recently allowed to find precise numericatametersQ@ - (r = 1,...,n/2) [11]. The resulting
values ofa. for K = 3,4,5,6 [4]. The situation becomes effective HamiltonianN 7 [{Q},{0}] involves all mul-
easier to understand in the largelimit where a simple tireplicas overlaps as in diluted spin glasses [11,13] and
probabilistic argument gives the asymptotic expression ofs therefore much more complicated than long-range dis-
a.(K) = 2%In2 [4]. An important rigorous result is the ordered models where only interactions between pairs of
self-averageness taking place in MAXSAT for anyK:  replicas appear [2]. The free energy is evaluated by tak-
independently of the particular sample Mf clauses, the ing the saddle point ofH over all overlapsD, 0. This
minimal fraction of violated clauses is narrowly peakedhighly difficult task may be simplified by noticing that,
around its mean value wheti — o« at fixed a [10]. due to the indistinguishability of the replicas, the effec-

In order to study theK-SAT (and MAXK-SAT) tive Hamiltonian /4 must be invariant under any per-
problem, we map it onto random diluted systems by thenutation of the replicas. Therefore, one is allowed to
introduction of spin variables; = *1 (a simple shift of |ook for a solution such that the overlaps only depend
the Boolean variables) and a quenched (unbiased) matrixpon the number of coupled replica@® % = Q,,

Cei =1 (—1) if x; (x;) belongs to the claus€¢, 0 Q- = (), [2,11]. This is the so-called replica sym-

otherwise. Then the energy-cost function metric (RS) ansatz we shall use hereafter. Moreover,
u N it results to be convenient to characterize @}l by in-
troducing a probability distributior?(x) of the Boolean
E C, S| = 1) C i Si; —K . 1 . .
€. S] ; Lzzl & } @) magnetizationx = (S), such thatQ, = fl_1 dx P(x)x?".

Elimination of the Lagrange parametads’s leads to the
where 8[i; j] denotes the Kronecker symbol, equals theexpression
number of violated clauses and therefore its ground ! e
state (GS) properties describe the transition fiGrBAT —Inz[C] = In2 — _f dx P(x)In(1 — x?)
(Egs = 0) to MAX-K-SAT (Egs > 0) (a similar cost N 2J4

function was introduced in [5]). 1 K

While previous works on the statistical mechanics of +a(l = K) fl l_[d”P(xf)InA(K)
other combinatorial optimization problems—such as trav- | K—1 =1
eling salesman, graph partitioning, or matching problems + ak l_[ dx¢ P(xe)INAg—1), (3)
[2,11]—focused mainly on the study of the typical cost 2 Jor o

of optimal configurations (with no phase transitions in the

ground state), the issues arisingKRSAT are of differ-  with Ay = Ag[{xe. Bl =1+ (¢ — D[T/_,(1 +
ent nature. Belowr,, the ground state energy vanishesx¢)/2 forJ = K — 1 andJ = K. The measuré(x) is
and the key quantity to be analyzed is the typical numbegiven by the saddle-point integral equation

of existing solutions, i.e., the ground state entrdfay, o |+

for which no exact results are available so far. Our main  p(x) = f du co{Z In( x>:|

result is thatSgs is still extensive atv = a.: The transi- e 2 1 —x

tion is not due to a progressive reduction of the number of LR

solutions but tathe sudden appearance of logical contra- Xexp —ak + ak f—1 [T dxeP@x)

dictionsin “all” of the exponentially numerous solutions =

at the threshold. X cos(Z InA(K_l)ﬂ. 4)
In order to regularize the model, we compute the 2

partition function
A toy version of theK-SAT problem is obtained when

Z[C] = Z exp(— BE[C, S)), (2 K =1. The typical free energy may then be computed
(Si==1} either by a simple combinatorial analysis as well as within
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our approach, showing that the RS ansatz is exactf@ all The self-consistency equation (8) admits the solution
anda whenK = 1. The saddle-point equation fé*(x) y = 0 for any« (if K > 1). WhenK = 2, there is an-
can be explicitly solved at any temperaturg3 and the other solutiony(a) > 0 abovea = 1. This new solution
solution read maximizesEgs (and then the free energy) and must be pre-
* B¢ ferred [2]. Therefore, our RS theory predicts that = 0
P(x) = > e “Ipa) 5<x - tan!'<7>). (5)  fora = 1 andincreases continuously when> 1, giving
{=—c back the rigorous resutt.(2) = 1. The transition taking
One finds that in the limit of zero temperature the energylace ate. is of second order with respect to the order
and the entropy of the ground state réag(a) = «[1 —  parameter: the value of does not show any jump, and
e () — e *I(@)]/2 and Sgs(a) = e “Iy(a) In2,  two Dirac peaks foP (x) progressively appearsin= *1
respectively, wheré, is the ¢{th modified Bessel function. with amplitude[1 — ¢~ ?1Io(y)]/2 each. For larger, the
Therefore, as soon a8 > a.(1) = 0, the clauses can- RS ground state energy scales B& = a/4 which is
not be satisfied all together but there is an exponentiallknown to be exact [5]. As far as 2-SAT is concerned,
large number eXVSgs(«)] of different spins configura- the value of the threshold is correctly predicted & 1)
tions giving the same minimum fractidis(a)/« of un-  and the RS solution appears to be correct for anfgven
satisfiable clauses. At zero temperatuPéy) reduces to «a > 1) [12].
a sum of three Dirac peaks in= =1 and0 with weights For @ > «,, there do not exist any more sets of
[1 — e “Iy(a)]/2 ande *Iy(a), respectively. It clearly S;’s such that the energy (1) remains nonextensive. The
appears that the finite value of the ground state entropyanishing of the exponentially large number of solutions
is due to the presence of unfrozen spins [12]. Anothethat were present below the threshold is surprisingly
relevant mechanism is the accumulation of magnetizationgbrupt. We have indeed studied the number of such
(S) = =[1 — 0(e”*I8)], z = 0(1), around the limit val- ~ solutions as a function of the number of clauses per spin
uesx = =1, as can be seen from (5). The occurrencen the range0 = @ < a,.. Their logarithm (divided by
of such peaks means that a finite fraction of spins aréV), that is the entropy of the ground statgs(«), is
frozen, and hence that a new clause presented to the sygiven by (3) wheng — «. We have resorted to an
tems would not be satisfiable with a finite probability. ~ exact expansion aP(x) (4) in powers ofa, starting from
This scenario remains valid for angi. The fraction P(x)la=0 = 6(x), and injected the resulting probability
of violated clauses at temperatuig¢ 3 can indeed be function into (3) to obtain the expansion 8§s(«). At
computed throughZ = —(1/N)dlnZ/9B. The ground the 7th order (which implies an uncertainty less than
state energy will clearly depend only upon the mag-1%), we have found thafgs(a.) = 0.38, which is still
netizations of order=[1 — O(e" )], if any. These very high as compared t§;5(0) = In2 (see Fig. 1). The
contributions can be picked up by the new functiontransition is therefore due to the abrupt appearance of
R(z) = limg_..BP[tanh(Bz/2)]/2 cosR(Bz/2) satisfy- contradictory logical loops in “all” solutions at = a.

ing the saddle-point equation and not to the progressive decreasing of the number of
- these solutions down to zero at the threshold.

R(z) = [ au coquz) ex;{— a{{ + akK Let us turn now to th&k = 3 case. Resolution of the
— 27T 2K-1 implicit equation (8) leads to the following picture. For

=K1 ) a < a,(K), there exists the solutioy = 0 only. At
X f [T dzeRGzo cogumin(l,zy,.... 25— |. a,,(K), a nonzero solutiory(«) discontinuously appears.
= 6) The corresponding ground state energy is negative in the
rangea,,(K) = a < a,(K), meaning that the new solu-
Remarkably, it is possible to find analytically an exacttion is metastable and th@gs = 0 up to a,(K). For

solution to this functional equation for arky and «': a > ay(K) the y(a) # 0 solution becomes thermody-
o namically stable, leading to the conclusion thatK) cor-
R(z) = Z e YI(y)d(z — 4), (7) responds to the desired threshalgd(K). However, this
(=—c prediction is wrong as can be immediately seenHKor=
wherey is solution of the implicit equation 3, since the experimental value.(3) = 4.17 = 0.05 [4]
1 = e 7Iy(y) K—1 is lower thana,,(3) = 4.667 and a;(3) = 5.181. In ad-
y = aI{—”} (8) dition, largeK evaluations giver,,(K) ~ K2X /167 and
2 ay(K) ~ K2X /47, which grow faster than the asymp-

The corresponding cost function equélss(a) = y[1 —  totic valuea.(K) ~ 25 In2 [14].

e 7Iy(y) — Ke ?I;(y)]/2K. We shall now analyze the This situation may be understood by an inspection of
physical structure of this solution and show how thethe RS ground state entropy. To do so, we have ex-
predictions it leads to fok = 2 qualitatively differ with ~ pandedSgs to the £th order ina using the same method
respect to the casg€ = 3. as forK = 2 and denoted byrz' (K), the point where it
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0.7 Therefore, the situation is as follows for (finit&) =

3. Above «,., the RS entropy is negative, whereas it
has to be the logarithm of an integer number. The
RS ansatz is clearly unphysical in this range, explaining
why a; and a. do not coincide. At the threshold.
(which is experimentally known to be lower than,),

the RS entropy is still extensive. The crucial question
now arises whether this result is exact or is affected
by replica symmetry breaking (RSB) effects. To clear
up this dilemma, an analysis of RSB effects would be
required. Because of the general complexity of such
an approach in diluted models [13] and the technical
difficulty of the K-SAT problem, the preliminary attempts
we have done in this direction have not been successful
yet [12]. We have then resorted to exhaustive humerical
simulation in the rang&/ = 12,...,28 and compared the

| corresponding ground state entropi&(%)(a) to our RS

| theory fork = 3. Asreported in Fig. 1, for < a,, our

I AT analytical solution agrees very well with the numerical

results. This confirms that the entropy of the ground state
: is finite at the threshold. The comparison may be made

FIG. 1. Entropy vsa for K =2 and 3. The analytical

solutions (solid lines) are compared with numerical exhaustNJn(ore precise by a careful extrapolation of the entropy
simulations for N = 12,16,20,24 and 30000, 15000, 7500, SGs (e = 4.17) in 1/N (see the inset of Fig. 1). The
2500 samples, respectively (fok =2 we stop ata = 2.5,  extrapolated value appears to be in perfect agreement with
whereas fork = 3 ata = 6). Error bars are within0% and  the RS predictior§gs = 0.1. Therefore, RSB corrections

thus not reported explicitly. Inset;/N entropy extrapolation .
for @ = 4.17 (in average for eacV), N = 20,22,24,26,28 to the RS theory seem to be absent belaw which

(with 16500, 11500, 7500, 4000,3000 samples, respectively) |€ads us to think that RSB could occur at exactly.
andkK = 3. Fora > a., the numerical results of Fig. 1 correspond to

the MAX-K-SAT typical entropy and could be recovered
analytically by extending our solutions beyond the critical
vanishes. Note thatze (K) corresponds to the annealed points (within the RS framework fak = 2 and with one

theory while a.'s \(K) converges tar..(K) when{ — «,  step of RSB forlk = 3).
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that is, the exact value af at which Sgs goes to zero. To conclude, let us say that one should, however, not
For K = 3, we have performed the expansion upfte=  deduce from the above remark that the structure of the
8 and found oY =5.1909, a2 = 50144, o =  solution space is simple. It might well happen that the

4.9189, ¥ = 4.8589, a® = 48187, a9 = 47893, solution space could have a nqntnw_al structure which is
7 _ 47677 a(S) — 47504 indicating that « not reflected by the magnetization distributifiix) only
ic'YSZEdefinftivel ' Iarzeer thate. = 4.17 R?a catin ;Ee [15]. It would be very interesting to understand if such
calculation f}(/)r Kg= 4,5 601;\/(; Havé obtgined ° uali- 2 phenomenon could take place in teSAT problem
. . A qu and what information the hidden structure of the solution
tatively similar results which show an even quicker

: Id give us about its algorithmi mplexity near
convergence towards a zero entropy point such th pace could give us about its algo ¢ complexity nea

. ) - hase transition.
oe(K) < az(K) < a,(K). Finally, in the largeX limit, LPTENS is a unité propre du CNRS, associée a I'Ecole
o (K) asymptotically reaches the threshaig(K) from Normale Supérieure et a I'Université de Paris-Sud
above. AsK grows, fluctuations get weaker and weaker '
and Gaussian RS theory becomes exact. Solving Eq. (4),
we find forK > 1 anda = a.(K)
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