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The threshold behavior of theK-satisfiability problem is studied in the framework of the statistical
mechanics of random diluted systems. We find that at the transition the entropy is finite and hence that
the transition itself is due to the abrupt appearance of logical contradictions in all solutions and not to
the progressive decreasing of the number of these solutions down to zero. A physical interpretation is
given for the different casesK ­ 1, K ­ 2, andK $ 3. [S0031-9007(96)00244-X]
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Many famous computational issues concerning o
mization problems, discrete structures (such as graphs
networks), and formal logic are classified by complex
theory, according to the running time scaling of their
gorithms and memory requirements [1]. In the past f
years, it has been realized that the statistical physic
frustrated models could be helpful to acquire a better
derstanding of complexity, by mapping the optimizati
problems onto the study of the ground states of disorde
models [2]. The tools and concepts of statistical mech
ics have therefore opened the way to the analysis of
typical properties of optimization problems as well as
the definition and to successive improvements of sea
algorithms in which temperature is the main control p
rameter [3].

More recently, the observation of threshold phenom
in random mathematical and computer science proble
and mainly in one of the most basic [1] of them, t
satisfiability (SAT) problem [1,4–7], has shown that n
only ground state properties but also the critical beha
at glassy phase transitions occurring in disordered sys
could be relevant for complexity theory, due to the s
called intractability concentration phenomena [7]. T
purpose of this Letter is to provide a stronger supp
to this statement, by giving an analytical study of t
properties of SAT near its transition. In turn, the resu
will be shown to be of interest for statistical mechani
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due to the very peculiar nature of the glassy transiti
taking place therein.

The model we shall study is a version of SAT, calledK-
SAT and defined as follows. Let us considerN Boolean
variableshxi ­ 0, 1ji­1,...,N . We first randomly chooseK
among theN possible indicesi and then, for each of them
a literal that is the correspondingxi or its negation̄xi with
equal probabilities one half. A clauseC is the logicalOR

of the K previously chosen literals; that is,C will be true
(or satisfied) if and only if at least one literal is true. Nex
we repeat this process to obtainM independently chosen
clauseshC,j,­1,...,M and ask for all of them to be true at th
same time (i.e., we take the logicalAND of theM clauses).
A logical assignment of thehxij’s satisfying all clauses, if
any, is called a solution of theK-satisfiability problem.

When the number of clauses becomes of the sa
order as the number of variablessM ­ aNd and in the
large N limit (indeed the case of interest also in th
fields of computer science [5,6]),K-SAT exhibits striking
threshold phenomena. Numerical simulations show t
the probability of finding a solution falls abruptly from
one down to zero whena crosses a critical valueacsKd
of the number of clauses per variable. AboveacsKd,
all clauses cannot be satisfied any longer and one wo
rather minimize the number of unsatisfiable claus
which is the optimization version ofK-SAT also referred
to as the MAX-K-SAT.
© 1996 The American Physical Society 3881
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This scenario has been proven to be true in
K ­ 2 case. It has been possible to derive rigorou
the threshold valueac ­ 1 [8], and an explicit 2-SAT
algorithm working for a , ac has been developed
whose running time scales polynomially withN [9]. For
K $ 3, much less is known andK-SAT belongs to the
class of hard computational problems, the so-called N
complete class [1], roughly meaning that running tim
of search algorithms are thought to scale exponentia
in N (notice that for a . 1 also MAX-2-SAT is NP
complete [1]). Some bounds onacsKd have been derived
[6] and a remarkable application of finite size scalin
techniques has recently allowed to find precise numer
values ofac for K ­ 3, 4, 5, 6 [4]. The situation becomes
easier to understand in the largeK limit where a simple
probabilistic argument gives the asymptotic expression
acsKd . 2K ln2 [4]. An important rigorous result is the
self-averageness taking place in MAX-K-SAT for anyK :
independently of the particular sample ofM clauses, the
minimal fraction of violated clauses is narrowly peake
around its mean value whenN ! ` at fixeda [10].

In order to study theK-SAT (and MAX-K-SAT)
problem, we map it onto random diluted systems by
introduction of spin variablesSi ­ 61 (a simple shift of
the Boolean variables) and a quenched (unbiased) ma
C,,i ­ 1 (21) if xi (x̄i) belongs to the clauseC,, 0
otherwise. Then the energy-cost function

EfC, Sg ­
MX

,­1

d

"
NX

i­1

C,,i Si; 2K

#
, (1)

where dfi; jg denotes the Kronecker symbol, equals t
number of violated clauses and therefore its grou
state (GS) properties describe the transition fromK-SAT
sEGS ­ 0d to MAX-K-SAT sEGS . 0d (a similar cost
function was introduced in [5]).

While previous works on the statistical mechanics
other combinatorial optimization problems—such as tra
eling salesman, graph partitioning, or matching proble
[2,11]—focused mainly on the study of the typical co
of optimal configurations (with no phase transitions in t
ground state), the issues arising inK-SAT are of differ-
ent nature. Belowac, the ground state energy vanish
and the key quantity to be analyzed is the typical num
of existing solutions, i.e., the ground state entropySGS,
for which no exact results are available so far. Our m
result is thatSGS is still extensive ata ­ ac: The transi-
tion is not due to a progressive reduction of the numbe
solutions but tothe sudden appearance of logical contra
dictions in “all” of the exponentially numerous solution
at the threshold.

In order to regularize the model, we compute t
partition function

ZfCg ­
X

hSi­61j
exps2bEfC, Sgd, (2)
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after having introduced a finite “temperature”1yb. The
typical ground state free energyln ZfCg ­ limn!0 3

s ZfCgn 2 1dyn, wheres· · ·d stands for the average ove
the random clauses, is then recovered in the limit of ze
temperatureb ! `. For brevity, we limit ourselves to a
general description of the method [2,11] and focus on t
discussion of the results (the complete calculation will
presented in [12]).

Once we have introducedn replicasSa
i , a ­ 1, . . . , n,

of the system, the average over the disorderC cou-
ples all replicas together through the overlapsQa1,Ùs,a2r ­
s1yNd

PN
i­1 S

a1
i · · · S

a2r
i and their conjugated Lagrange pa

rametersQ̂a1,...,a2r (r ­ 1, . . . , ny2) [11]. The resulting
effective HamiltonianN H fhQj, hQ̂jg involves all mul-
tireplicas overlaps as in diluted spin glasses [11,13] a
is therefore much more complicated than long-range d
ordered models where only interactions between pairs
replicas appear [2]. The free energy is evaluated by ta
ing the saddle point ofH over all overlapsQ, Q̂. This
highly difficult task may be simplified by noticing that
due to the indistinguishability of then replicas, the effec-
tive Hamiltonian H must be invariant under any per
mutation of the replicas. Therefore, one is allowed
look for a solution such that the overlaps only depe
upon the number of coupled replicas:Qa1,...,a2r ­ Qr ,
Q̂a1,...,a2r ­ Q̂r [2,11]. This is the so-called replica sym
metric (RS) ansatz we shall use hereafter. Moreov
it results to be convenient to characterize allQr by in-
troducing a probability distributionPsxd of the Boolean
magnetizationx ­ kSl, such thatQr ­

R1
21 dx Psxdx2r .

Elimination of the Lagrange parametersQ̂r ’s leads to the
expression

1
N

lnZfCg ­ ln2 2
1
2

Z 1

21
dx Psxd lns1 2 x2d

1 as1 2 Kd
Z 1

21

KY
,­1

dx, Psx,d lnAsKd

1
aK

2

Z 1

21

K21Y
,­1

dx, Psx,d lnAsK21d , (3)

with AsJd ; AsJdfhx,j, bg ­ 1 1 se2b 2 1d
QJ

,­1s1 1

x,dy2 for J ­ K 2 1 andJ ­ K . The measurePsxd is
given by the saddle-point integral equation

Psxd ­
1

1 2 x2

Z `

2`
du cos

"
u
2

ln

µ
1 1 x
1 2 x

∂#

3 exp

"
2aK 1 aK

Z 1

21

K21Y
,­1

dx, Psx,d

3 cos

µ
u
2

lnAsK21d

∂#
. (4)

A toy version of theK-SAT problem is obtained when
K ­ 1. The typical free energy may then be compute
either by a simple combinatorial analysis as well as with
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our approach, showing that the RS ansatz is exact for ab

anda whenK ­ 1. The saddle-point equation forPsxd
can be explicitly solved at any temperature1yb and the
solution read

Psxd ­
X̀

,­2`

e2aI,sad d

√√√
x 2 tanh

µ
b,

2

∂!!!
. (5)

One finds that in the limit of zero temperature the ene
and the entropy of the ground state readEGSsad ­ af1 2

e2aI0sad 2 e2aI1sadgy2 and SGSsad ­ e2aI0sad ln 2,
respectively, whereI, is the,th modified Bessel function
Therefore, as soon asa . acs1d ­ 0, the clauses can
not be satisfied all together but there is an exponenti
large number expfNSGSsadg of different spins configura
tions giving the same minimum fractionEGSsadya of un-
satisfiable clauses. At zero temperature,Psxd reduces to
a sum of three Dirac peaks inx ­ 61 and0 with weights
f1 2 e2aI0sadgy2 ande2aI0sad, respectively. It clearly
appears that the finite value of the ground state entr
is due to the presence of unfrozen spins [12]. Anot
relevant mechanism is the accumulation of magnetizat
kSl ­ 6f1 2 Ose2jzjbdg, z ­ Os1d, around the limit val-
ues x ­ 61, as can be seen from (5). The occurren
of such peaks means that a finite fraction of spins
frozen, and hence that a new clause presented to the
tems would not be satisfiable with a finite probability.

This scenario remains valid for anyK . The fraction
of violated clauses at temperature1yb can indeed be
computed throughE ­ 2s1yNd≠lnZy≠b. The ground
state energy will clearly depend only upon the ma
netizations of order6f1 2 Ose2jzjbdg, if any. These
contributions can be picked up by the new functi
Rszd ­ limb!`bPftanhsbzy2dgy2 cosh2sbzy2d satisfy-
ing the saddle-point equation

Rszd ­
Z `

2`

du
2p

cossuzd exp

"
2

aK
2K21

1 aK

3
Z `

0

K21Y
,­1

dz, Rsz,d cosfu mins1, z1, . . . , zK21dg

#
.

(6)

Remarkably, it is possible to find analytically an exa
solution to this functional equation for anyK anda:

Rszd ­
X̀

,­2`

e2gI,sgddsz 2 ,d, (7)

whereg is solution of the implicit equation

g ­ aK

"
1 2 e2gI0sgd

2

#K21

. (8)

The corresponding cost function equalsEGSsad ­ gf1 2

e2gI0sgd 2 Ke2gI1sgdgy2K . We shall now analyze th
physical structure of this solution and show how t
predictions it leads to forK ­ 2 qualitatively differ with
respect to the caseK $ 3.
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The self-consistency equation (8) admits the soluti
g ­ 0 for any a (if K . 1). WhenK ­ 2, there is an-
other solutiongsad . 0 abovea ­ 1. This new solution
maximizesEGS (and then the free energy) and must be p
ferred [2]. Therefore, our RS theory predicts thatEGS ­ 0
for a # 1 and increases continuously whena . 1, giving
back the rigorous resultacs2d ­ 1. The transition taking
place atac is of second order with respect to the ord
parameter: the value ofg does not show any jump, and
two Dirac peaks forPsxd progressively appears inx ­ 61
with amplitudef1 2 e2gI0sgdgy2 each. For largea, the
RS ground state energy scales asEGS . ay4 which is
known to be exact [5]. As far as 2-SAT is concerne
the value of the threshold is correctly predicted (ac ­ 1)
and the RS solution appears to be correct for anya (even
a . 1) [12].

For a . ac, there do not exist any more sets o
Si ’s such that the energy (1) remains nonextensive. T
vanishing of the exponentially large number of solutio
that were present below the threshold is surprising
abrupt. We have indeed studied the number of su
solutions as a function of the number of clauses per s
in the range0 # a # ac. Their logarithm (divided by
N), that is the entropy of the ground stateSGSsad, is
given by (3) whenb ! `. We have resorted to an
exact expansion ofPsxd (4) in powers ofa, starting from
Psxdja­0 ­ dsxd, and injected the resulting probability
function into (3) to obtain the expansion ofSGSsad. At
the 7th order (which implies an uncertainty less th
1%), we have found thatSGSsacd . 0.38, which is still
very high as compared toSGSs0d ­ ln2 (see Fig. 1). The
transition is therefore due to the abrupt appearance
contradictory logical loops in “all” solutions ata ­ ac

and not to the progressive decreasing of the number
these solutions down to zero at the threshold.

Let us turn now to theK $ 3 case. Resolution of the
implicit equation (8) leads to the following picture. Fo
a , amsKd, there exists the solutiong ­ 0 only. At
amsKd, a nonzero solutiongsad discontinuously appears
The corresponding ground state energy is negative in
rangeamsKd # a , assKd, meaning that the new solu
tion is metastable and thatEGS ­ 0 up to assKd. For
a . assKd the gsad fi 0 solution becomes thermody
namically stable, leading to the conclusion thatassKd cor-
responds to the desired thresholdacsKd. However, this
prediction is wrong as can be immediately seen forK ­
3, since the experimental valueacs3d ­ 4.17 6 0.05 [4]
is lower thanams3d . 4.667 andass3d . 5.181. In ad-
dition, largeK evaluations giveamsKd , K2Ky16p and
assKd , K2Ky4p , which grow faster than the asymp
totic valueacsKd , 2K ln2 [14].

This situation may be understood by an inspection
the RS ground state entropy. To do so, we have
pandedSGS to the,th order ina using the same method
as forK ­ 2 and denoted bya

s,d
ze sKd, the point where it
3883
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FIG. 1. Entropy vsa for K ­ 2 and 3. The analytical
solutions (solid lines) are compared with numerical exhaus
simulations for N ­ 12, 16, 20, 24 and 30 000, 15 000, 7500,
2500 samples, respectively (forK ­ 2 we stop ata ­ 2.5,
whereas forK ­ 3 at a ­ 6). Error bars are within10% and
thus not reported explicitly. Inset:1yN entropy extrapolation
for a ­ 4.17 (in average for eachN), N ­ 20, 22, 24, 26, 28
(with 16 500, 11 500, 7500, 4000, 3000 samples, respectively
andK ­ 3.

vanishes. Note thata
s1d
ze sKd corresponds to the anneale

theory whilea
s,d
ze sKd converges toazesKd when , ! `,

that is, the exact value ofa at which SGS goes to zero.
For K ­ 3, we have performed the expansion up to, ­
8 and found a

s1d
ze ­ 5.1909, a

s2d
ze ­ 5.0144, a

s3d
ze ­

4.9189, a
s4d
ze ­ 4.8589, a

s5d
ze ­ 4.8187, a

s6d
ze ­ 4.7893,

a
s7d
ze ­ 4.7677, a

s8d
ze ­ 4.7504, indicating that aze

is definitively larger thatac . 4.17. Repeating the
calculation for K ­ 4, 5, 6, we have obtained quali
tatively similar results which show an even quick
convergence towards a zero entropy point such
acsKd , azesKd , assKd. Finally, in the largeK limit,
azesKd asymptotically reaches the thresholdacsKd from
above. AsK grows, fluctuations get weaker and weak
and Gaussian RS theory becomes exact. Solving Eq.
we find forK ¿ 1 anda # acsKd

Psxd .
1p

2pusad s1 2 x2d

3 exp

"
2

1
8usad

ln2

µ
1 1 x
1 2 x

∂#
, (9)

where usad ­ aKy4K21. As a consequence,Psxd !
dsxd when K ! ` tells us that the annealed theo
becomes exact in the largeK limit.
3884
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Therefore, the situation is as follows for (finite)K $

3. Above aze, the RS entropy is negative, whereas
has to be the logarithm of an integer number. T
RS ansatz is clearly unphysical in this range, explain
why as and ac do not coincide. At the thresholdac

(which is experimentally known to be lower thanaze),
the RS entropy is still extensive. The crucial questi
now arises whether this result is exact or is affect
by replica symmetry breaking (RSB) effects. To cle
up this dilemma, an analysis of RSB effects would
required. Because of the general complexity of su
an approach in diluted models [13] and the techni
difficulty of the K-SAT problem, the preliminary attempt
we have done in this direction have not been succes
yet [12]. We have then resorted to exhaustive numer
simulation in the rangeN ­ 12, . . . , 28 and compared the
corresponding ground state entropiesS

sNd
GS sad to our RS

theory forK ­ 3. As reported in Fig. 1, fora , ac, our
analytical solution agrees very well with the numeric
results. This confirms that the entropy of the ground st
is finite at the threshold. The comparison may be ma
more precise by a careful extrapolation of the entro
S

sNd
GS sa . 4.17d in 1yN (see the inset of Fig. 1). The

extrapolated value appears to be in perfect agreement
the RS predictionSGS . 0.1. Therefore, RSB corrections
to the RS theory seem to be absent belowac, which
leads us to think that RSB could occur atac exactly.
For a . ac, the numerical results of Fig. 1 correspond
the MAX-K-SAT typical entropy and could be recovere
analytically by extending our solutions beyond the critic
points (within the RS framework forK ­ 2 and with one
step of RSB forK ­ 3).

To conclude, let us say that one should, however,
deduce from the above remark that the structure of
solution space is simple. It might well happen that t
solution space could have a nontrivial structure which
not reflected by the magnetization distributionPsxd only
[15]. It would be very interesting to understand if suc
a phenomenon could take place in theK-SAT problem
and what information the hidden structure of the soluti
space could give us about its algorithmic complexity ne
phase transition.
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