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Collective Motion in a System of Motile Elements
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Clusters of biological organisms often show diverse collective motions. Considering the physical
properties of active elements with mutual interactions, we propose a mathematical model of collective
motion. Several kinds of cluster motion seen in nature, including collective rotation, chaos, and
wandering, occur in computer simulations of our deterministic model. By introducing a set of
dimensionless parameters, we categorize the collective motions and obtain their phase diagram. We
analyze the collective motions with a disorder parameter and Lyapunov spectra to characterize their
transitions. [S0031-9007(96)00218-9]

PACS numbers: 87.10.+e, 05.45.+b, 87.45.—k

Many biological organisms form groups which we the velocity vectorp;, need not be parallel. Therefore we
consider as cooperative systems of self-driven or motil@ssume that; andv; relax to parallel with relaxation time
elements. In biological systems, the collective motionr. The state variables for th¢h element are the position
of motile elements show extreme diversity of dynamicsvector?;, the velocity vectow;, and the heading unit vec-
and patterns [1-4] For example, migrant fish, such asor n; (see Fig. 1), and obey the following dynamics:
the sardine, tend to school by aligning their heading and
keeping mutual distance. In flocks birds, cranes, geese,, dvi _ _ - + an: + Z F4 B

. . . . . YVi an; al]fl] + &, (1)
and pelicans migrate in well-ordered formations with ~ dt i
constant cluster velocity. Passerines fly in wandering, _ . Lo . _
disordered aggregates. Insects, such as the mosquito, figti/dt = i X v/|vil X'n; (i = 1,2,...,N). (2
at random within spatially limited swarms. Cooperative gquation (1) is Newton’s equation of motion for particles
motion in a bacterial colony is other example whichof massn; y is the resistive coefficient based on Stokes's
is attracting wide interests both from theoretical andiaw, The locomotive force acts in the heading direction
expgrimental sides.[5—8]. The benefit of such coIIect@VEﬁi_ The term,f,-j, represents short range attractive and
motion has been discussed [9,10]. However, the varietyanisive forces between thigh and jth elements, and
of dynamics and patterns which depend on the time and "is the force toward the gravitational center of the
length scales has not been considered from a general poigito . For simplicity, we limit ourselves to motions in two

of view. The time and length scales, i.e., size, mass, animensions in this study, but the model is easily extensible
speed, differ tremendously from, e.g., bacteria to birdsiy ihree dimensions.

the characteristics of the active elements may depend on pq reported by Breder [12] based on the observations

such parameters. _ _ _ for fish schooling, within a certain range of space, inter-
How can we incorporate diverse collective animal be-

o . active force between animals might be represented with
havior in a common framework? In this Letter, we propose

deterministic kinetic equations of motions for interact-

ing elements which describe various collective behaviors.

We characterize the different types of collective behav- —
ior and obtain their phase diagram. By introducing proper n,-
nondimensional parameters, we show that a few physical
gquantities can categorize every state. Our model has well-
ordered regular and chaotic motion which we examine with

a disorder parameter and Lyapunov spectra. The transition
between them does not require random fluctuations.

Many model equations claim to explain the collective
motion of animals [11]. Most postulate that individuals
are simply particles with the mutual interactions and mo- Element i
tive force. The resulting collective motion is mostly regu-
lar and ordered. Swarming, disordered aggregates, and Element j
wandering require external random perturbations. To 98 iG. 1. Schematic diagram of the model with two elements.
eralize these models, we introduce tleading unit vector 7 s the heading unit vector: the position vector, and the
n;. Large birds often glide. Inaglide, the headifg,and  velocity vector.
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intermolecularlike attraction and repulsion. Here we as-
sume that the interaction force is given by

- 7 — 7’i|>3 <|7’j - ;i|>2i|
o= — C R — P — =,
fl] €|:( r. r.

I"j — I

><< - >exp(—r/rc), (3)

wherer. is the optimal distance between neighbors as well W "
as the range of the force. The interaction need not be
isotropic. The interaction with elements in front of a given

element is stronger than with those behind. Therefore, we
introduce a direction sensitivity factor described by p

ai;=1+dn -7 —)li; —#l] O=d=1),
4) i

and multiply it byf‘,-j in the interaction term. Whet = 0,
the interaction is isotropic. Furthermore, we introduce
globally attraction forces; given by - —

z-g)i = Cg(z-g) - ;z)/le-g) - Fil, 5) {e) \ i

whereg is the center of the group, i.e¢,= >, 7;/N. In
the following discussions, we assume these two interaction
forces have the same degree of magnitude,d.es,cy = ™ it
cg, If not specified. ; -2
To investigate the qualitative properties of our model, :
we carried out numerical simulations for various control vt
parameters and observed the collective motions. Here 2 1 5
we concentrate on the viscous regime in which the left- . —

hand §|de of Eq. (1) is negligible, because of ',ts varlety OfFIG. 2. Patterns of clusters and the trajectories of their centers
behavior. Because of the long range attractive fgfGe  of mass in viscous regime: (a) marching, (b) oscillatory (wavy),
elements gather into a single cluster, regardless of initialc) oscillatory (circling), (d) oscillatory (spiral), (€) wandering,
location, as long as the locomotive forgés not too large. and (f) swarming. Solid bars represent motive elements, and
WhenN is of order ten, as in most natural groupings, we3dray line is the trajectory of the center of the cluster.

found several distinct collective behaviors. Corresponding

conformations of elements and the trajectory of the center In aninertial regime, i.e., when/7y is large, the regular

of the cluster are illustrated in Fig. 2. structure within a cluster is less stable than in the viscous

(1) Marching: When the anisotropy of mutual attrac- regime. For small enougt, regular marching occurs, but
tion is small, the elements form a regular triangular crystait takes a long time to achieve steady motion. We also
moving at constant velocity. We call this motion a march-found irregular clustering in which each element has longer
ing state. free distances than..

(2) Oscillation (circling): Several group motions ex-  Marching and oscillation form an ordered phase, while
hibit regular oscillations, including (i) wavy motion of the the others form a disordered phase. We refer to the transi-
cluster along a linear trajectory, (i) and a cluster circlingtion between order and disorder as the marching-swarming
a center outside the cluster, (i) a cluster circling a centransition. To characterize the different collective motions
ter inside the cluster. Oscillatory clusters often occur neafluantitatively, we introduce a disorder parameter. Letting
the boundary between wandering, and the oscillation anthe velocity of the cluster at a momenbe
marching may coexist for some parameters. > 1 .

(3) Wandering: For nonzeral, the center of the cluster Vi) = N gvi(t)' (6)

can wander quite irregularly, while the latticelike order-l-he fluctuation in velocity space can be evaluated by

inside the cluster persists. The mutual position Ofelementaveraging the rms velocity deviation over time:

rearranges intermittently according to chaotic changes in

the direction of motion. (Av)?) = <l Z 19:(¢) — \7(t)|2> ) @
(4) swarming:Beyond the wandering regime, we N 5 ¢

found more irregular motion, where the regularity within This quantity gives zero in ordered motions and nonzero

the cluster fails, although the cluster persists. This is an disordered motions. Using the parameter, the order dis-

behavior reminiscent of a cloud of mosquitoes. order transition appears as a change in disorder parameter.
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FIG. 3. Characterization of the marching-swarming transitio
in the viscous regime using disorder parametiexv)?)!/2/
(V)12 for various particle numbeN. The inset is a phase
diagram in a-t space showing chaotic (black marks) an
nonchaotic (white marks) states: =5, m =1,y = 10,a =

5, andd = 1 are used to obtain main figure.

d

In Fig. 3, the disorder parameter is plotted by changing

and the “mean free time*.v/a. Q is the ratio of the
magnitude of the motive force and the interaction force
with neighbors. R is the ratio of the inertial force and
the viscous force, which resembles a “Reynolds number”
in fluid mechanics. R < 1 corresponds to the viscous
regime. d andN are additional dimensionless parameters.
Using the dimensionless paramet&sand Q, the pro-
portionalities between parameters on transition lines sim-
plify to G* = P*/Q* = const as shown in Fig. 4. Since
R < 1, G is independent oR, but may be a function of
d for fixed N. Our numerical results in Fig. 3, however,
indicate thaiG" is insensitive taV. Therefore we conjec-
ture that the marching-swarming transition occurs for

G =G'(d), (13)
for R < 1. We confirmed that in th& vs d plane dif-

Tferent sets of experiments collapsed in the same transition

line. Asymptotic behavior folv — « has to be studied
by more systematic numerical calculations.

The Lyapunov spectrum helps to characterize collec-
tive and chaotic behaviors with many degrees of freedom
[13,16]. Each of our elements has 5 degrees of freedom
(x,y, vy, vy, 0); thus theN cluster ha$N variables. Each

for several numbers of elements up to fifty. As increasingglement has three neutral modes associated with sym-
the number of elements, the transition can be seen cleardnetries; two correspond to spatial translation invariance
Swarming state corresponds to the motion with a largefx,y) — (x + xo,y + yo), and one corresponds to rota-

(Av)»)'2/(v)1/2 value, and wandering and swarming
states are continuous.

tion invarianced — 6 + 6y. In marching, the center of
mass of the cluster behaves like a single element. In fact,

We obtained several phase diagrams for the marchinghree out of theSN modes become neutral modes. The

swarming transition ira-7, y-7, ¢-7, and r.-7 spaces,

other5N — 3 modes have negative Lyapunov exponents,

respectively. Here we chose parameters in the viscougpresenting the stability of the marching cluster against
regime where the inertial term in Eq. (1) is negligible. Thedisturbances. We show Lyapunov spectra for different
inset of Fig. 3 shows an example of phase diagrams fogtates in Fig. 5. The Lyapunov spectrum characterizes

varyinga andr. At the transition line, we obtained" ~
T2yt~ ¢ ~ 7, andr! ~ 7%, wherex signifies

the boundary between the states. These transition lines ce

be represented in a simple form by introducing dimension

less parameters. Introducing the nondimensional variable:

v/, ¢, r' defined byv = Vyv', t = Tot/, and r = Lor/,
whereLy = r., Vo = a/y, andTy = Ly/Vy, we obtain
the following nondimensional equations of motion for the

ith element:
dv; Y 1 > .
d_ll = _Ul( + n; + — (Z a,‘jf,-j + gl‘), (8)
t YEall
1 dl’li > -)z{ >
—— =n; X =7 X n;. C)]
par M RN

We have three independent dimensionless paramgters
0, andR defined by

P=r.y/ar, (10)
Q=alc, (11)
R = ma/*yzrc. (12)

The physical interpretation of each parametePiss the
ratio of the typical time scale for heading relaxatian,
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marching, wandering and swarming as follows.
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FIG. 4. Phase diagram of collective motions for varying
nondimensional paramete® and Q in the viscous regime
(R < 0.05). In the diagram, white circles indicate marching,
white triangles oscillation, black triangles wandering, and black
rectangles swarming.
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1.0 ing periodr, and velocityV are as follows [15]. Crane:
—e—G=05 M ~ 10*g, 7 ~ 1 sec,L ~ 10° cm, V ~ 10* cm/sec.
08 1 —A— ‘210 Sparrow: M ~ 10> g, 7 ~ 0.1 sec, L ~10¢cm, V ~
0.6 - 10? cm/sec. MosquitoM ~ 1073 g,7 ~ 107 sec,L ~
s 10~ cm,V ~ 1 cm/sec. The nondimensional parameter
S 04 G for each animal iSGerane ~ 0.1, Gspamow ~ 1, and
% 0.2 Gmosq ~ 102. As shown above, the transition from
& - marching to wandering occurs arou@d~ 1 independent
g 0 - of the number of elements, agreeing with the observation
[e] that mosquitoes swarm while flocks of crane form ordered
S 0.2- 5 formations. Furthermore, the flock of sparrows shows
- 044 B wandering consistent with the value 6&f close to the
> g s transition point. The estimate may fail wheh (the
-0.6 - §,,° Reynolds number) is large, though the eddy viscosity may
;.,5 possibly result in a lower effective Reynolds number.
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FIG. 5. Typical Lyapunov spectrum for marching & 0.5,

d = 1) (circles), wandering @ = 4, d = 1) (triangles), and
swarming G = 20, d = 1) (rectangles). The Lyapunov ex-
ponents A, are plotted in descending order of magnitude
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