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Collective Motion in a System of Motile Elements
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Clusters of biological organisms often show diverse collective motions. Considering the phys
properties of active elements with mutual interactions, we propose a mathematical model of collec
motion. Several kinds of cluster motion seen in nature, including collective rotation, chaos,
wandering, occur in computer simulations of our deterministic model. By introducing a set
dimensionless parameters, we categorize the collective motions and obtain their phase diagram.
analyze the collective motions with a disorder parameter and Lyapunov spectra to characterize
transitions. [S0031-9007(96)00218-9]

PACS numbers: 87.10.+e, 05.45.+b, 87.45.–k
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Many biological organisms form groups which w
consider as cooperative systems of self-driven or mo
elements. In biological systems, the collective moti
of motile elements show extreme diversity of dynam
and patterns [1–4] For example, migrant fish, such
the sardine, tend to school by aligning their heading a
keeping mutual distance. In flocks birds, cranes, ge
and pelicans migrate in well-ordered formations w
constant cluster velocity. Passerines fly in wanderi
disordered aggregates. Insects, such as the mosquito
at random within spatially limited swarms. Cooperati
motion in a bacterial colony is other example whi
is attracting wide interests both from theoretical a
experimental sides [5–8]. The benefit of such collect
motion has been discussed [9,10]. However, the var
of dynamics and patterns which depend on the time
length scales has not been considered from a general p
of view. The time and length scales, i.e., size, mass,
speed, differ tremendously from, e.g., bacteria to bir
the characteristics of the active elements may depend
such parameters.

How can we incorporate diverse collective animal b
havior in a common framework? In this Letter, we propo
deterministic kinetic equations of motions for interac
ing elements which describe various collective behavio
We characterize the different types of collective beh
ior and obtain their phase diagram. By introducing prop
nondimensional parameters, we show that a few phys
quantities can categorize every state. Our model has w
ordered regular and chaotic motion which we examine w
a disorder parameter and Lyapunov spectra. The trans
between them does not require random fluctuations.

Many model equations claim to explain the collecti
motion of animals [11]. Most postulate that individua
are simply particles with the mutual interactions and m
tive force. The resulting collective motion is mostly reg
lar and ordered. Swarming, disordered aggregates,
wandering require external random perturbations. To g
eralize these models, we introduce theheading unit vector
$ni . Large birds often glide. In a glide, the heading,$ni , and
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the velocity vector,$yi, need not be parallel. Therefore w
assume that$ni and $yi relax to parallel with relaxation time
t. The state variables for theith element are the positio
vector $ri , the velocity vector$yi , and the heading unit vec
tor $ni (see Fig. 1), and obey the following dynamics:

m
d $yi

dt
­ 2g $yi 1 a $ni 1

X
jfii

aij
$fij 1 $gi , (1)

t $niydt ­ $ni 3 $yiyj $yi j 3 $ni si ­ 1, 2, . . . , Nd . (2)

Equation (1) is Newton’s equation of motion for particl
of massm; g is the resistive coefficient based on Stoke
law. The locomotive forcea acts in the heading directio
$ni . The term, $fij, represents short range attractive a
repulsive forces between theith and jth elements, and
$gi is the force toward the gravitational center of t
group. For simplicity, we limit ourselves to motions in tw
dimensions in this study, but the model is easily extens
to three dimensions.

As reported by Breder [12] based on the observati
for fish schooling, within a certain range of space, int
active force between animals might be represented

FIG. 1. Schematic diagram of the model with two elemen
$n is the heading unit vector,$r the position vector, and$y the
velocity vector.
© 1996 The American Physical Society
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intermolecularlike attraction and repulsion. Here we
sume that the interaction force is given by

$fij ­ 2 c,

∑µ
j$rj 2 $rij

rc

∂23

2

µ
j$rj 2 $rij

rc

∂22∏
3

µ
$rj 2 $ri

rc

∂
exps2ryrcd , (3)

whererc is the optimal distance between neighbors as w
as the range of the force. The interaction need not
isotropic. The interaction with elements in front of a give
element is stronger than with those behind. Therefore,
introduce a direction sensitivity factor described by

aij ­ 1 1 d $fni ? s$rj 2 $ridyj$rj 2 $rijg s0 # d # 1d ,
(4)

and multiply it by $fij in the interaction term. Whend ­ 0,
the interaction is isotropic. Furthermore, we introdu
globally attraction force$gi given by

$gi ­ cgs $g 2 $ridyNj $g 2 $rij , (5)

where $g is the center of the group, i.e.,$g ­
P

i $riyN. In
the following discussions, we assume these two interac
forces have the same degree of magnitude, i.e.,c ­ c, ­
cg, if not specified.

To investigate the qualitative properties of our mod
we carried out numerical simulations for various cont
parameters and observed the collective motions. H
we concentrate on the viscous regime in which the le
hand side of Eq. (1) is negligible, because of its variety
behavior. Because of the long range attractive force$gi ,
elements gather into a single cluster, regardless of in
location, as long as the locomotive forcea is not too large.
WhenN is of order ten, as in most natural groupings, w
found several distinct collective behaviors. Correspond
conformations of elements and the trajectory of the cen
of the cluster are illustrated in Fig. 2.

(1) Marching: When the anisotropy of mutual attrac
tion is small, the elements form a regular triangular crys
moving at constant velocity. We call this motion a marc
ing state.

(2) Oscillation (circling): Several group motions ex
hibit regular oscillations, including (i) wavy motion of th
cluster along a linear trajectory, (ii) and a cluster circli
a center outside the cluster, (iii) a cluster circling a ce
ter inside the cluster. Oscillatory clusters often occur n
the boundary between wandering, and the oscillation
marching may coexist for some parameters.

(3) Wandering:For nonzerod, the center of the cluste
can wander quite irregularly, while the latticelike ord
inside the cluster persists. The mutual position of eleme
rearranges intermittently according to chaotic change
the direction of motion.

(4) Swarming:Beyond the wandering regime, w
found more irregular motion, where the regularity with
the cluster fails, although the cluster persists. This i
behavior reminiscent of a cloud of mosquitoes.
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FIG. 2. Patterns of clusters and the trajectories of their cen
of mass in viscous regime: (a) marching, (b) oscillatory (wav
(c) oscillatory (circling), (d) oscillatory (spiral), (e) wandering
and (f) swarming. Solid bars represent motive elements,
gray line is the trajectory of the center of the cluster.

In an inertial regime, i.e., whenmyg is large, the regular
structure within a cluster is less stable than in the visco
regime. For small enoughd, regular marching occurs, bu
it takes a long time to achieve steady motion. We a
found irregular clustering in which each element has lon
free distances thanrc.

Marching and oscillation form an ordered phase, wh
the others form a disordered phase. We refer to the tra
tion between order and disorder as the marching-swarm
transition. To characterize the different collective motio
quantitatively, we introduce a disorder parameter. Lett
the velocity of the cluster at a momentt be

$V std ­
1
N

X
i

$yistd . (6)

The fluctuation in velocity space can be evaluated
averaging the rms velocity deviation over time:

ksDyd2l ;

*
1
N

X
i

j $yistd 2 $V stdj2
+

t

. (7)

This quantity gives zero in ordered motions and nonz
in disordered motions. Using the parameter, the order
order transition appears as a change in disorder param
3871
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FIG. 3. Characterization of the marching-swarming transiti
in the viscous regime using disorder parameterksDyd2l1y2y
kV 2l1y2 for various particle numberN. The inset is a phase
diagram in a-t space showing chaotic (black marks) an
nonchaotic (white marks) states.c ­ 5, m ­ 1, g ­ 10, a ­
5, andd ­ 1 are used to obtain main figure.

In Fig. 3, the disorder parameter is plotted by changingt

for several numbers of elements up to fifty. As increas
the number of elements, the transition can be seen clea
Swarming state corresponds to the motion with a lar
ksDyd2l1y2ykV 2l1y2 value, and wandering and swarmin
states are continuous.

We obtained several phase diagrams for the march
swarming transition ina-t, g-t, c-t, and rc-t spaces,
respectively. Here we chose parameters in the visc
regime where the inertial term in Eq. (1) is negligible. Th
inset of Fig. 3 shows an example of phase diagrams
varyinga andt. At the transition line, we obtainedap ,
tp21y2, gp , tp, cp , tp, andrp

c , tp, wherep signifies
the boundary between the states. These transition lines
be represented in a simple form by introducing dimensio
less parameters. Introducing the nondimensional varia
y0, t0, r 0 defined byy ­ V0y0, t ­ T0t0, and r ­ L0r 0,
whereL0 ; rc, V0 ; ayg, and T0 ; L0yV0, we obtain
the following nondimensional equations of motion for th
ith element:

R
d $y0

i

dt0
­ 2 $y0

i 1 $ni 1
1
Q

√X
jfii

aij
$fij 1 $gi

!
, (8)

1
P

dni

dt0
­ $ni 3

$y0
i

j $y0
ij

3 $ni . (9)

We have three independent dimensionless parameterP,
Q, andR defined by

P ; rcgyat , (10)

Q ; ayc , (11)

R ; mayg2rc . (12)

The physical interpretation of each parameter isP is the
ratio of the typical time scale for heading relaxation,t
3872
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and the “mean free time,”rcgya. Q is the ratio of the
magnitude of the motive force and the interaction for
with neighbors. R is the ratio of the inertial force and
the viscous force, which resembles a “Reynolds numb
in fluid mechanics. R ø 1 corresponds to the viscou
regime. d andN are additional dimensionless paramete

Using the dimensionless parametersP andQ, the pro-
portionalities between parameters on transition lines s
plify to Gp ; PpyQp ­ const as shown in Fig. 4. Sinc
R ø 1, G is independent ofR, but may be a function of
d for fixed N . Our numerical results in Fig. 3, howeve
indicate thatGp is insensitive toN. Therefore we conjec-
ture that the marching-swarming transition occurs for

G ­ Gpsdd , (13)

for R ø 1. We confirmed that in theG vs d plane dif-
ferent sets of experiments collapsed in the same transi
line. Asymptotic behavior forN ! ` has to be studied
by more systematic numerical calculations.

The Lyapunov spectrum helps to characterize coll
tive and chaotic behaviors with many degrees of freed
[13,16]. Each of our elements has 5 degrees of freed
sx, y, yx , yy , ud; thus theN cluster has5N variables. Each
element has three neutral modes associated with s
metries; two correspond to spatial translation invarian
sx, yd ! sx 1 x0, y 1 y0d, and one corresponds to rota
tion invarianceu ! u 1 u0. In marching, the center o
mass of the cluster behaves like a single element. In f
three out of the5N modes become neutral modes. T
other5N 2 3 modes have negative Lyapunov exponen
representing the stability of the marching cluster agai
disturbances. We show Lyapunov spectra for differe
states in Fig. 5. The Lyapunov spectrum characteri
marching, wandering and swarming as follows.

FIG. 4. Phase diagram of collective motions for varyin
nondimensional parametersP and Q in the viscous regime
(R , 0.05). In the diagram, white circles indicate marchin
white triangles oscillation, black triangles wandering, and bla
rectangles swarming.
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FIG. 5. Typical Lyapunov spectrum for marching (G ­ 0.5,
d ­ 1) (circles), wandering (G ­ 4, d ­ 1) (triangles), and
swarming (G ­ 20, d ­ 1) (rectangles). The Lyapunov ex
ponents ln are plotted in descending order of magnitud
with numberingn. Other parameters are chosen asN ­ 10,
g ­ 10, c ­ 5, rc ­ 1, andm ­ 1.

(1) Marching or oscillating (circling): No positive ex-
ponents, but three or four neutral modes, respectively,
straight marching or wavy marching. The spectrum ha
plateau of negative exponents. The number of mode
the plateau increases withN.

(2) Wandering:More than one positive exponent ap
pears, followed by three neutral modes. The plateau in
negative exponents disappears and the spectrum is sm

(3) Swarming:The number of positive exponents is o
orderN and increases as the spontaneous chaotic fluc
tions of individuals increases in the swarm.

To compare the simulation to observations of real a
mals, we rewriteG as follows:

G ­ crcgya2t ­ scyad sLyVtd . (14)

The optimal mutual distance,rc, is of the same order a
the body lengthL [4,14], so we setrc , L. For the char-
acteristic time scale,t, we use the fluttering period of th
wings for birds or insects.Q ­ ayc is the ratio between
the locomotive force and the interaction force, and
assumeQ , 1 for simplicity. We compare three case
crane, sparrow, and mosquito. The body lengthL, flutter-
e

or
a
in

-
he
oth.
f
ua-

i-

e
:

ing periodt, and velocityV are as follows [15]. Crane
M , 104 g, t , 1 sec, L , 102 cm, V , 103 cmysec.
Sparrow: M , 102 g, t , 0.1 sec, L , 10 cm, V ,
102 cmysec. Mosquito:M , 1023 g,t , 1023 sec,L ,
1021 cm,V , 1 cmysec. The nondimensional paramet
G for each animal isGcrane , 0.1, Gsparrow , 1, and
Gmosq , 102. As shown above, the transition from
marching to wandering occurs aroundG , 1 independent
of the number of elements, agreeing with the observat
that mosquitoes swarm while flocks of crane form order
formations. Furthermore, the flock of sparrows sho
wandering consistent with the value ofG close to the
transition point. The estimate may fail whenR (the
Reynolds number) is large, though the eddy viscosity m
possibly result in a lower effective Reynolds number.

We are grateful to James A. Glazier for a care
reading of the manuscript and illuminating commen
Part of this work is supported by the Japanese Gra
in-Aid for Science Research Fund from the Ministry
Education, Science and Culture (Grant No. 07243201)

[1] E. O. Wilson, Sociobiology (Harvard, Cambridge, MA,
1975).

[2] L. Edelstein-Keshet, inLecture Notes in Biomathematics
edited by W. Alt and G. Hoffmann (Springer, Berlin
1990), Vol. 89, p. 528, and references therein.

[3] B. L. Partridge, Sci. Am.246, No. 6, 90 (1982).
[4] M. Inoue, Schooling of Fishes; behavior(Kaiyo-shuppan,

Tokyo, 1981) (in Japanese).
[5] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, an

O. Shochet, Phys. Rev. Lett.75, 1226 (1995).
[6] A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, 19

(to be published).
[7] E. O. Budrene and H. C. Berg, Nature (London)349, 630

(1991).
[8] T. Matsuyama, R. M. Harshey, and M. Matsushita, Fra

tals 1, 302 (1993).
[9] D. H. Cushing, Nature (London)218, 918 (1968).

[10] D. Weihs, Nature (London)245, 48 (1973).
[11] H. Niwa, J. Theor. Biol.171, 123 (1994).
[12] C. M. Breder, Ecology35, 361 (1954); Fish. Bull.74, 471

(1976).
[13] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617

(1985).
[14] E. Shaw, FAO Fish Rep.62, 217 (1969).
[15] A. Azuma, The Biokinetics of Flying and Swimmin

(Springer-Verlag, Tokyo, 1992).
[16] I. Shimada and T. Nagashima, Prog. Theor. Phys.61, 1605

(1979).
3873


