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Dense and Sparse Vortices in Excitable Media Drift in Opposite Directions in Electric Field

V. Krinsky, E. Hamm, and V. Voignier
Institut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France

(Received 20 July 1995)

Two mechanisms for vortex drift in an advective field are described. The velocity of vortex tip
movement in an advective field is periodically modulated. It results in the periodical modulations of the
core size of the vortex. While periodical changes of the core size (mechanism 1) result in vortex drift
parallel to the electric field, periodical changes of the velocity (mechanism 2) result in the vortex drift
in the opposite direction. Mechanism 1 dominates in sparse vortices, mechanism 2 dominates in dense
vortices. Arguments used to predict the effect suggest its generic nature. [S0031-9007(96)00199-8]

PACS numbers: 82.20.Mj, 66.30.Qa, 82.20.Wt
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The dynamics of rotating waves (vortices) in excitab
media can be affected by an electric field [1–4].
constant electric field induces drift of the vortices [2,3
The component of the drift perpendicular to the elect
field changes its sign with the chirality of the vorte
[5]. The component of the drift parallel to the field
not affected by change in the chirality. For examp
in the Belousov-Zhabotinsky (BZ) chemical excitab
media, the vortices are known to always drift towar
the positive electrode [2,3,6]. The physical mechani
of the drift seems straightforward: ionic componen
are involved, which are moved by electric field.
the key component is negatively charged, it moves
the positive electrode (antiparallel to the electric fiel
thus inducing a displacement of the wave pattern (w
possible deformation and a perpendicular componen
drift for chiral structures). We have found that essent
features are missing in this picture. Dense and spa
vortices drift in opposite directions even in the simple
case when advective electric field affects activator on
For a positive advection coefficient, the dense vor
drifts towards the positive electrode, while the spa
vortex drifts to the negative one.

(1) The model.—We analyze the effect of electric fiel
E on spiral dynamics for the case whereE affects
activator,U, only, andE is directed parallel to theX axis
(Fig. 1):

Ut ­ e21fsU, V d 1 D1=2U 1 M1EUX , (1)

Vt ­ csU, V d 1 D2=2V . (2)

Here, functionsf and c describe local kinetics(e.g.,
Barkley’s model [7]: fsU, V d ­ Us1 2 Ud fU 2 sV 1

bdyag, csU, V d ­ U 2 V ), e ø 1. The second terms
in (1) and (2) describe diffusion, and the last term
(1) describes advection. It is a generic case: If the fi
affects both activatorU and inhibitorV ,

Ut ­ e21fsU, V d 1 D1=2U 1 M1EUX , (3)

Vt ­ csU, V d 1 D2=2V 1 M2EVX , (4)

then by changing to a moving framex1 ­ x 1 M2Et, one
arrives at Eqs. (1) and (2) with rescaledM0

1 ­ M1 2 M2.
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(2) Effect of electric field on wave propagation.—
For M1 ­ M2, the advection terms can be removed
the moving framex1 ­ x 1 M1Et. This means that in
the laboratory frame the following hold: (1) In 1D, th
velocity C1 of pulses propagating antiparallel toE (to
the positive electrode) is larger than the velocityC2 of
pulses propagating in the opposite direction (M1 . 0 is
supposed)

C1 ­ C0 1 M1E, C2 ­ C0 2 M1E (5)

as found in experiments with chemical excitable med
[8,9]. (2) In 2D, a drift of the spiral wave is induce

FIG. 1. Sparse (A) and dense (B) vortices. Excited st
(u . 0.5) is shown in black: (1) without electric field; (2
with an electric field E ­ 0.35 (shown by arrow). Note
deformation of the spiral. (3) Trajectories of vortex t
movement. Parameters aree ­ 0.02, D1 ­ 1, D2 ­ 0, L ­
80, grid 256 3 256 points,dt ­ 0.002 44, in A: a ­ 0.55, b ­
0.05; in B: a ­ 1.0, b ­ 0.03.
© 1996 The American Physical Society
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by E. The drift velocities,Ck parallel to E, and C'

perpendicular toE, are

Ck ­ M1E, C' ­ 0 . (6)

It means also that there is no deformation of the sp
wave. ForM1 fi M2 in (3) and (4) this is not the case
the spiral is deformed andC' fi 0 [10]. Generically
C' fi 0 for an arbitrary wave configuration which is no
symmetric with respect to reflectionsY ­ 2Y .

Change of chirality of the spiral changes the sign
perpendicular velocityC' [5]. The direction of the drift
can be changed trivially, by changing the sign of t
advection termM1EUX in Eq. (1). No other mechanism
of changing the sign of drift velocity are known.

(3) Dense and sparse spiral waves.—Spiral waves with
leyl ø 1, we call sparse, or loose spirals [Fig. 1(A)
contrary to dense, or tight spirals whereleyl & 1
[Fig. 1(B)]:

leyl ø 1 sparse spirals, leyl & 1 dense spirals.

(7)
Here,l is wavelength (pitch) of the spiral, andle (shown
in black in Fig. 1) is the excitation wavelength

le ­ Ct , (8)

whereC is the velocity andt is a characteristic duration
of the pulse.

Different physical mechanisms control these spi
waves. For dense spirals, the interaction of a wave w
the previous one is important, while for sparse spi
waves it is not the case. The curvature of the wa
near the tip selects the wavelengthl of the sparse spiral
Changing parameters one can induce a smooth trans
from sparse to dense spirals. In Barkley’s model,
can be achieved, e.g., by decreasing parameterb or by
increasing parametera. In this way, one also diminishe
radius r of the core and periodT of a spiral wave.
T , l, r are limited from below bỳ . T . Tmin , t,,
` . l . lmin , Ct, ` . r . rmin , Cty2p.

(4) Spiral waves in electric field.—Below we describe
two mechanisms causing drift of the vortex in oppos
directions. When a wave rotates in an electric fie
the normal velocityC changes periodically: it increase
when the wave propagates to the positive electro
and decreases when it moves in the opposite direc
[Eq. (5)]. The same is true for the excitation waveleng
le [Eq. (8)].

Mechanism (1): Periodical changes of the core size.—
Increase inle results in a smaller core (Fig. 3). The ra
diusr of the core changes periodically, diminishing whe
the vortex tip moves towards the positive electrode, a
increasing when the tip moves towards the negative o
This results in a vortex drift towards thenegativeelec-
trode [Fig. 2(A1)]. Mechanism (1) is more pronounce
in sparsevortices.

Mechanism (2): Periodical changes of the propagati
velocity.—For densevortices, a small change inle ­
l
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FIG. 2. Mechanism of drift of sparse (A) and dense (B) vo
tices in electric field: (1) schematic, (2),(3) computer simul
tions. The arrow in frames (2),(3) indicates the drift directio
Wave tip propagates: (2) parallel toE, (3) antiparallel toE
(half a period later). Note that the tip widthle (near the ar-
row) in B2 is thin, and in B3 is thick. Same parameters as
Fig. 1, exceptL ­ 40, 128 3 128 points.

Ct cannot significantly affect the core radiusr (Fig. 3).
During the first half of the period, the vortex tip moves
the positive electrode with an increased velocity (,C1),
and during the next half of the period it moves to th
negative electrode with a decreased velocity (,C2). It
results in drift towards thepositiveelectrode [Fig. 2B1].

How does variation of parameters affect the core s
of the spiral? Movement of the tip of a spiral wave
characterized by two velocities: normal velocityCn, and
tangential, or growing, velocityCg. The growing velocity
Cg is important: IfCg , 0, a wave segment contracts i
length, and a rotating wave is destroyed [11,12]. There
no theoretical understanding of growing velocityCg.

On the other hand, from a topological point of view,
rotating wave is equivalent to a dislocation type defect
a striped pattern (e.g., in a lattice, or in a liquid crysta
There is also a geometrical analogy. In a polar coordin
system, with the origin in the center of the spiral cor
the equation of a steadily rotating spiral can be written
3855
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FIG. 3. Dependence of core size onle. Parameters:E ­ 0,
L ­ 40, 128 3 128 points,a ­ 0.53, b ­ 0.05.

f ­ f0srd 1 vt, wherev is the angular velocity of the
spiral rotation. A change of variables [13]

r ! r, f ! f 2 f0srd 2 vt , (9)

makes the anglef constant along the whole wave. Th
spiral wave is converted into a straight line, and the w
tip becomes a dislocation. Movement of dislocatio
is well understood via dislocation theory [14,15]. Th
analogy may be useful in future development of
theory. Now we just mention that for both rotating spira
and dislocations, a critical value of a control parame
exists such that ifa ! a0 the growing velocityCg ! 0.
For rotating spirals, it is an indication that the core s
diverges.

In Fig. 3, the dependence of the core size onle is
shown, obtained numerically for Eqs. (1) and (2).
is seen that the core size infinitely grows whenle !

l0
e . 1.79. At le . l0

e, a sparse vortex is observe
the sensitivity of its core size to the variation ofle is
high. At larger values ofle, the vortex becomes les
sparse; the sensitivity of its core size to the variatio
of le is reduced. This underlies the difference betwe
mechanisms (1) and (2).

For mechanism (1), the vortex tip trajectorybc
[Fig. 2(A1)] is formed by a large core, with radiu
r , r2 corresponding to the smallerle2 ­ C2t. The
trajectory ab is formed by a smaller core, with radiu
r , r1 corresponding to the largerle1 ­ C1t.
The vortex drift velocity for mechanism (1) i
Cd1 ­ 2 , r2 2 r1 . T21, where k· · ·l is an aver-
aging over the angular variable. For mechanism (2),
drift velocity is Cd2 ­ 0.5kC1 2 C2l [Fig. 2(B1)]. The
resulting drift velocity created by the two simultaneou
operating mechanismsCd ­ Cd1 2 Cd2 is of opposite
sign for dense and sparse vortices.

The dependence of the vortex drift velocity on param
ters obtained numerically using the program [7] is sho
3856
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in Fig. 4. For parameter values where displacements
to mechanisms (1) and (2) were balanced (a , 0.97),
there was no displacement of the vortex in the directi
of the electric field (Ck ­ 0, C' fi 0). The sign of the
perpendicular velocityC' was not changed.

Drift of a spiral wave in the electric field was analyze
in [16]. No opposite directions of drift were found be
cause developed theory exists only for small core [1
i.e., for dense vortices. Kinematical models [18] are su
cessful in using curvature effects to describe the norm
velocity of sparse vortices, but the description of growin
(tangential) velocityCg is based on phenomenologicall
adjusted parameters. There is no satisfactory theory
sparse vortices. The effects found in our Letter may a
be present in solutions to the Ginzburg-Landau equatio
where the vortices are well understood [19,20].

The effect predicted here can be observed in excita
media governed by Eqs. (1) and (2) but not in tho
governed by Eqs. (3) and (4). Although Eqs. (1) and (
are generic, and Eqs. (3) and (4) are reduced to (1)
(2) in a moving framex1 ­ x 1 yt wherey ­ M2E, but
when coming back to the laboratory frame, all velocitiesC

FIG. 4. Dependence of the (a) drift velocity and (b) ang
on the parametera (b ­ 0.13). Empty circles: C', filled
circles:Ck.
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will be modified:Clab ­ C 2 y. For y . C, velocities
Clab will become of the same sign although velocitiesC
were of different signs. This is typical for the BZ reactio
in a solution because the diffusion coefficients are of
same order, and the mobilitiesMi are proportional to the
diffusion coefficientsDi :

Mi ­ sFyRT dziDi , (10)

where F is the Faraday constant,R is the gas constant
andz is the charge number. An immobilization of som
of the reagents will help to avoid this difficulty.

For biological excitable media, there is no such dif
culty, because only a diffusion coefficientD1 fi 0, and
D2 ­ D3 ­ · · · ­ Dn ­ 0, wherek ­ n 2 1 is the di-
mension of vectorV (k ­ 3 in Hodgkin-Huxley equa-
tions). Each component ofV describes opening or closin
of ionic channels for different ions. They are governed
local voltages only and do not diffuse [21].

We benefited from discussions with L. Gil, A. Pumi
S. Rica, A. Belmonte, and J. M. Flesselles.
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