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Dense and Sparse Vortices in Excitable Media Drift in Opposite Directions in Electric Field

V. Krinsky, E. Hamm, and V. Voignier
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(Received 20 July 1995

Two mechanisms for vortex drift in an advective field are described. The velocity of vortex tip
movement in an advective field is periodically modulated. It results in the periodical modulations of the
core size of the vortex. While periodical changes of the core size (mechanism 1) result in vortex drift
parallel to the electric field, periodical changes of the velocity (mechanism 2) result in the vortex drift
in the opposite direction. Mechanism 1 dominates in sparse vortices, mechanism 2 dominates in dense
vortices. Arguments used to predict the effect suggest its generic nature. [S0031-9007(96)00199-8]

PACS numbers: 82.20.Mj, 66.30.Qa, 82.20.Wt

The dynamics of rotating waves (vortices) in excitable (2) Effect of electric field on wave propagatier
media can be affected by an electric field [1-4]. AFor M, = M;, the advection terms can be removed in
constant electric field induces drift of the vortices [2,3].the moving framex; = x + MEt. This means that in
The component of the drift perpendicular to the electricthe laboratory frame the following hold: (1) In 1D, the
field changes its sign with the chirality of the vortex velocity C, of pulses propagating antiparallel #© (to
[5]. The component of the drift parallel to the field is the positive electrode) is larger than the veloaity of
not affected by change in the chirality. For example,pulses propagating in the opposite directidd; (> 0 is
in the Belousov-Zhabotinsky (BZ) chemical excitable supposed)
media, the vortices are known to always drift towards _ _ _
the positive electrode [2,3,6]. The physical mechanism Cr =Cot ME, — C-=C=ME (5
of the drift seems straightforward: ionic componentsas found in experiments with chemical excitable media
are involved, which are moved by electric field. If [8,9]. (2) In 2D, a drift of the spiral wave is induced
the key component is negatively charged, it moves to
the positive electrode (antiparallel to the electric field) 0
thus inducing a displacement of the wave pattern (with
possible deformation and a perpendicular component of
drift for chiral structures). We have found that essential
features are missing in this picture. Dense and sparse
vortices drift in opposite directions even in the simplest
case when advective electric field affects activator only. p
For a positive advection coefficient, the dense vortex Al 1
drifts towards the positive electrode, while the sparse
vortex drifts to the negative one.

(1) The model—We analyze the effect of electric field
E on spiral dynamics for the case whe#e affects
activator,U, only, andE is directed parallel to th& axis

_A
2

L -

"\

(Fig. 1):
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e 'f(U,V) + D\V*U + M\EUx, (1) A2 B

V, = y(U,V) + D,V*V. 2)

Here, functionsf and ¢ describe local kineticqe.g., g 7
Barkley’'s model [7]: f(U,V) = U1 — U)[U — (V + 4

b)/al, $(U,V) = U — V), e < 1. The second terms '

in (1) and (2) describe diffusion, and the last term in

(1) describes advection. It is a generic case: If the field A3 B3

affects both activatot/ and inhibitorV’, FIG. 1. Sparse (A) and dense (B) vortices. Excited state
U, = e_lf(U, V) + D\V*U + M,EUy, 3) (u > 0.5) is shown in black: (1) without electric field; (2)
with an electric field E = 0.35 (shown by arrow). Note
V., =¢U,V) + D>V?V + MyEVy, (4) deformation of the spiral. (3) Trajectories of vortex tip
. . movement. Parameters ake= 0.02,D1 = 1,D2 =0,L =
then by changing to a moving frame = x + MEt, 0ne 80, grid 256 X 256 points,dt = 0.00244, in A: a = 0.55,b =
arrives at Egs. (1) and (2) with rescalé] = M, — M,.  0.05;inB: a = 1.0,b = 0.03.
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by E. The drift velocities,C| parallel to E, and C

erpendicular t&&, are
perp ° - h /’—\H : o
C| = M\E, Cc, =0. (6) 1 1 et Y
It means also that there is no deformation of the spiral drift\ J/ drift b‘:\.,_.z"ﬁ s
wave. ForM; # M, in (3) and (4) this is not the case: — 0. —
the spiral is deformed and’; # 0 [10]. Generically + : : e
C, # 0 for an arbitrary wave configuration which is not E

symmetric with respect to reflections= —Y.

Change of chirality of the spiral changes the sign of
perpendicular velocity;, [5]. The direction of the drift
can be changed trivially, by changing the sign of the
advection termM | EUx in Eq. (1). No other mechanisms
of changing the sign of drift velocity are known.

(3) Dense and sparse spiral wavesSpiral waves with
Ae/A < 1, we call sparse, or loose spirals [Fig. 1(A)],
contrary to dense, or tight spirals wherg /A < 1
[Fig. 1(B)]:

Ae/A < 1 sparse spiraJs  A./A < 1 dense spirals

(7)
Here, A is wavelength (pitch) of the spiral, and (shown
in black in Fig. 1) is the excitation wavelength

A, =Cr, (8)

whereC is the velocity andr is a characteristic duration
of the pulse.
Different physical mechanisms control these spiral
waves. For dense spirals, the interaction of a wave with
. L ; . A3 B3
the previous one is important, while for sparse spiral _ _
waves it is not the case. The curvature of the wavelG. 2. Mechanism of drift of sparse (A) and dense (B) vor-

near the tip selects the wavelengtiof the sparse spiral. tices in electric field: (1) schematic, (2),(3) computer simula-

. . ... tions. The arrow in frames (2),(3) indicates the drift direction.
Changing parameters one can induce a smooth transmqﬁave tip propagates: (2) parallel #, (3) antiparallel toE

from sparse to dense spirals. In. Barkley’'s model, it(half a period later). Note that the tip width. (near the ar-
can be achieved, e.g., by decreasing paramieter by  row) in B2 is thin, and in B3 is thick. Same parameters as in

increasing parameter. In this way, one also diminishes Fig. 1, except = 40, 128 X 128 points.

radius r of the core and period” of a spiral wave.

T, A, r are limited from below byo > T > Ty, ~ 7,

© > A> Apin ~ C7,0 > 71 > roin ~ C7 /271, Cr cannot significantly affect the core radiugFig. 3).

(4) Spiral waves in electric field-Below we describe During the first half of the period, the vortex tip moves to
two mechanisms causing drift of the vortex in oppositethe positive electrode with an increased velocity(dy),
directions. When a wave rotates in an electric field,and during the next half of the period it moves to the
the normal velocityC changes periodically: it increases negative electrode with a decreased velocityC(). It
when the wave propagates to the positive electrodegsults in drift towards theositiveelectrode [Fig. 2B1].
and decreases when it moves in the opposite direction How does variation of parameters affect the core size
[Eq. (5)]. The same is true for the excitation wavelengthof the spiral? Movement of the tip of a spiral wave is
Ae [EQ. (8)]. characterized by two velocities: normal velocity,, and

Mechanism (1): Periodical changes of the core size tangential, or growing, velocit¢,. The growing velocity
Increase in\, results in a smaller core (Fig. 3). The ra- C, is important: IfC, < 0, a wave segment contracts in
dius r of the core changes periodically, diminishing whenlength, and a rotating wave is destroyed [11,12]. There is
the vortex tip moves towards the positive electrode, andho theoretical understanding of growing velootly.
increasing when the tip moves towards the negative one. On the other hand, from a topological point of view, a
This results in a vortex drift towards theegativeelec-  rotating wave is equivalent to a dislocation type defect in
trode [Fig. 2(A1)]. Mechanism (1) is more pronounceda striped pattern (e.g., in a lattice, or in a liquid crystal).

in sparsevortices. There is also a geometrical analogy. In a polar coordinate
Mechanism (2): Periodical changes of the propagationsystem, with the origin in the center of the spiral core,
velocity—For densevortices, a small change in, =  the equation of a steadily rotating spiral can be written as
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FIG. 3. Dependence of core size ap. Parameterse = 0,
L = 40, 128 X 128 points,a = 0.53, b = 0.05.

¢ = ¢o(p) + wt, wherew is the angular velocity of the
spiral rotation. A change of variables [13]

p—p, &= ¢ — dolp) — wt, C)]
makes the angleb constant along the whole wave. The

spiral wave is converted into a straight line, and the wave
tip becomes a dislocation. Movement of dislocations

is well understood via dislocation theory [14,15]. This

analogy may be useful in future development of the

theory. Now we just mention that for both rotating spirals

and dislocations, a critical value of a control parameter

exists such that itr — «( the growing velocityC, — 0.

For rotating spirals, it is an indication that the core size

diverges.

In Fig. 3, the dependence of the core size Anis
shown, obtained numerically for Egs. (1) and (2). It
is seen that the core size infinitely grows whan—

in Fig. 4. For parameter values where displacements due
to mechanisms (1) and (2) were balanced~( 0.97),
there was no displacement of the vortex in the direction
of the electric field ¢, = 0, C, # 0). The sign of the
perpendicular velocity", was not changed.

Drift of a spiral wave in the electric field was analyzed
in [16]. No opposite directions of drift were found be-
cause developed theory exists only for small core [17],
i.e., for dense vortices. Kinematical models [18] are suc-
cessful in using curvature effects to describe the normal
velocity of sparse vortices, but the description of growing
(tangential) velocityC, is based on phenomenologically
adjusted parameters. There is no satisfactory theory for
sparse vortices. The effects found in our Letter may also
be present in solutions to the Ginzburg-Landau equations,
where the vortices are well understood [19,20].

The effect predicted here can be observed in excitable
media governed by Egs. (1) and (2) but not in those
governed by Egs. (3) and (4). Although Egs. (1) and (2)
are generic, and Egs. (3) and (4) are reduced to (1) and
(2) in a moving framex; = x + vt wherev = M,E, but
when coming back to the laboratory frame, all velocities

drift velocity

04}
-0.5 |-

. 0.6 k& I L L I L L
)lg = 1.79. At A, = /\2, a sparse vortex Is Observed; 0.85 0.9 0.95 1 1.05 1.1 1.15 12
the sensitivity of its core size to the variation af is a
high. At larger values ofA., the vortex becomes less
sparse; the sensitivity of its core size to the variations (b)

of A, is reduced. This underlies the difference between 0|

mechanisms (1) and (2).

For mechanism (1), the vortex tip trajectoryc
[Fig. 2(Al1)] is formed by a large core, with radius
r ~ r— corresponding to the smallex,- = C_7. The
trajectory ab is formed by a smaller core, with radius
r ~ ry corresponding to the largerA.; = Cyr.
The vortex drift velocity for mechanism (1) is
Ciqh=2<r_—ry>T"' where(-) is an aver-

aging over the angular variable. For mechanism (2), the -110

drift velocity is C4> = 0.5(C+ — C-) [Fig. 2(B1)]. The
resulting drift velocity created by the two simultaneously
operating mechanism€,; = C4; — Cy4, is of opposite
sign for dense and sparse vortices.
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FIG. 4. Dependence of the (a) drift velocity and (b) angle

The dependence of the vortex drift velocity on parameon the parameter (b = 0.13). Empty circles: C,, filled
ters obtained numerically using the program [7] is showrtircles: Cy;.
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