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Using the quantum Monte Carlo loop algorithm we have determined the phase diagram of the
1/5-depleted Heisenberg square lattice model representing(@zads a function of the ratio of the
two different couplings: bonds within a plaguette and dimer bonds between plaquettes. At isotropic
coupling long range ordesurvivesthe depletion, but the system is close to the quantum critical point.
Already a small frustration can thus drive the system into the quantum disordered phase and explain the
spin gap behavior of Ca®@, [S0031-9007(96)00205-0]

PACS numbers: 75.10.Jm, 75.30.Kz, 75.40.Mg, 75.50.Ee

The stability of the long range ordered (LRO) groundplaquette RVB state, consisting of local singlets of the
state of the planar Heisenberg model has been the focdisur spins on a plaquette. This plaquette RVB state
of investigations for a long time. The recent discovery ofis the exact ground state in the limiy = 0. Second
a spin gap in Ca)Dq [1] has given special importance to order perturbation theory around this limit suggests that it
this question. This compound can be described by3®  survives even at isotropic coupling [2,3]. A perturbation
depleted planar antiferromagnetic Heisenberg model [2,3round the dimer limit/y, = 0 [2] also leads to a wide
One of the important questions regarding this material isange of stability of the dimer singlet phase, but a small
whether the depletion of the square lattice can accountange of the couplings exists, where no gap is observed in
for the spin gap, or if additionally frustration effects perturbation theory. First quantum Monte Carlo (QMC)
are important. results by Katoh and Imada [3] also suggest the existence

The role of lattice defects and depletion in destabilizingof a finite gapA = 0.11 = 0.03 at isotropic coupling.

LRO has been studied in a variety of contexts. One Linear spin wave theory (LSW) [2] and Schwinger bo-
example is spin ladders which can be obtained from theon mean field theory results [10], on the other hand, indi-
planar copper oxide materials, by breaking up the planesate that LRO could survive at isotropic coupling despite
into ladders of constant width [4]. Another way to destroythe depletion of the lattice. Exact diagonalization results
LRO is to deplete the lattice. The bonds between spinare also contradictory [10,11]. They suffer greatly from
are then weakened, similar to the introduction of holesthe restriction to very small clusters and the extrapolation
and quantum fluctuations are enhanced, which mighto the infinite system size is difficult. Sano and Takano
destroy LRO. An example is the triangular Heisenberg11] and Albrecht and Mila [10] find a small spin gap,
antiferromagnet, which exhibits LRO. Depletion bf4  but also a substantial staggered magnetization [10]. No
of the spins leads to the kagomé lattice, which is believedlefinite conclusions can thus be drawn from these calcu-
to have no LRO [5]. lations either.

The stability of LRO is also of relevance in the field
of high temperature superconductors. There the rapid
destruction of LRO upon hole doping and the possibility
of realizing a doped resonating valence bond (RVB)
phase [6], exhibiting a finite gap in the spin excitation
spectrum (spin gap), are of great current interest. The
study of lattice defects, such as depletion or the formation
of ladders, can give valuable insights [7].

The lattice structure of Ca®@4 and the 8-spin unit cell
[8] used in our simulations are shown in Fig. 1. It can
be viewed as consisting of loosely connectedpin pla-
quettes. Two topologically different types of bonds can
be distinguished. One is bonds within a plaguéttethe
other is dimer bonds connecting plaquetfes Addition-
ally CaV,0, is believed to have a significant frustrating
next nearest neighbor (NNN) antiferromagnetic interac-

tion [9]. FIG. 1. The lattice structure of the depleted Heisenberg lattice
Uedaet al.[2] and Katoh and Imada [3] have argued describing CayO,. Indicated are the two different types of
that the spin gap can be explained as originating in &onds, plaquette bondg and dimer bondd;.
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To resolve these conflicting results we have determined We find a wide region of stability of the Neel-
the phase diagram (see Fig. 2) of the nonfrustrated moderdered phase as a function of the ratio of the cou-
using the QMC loop algorithm [12]. Using this highly plingsa = Jy/J;. We estimate the lower boundary to lie
efficient cluster method we can investigate larger systemisetween0.55 < a! < 0.65 and the upper boundary be-
at lower temperatures and with a much higher accuractween1.05 < a < 1.1. Atisotropic coupling LRO thus
than possible with the standard world line algorithmsurvives the depletion of the lattice. The critical pairjt
used by Katoh and Imada [3]. We have investigateds quite close to isotropic coupling, and a small frustra-
lattices with up tav = 800 spins at temperatures down to tion might be sufficient to drive the system into the dis-
T = 0.02. The QMC method suffers from no systematic ordered state.
errors, and the results are reliable within the statisti- To determine this phase diagram we have calculated
cal errors.
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both the spin gap and the staggered magnetization. The
spin gapA can be obtained from the low temperature
behavior of the uniform susceptibility. Figure 3 shows
x(T) for some representative points. In a gapped system
it decreases exponentially as/7 for low temperatures.

Any finite system exhibits a gap, and thus a careful
treatment of finite size effects is necessary. For each
temperature we have done calculations on clusters of
different size (up taV = 800 spins) to see whether our
results have converged to the infinite system size limit. In
the regions of a large gap the convergence is quite rapid
and it is no problem to obtain the gapfrom a fit of the
low temperature behavior of the uniform susceptibility
by an exponential decay /7. In case of a vanishing
or very small gap, on the other hand, the susceptibility
decreases linearly down to the lowest temperatiiyese
could study reliably on our finite clusters. In these cases
we cannot definitely decide about the existence of a gap,
but can only give an upper bound < Tj.

In Fig. 2 we plot the gap obtained in this way together
with the perturbation theory estimates [2,3]. Perturbation
theory is surprisingly accurate, but overestimates the gap
slightly. Specifically at the isotropic point we do not
see any indication for a gap, in contradiction to Katoh
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FIG. 2. Phase diagram as a function of the ratigJ,. (a) &—AJO/H1=1
The whole range of couplings. The leftmost point corresponds <+—1J0/J1=1.33
to the dimer limit /o = 0 and the rightmost point to the 0.00 ks ¥V Jop1=2
plaguette limitJ; = 0. (b) A detail of the phase diagram 0.0 0.5 10 15
around the isotropic point plotted as a function &f/J;. T

Circles indicate our QMC results for the spin gap, normalized

by Jo + Ji. In the gapless region the error bar indicatesFIG. 3. Temperature dependence of the uniform susceptibility
an upper limit for the gap. Diamonds show the staggeredy for different ratios of the couplings/y/J,. For each
magnetization. The error bars indicate the upper and lowetemperature the system size was taken large enough to see the
bounds, as described in more detail in the text. As a referencealue for the infinite system. The lowest temperatures were
we have included the perturbation theory estimates for the gapalculated on aiv = 512 spin lattice. As a reference we have

[2] and the linear spin wave theory (LSW) estimates for theincluded results for the square lattice Heisenberg model. The
staggered moment. temperature is in units of the larger of the couplingsandJ;.
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and Imada [3]. Their calculation gf(T) is for a much 0.7 — . .
smaller lattice (80 spins), and their gap may be due to 06 |
finite size effects [13].

The existence of LRO can be checked by calculating

the staggered magnetization, ) 0.4
1
m; = <w|[ﬁ Z&(—l)”“'} ). (1) 03 | ©
r 1]
myg vanishes in the infinite system size limit in case of
purely short range correlations, while it is finite for LRO. 02 |

The finite size scaling ofn, is known and a reliable
extrapolation possible [14],

my(N) = my(e) + o(ﬁ) @

Figure 4 shows the system size dependenoe,of Let 0.
us first discuss couplings in the spin gap regime. There
the finite cluster results can be extrapolated linearly in
1/+/N to zero moment in the infinite system [Fig. 4(a)].
In the double logarithmic plot [Fig. 4(b)] it can clearly 0.6
be seen that the results for finite clusters bend down and
approach the linear decrease (slope The results for
couplings in the LRO phase, on the other hand, bend up 44 |
and reach a constant value asymptotically. At the critical
coupling itself we expect a power law with a critical
exponent different from thé/+/N behavior of the gapped
phase. A rough estimate shows an exponent of the order 02
0.5, as expected from the mapping to the nonlinear
model [15]. This exponent is indicated as a dotted line. (a)
A more detailed investigation to obtain a reliable estimate 0.0 - s s
for the exponent and a better estimate for the critical 0.0 0.1 0.2 0.3 0.4
coupling is currently under progress. N

Although the system size dependence is asymptoticallffIG. 4. System size dependence of the staggered magnetiza-

inear in V-1, our [atices are not yet arge enough 11, I SHerrt ehes of e oot B ear
to b,e really in that I'm!t' To get an estimate for the ground state properties. The largest systems comNaia 800
quality of our extrapolations we extrapolate bath and  spins. (aym, plotted as a function oN~/2. A linear ex-
m?. In case of LRO both extrapolations should be linearrapolation gives the bulk value. (b) A double logarithmic plot
We observe that, as seen in Fig. 4(a), the system sizgearly shows the existence of long range order or the linear de-
dependence is not perfectly linear, but still bends dowrfréase with system size, respectively. Included as guides to the
a little bit. Thus we take the value obtained from this&Ye &re two straight lines corresponding to power law decays
fit as an upper bound. In a plot 6f2, on the other with powersl and0.5.
pp p 5

hand, a slight upwards bend can be observed, and we take
that extrapolation as a lower bound. Both extrapolationgap as/y is increased. A = Jy/J; = 0.55 we can still
agree well. In the phase diagram (Fig. 2) we show thdind a finite gap, while atx = 0.65 we observe a finite
average value, with the error bars indicating these uppestaggered magnetization and a zero or small gap. Thus
and lower bounds. We have tested this procedure fowe conclude that at a critical couplifigs5 < a’ < 0.65
the square lattice, where our result of, = 0.306(3) the dimer singlet phase becomes unstable and the model
agrees perfectly with the most accurately known valueexhibits LRO. The critical coupling is probably close to
ms = 0.3074(4) [16]. Again close to the critical points « = 0.6. There we cannot definitely decide about the
the moment is very small and a definite decision abougxistence of a gap or LRO from our finite cluster results.
a nonzero magnetization difficult. The magnitude of theStarting from the plagquette side the gap also decreases as
staggered moment compares well with the results of LSWve increase/;, but the plaquette RVB state is stable for
(also shown in Fig. 2), but the range of stability of thea wider range of couplings than the dimer state. This is
LRO phase is overestimated by the LSW. quite natural, as each spin is connected to one dimer bond,

The conclusions obtained from the estimation of thebut two plaquette bonds. Perturbation theory predicts that
gap and the staggered moment are perfectly consisterihe isotropic point is still in the range of stability of the

Starting from the dimer limit we see a decrease of thelaquette RVB state, but our QMC simulations show that

6—0J,=0.75,
G—B8J,= J,
—=0J,=1.25J,
&—AJy =133,
4+—<dy =2,
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LRO sets in atl.05 < a < 1.11. At the isotropic point [2] K. Ueda, H. Kontani, M. Sigrist, and P.A. Lee, Phys.
we observe a substantial nonzero staggered magnetization Rev. Lett.76, 1932 (1996). This paper has a mistake in
mg = 0.178(8). the perturbation expansion, which was first corrected by

Comparing our results to previous calculations we find ~ M.P. Gelfand, Z. Weihong, R.R.P. Singh, J. Oitmaa,
that the region of stability of LRO is larger than estimated gzg";e‘]a)"'amer* Report No. cond-mat/9603025 (to be
o sccond ordr perutbaton thear 12 bul Srsler e . o and . mace, 3. Phys S, 9 4105

' (1995). There is a mistake in the perturbation expansion

bc_)son mean flelq theory [1(_)]. OU( results also agree well i this paper (see Ref. [2]).
with the exact diagonalization estimates of the staggered4) g. pagotto and T. M. Rice, Scien@&1, 618 (1996).
magnetization [10], while the extrapolation of the spin gap [5] C. zeng and V. Elser, Phys. Rev. 42, 8436 (1990).
data by exact diagonalization is unreliable [17]. [6] P.W. Anderson, Scienc235, 1196 (1987).

By varying the ratio of the couplings in th&/5th [7] See, for example, H. Tsunetsugu, M. Troyer, and
depleted square lattice we can study both the LRO phase T.M. Rice, Phys. Rev. B1, 16456 (1995).
and the disordered phase of a two-dimensional quantuni8] The smallest possible unit cell contains 4 spins. For
antiferromagnet, without having to introduce frustration ~ technical reasons we have chosen an 8-spin unit cell in
or to break symmetries, as in the dimerized square lattice_ OUr Simulations. , , ,
model [18]. This model is thus ideal to study the critical [9] There are siill some discussions going on about the
behavior and to test the predictions made by Chakravarty, magnitude of the couplings. It has been argued (see,

. : . e.g., Ref. [11]) that the next nearest neighbor coupling
Halperin, and Nelson based on tt + 1)-dimensional could even be larger than the nearest neighbor coupling.

nonlinearo m0d6‘| [15]. _ This question is of no relevance to the validity of our
In comparison to experimental results on Gay we results here, since the lattice obtained by considering
conclude that the depletion of the square lattice alone  only the NNN coupling is just two noninteracting copies

is not sufficient to destroy LRO in the Heisenberg of the same lattice. The inclusion of the NN coupling, on
antiferromagnet, but it is very close to the critical point. the other hand, would then lead to a different frustrating
An additional frustrating next nearest neighbor coupling  coupling, but the main effect, frustration, would be
is needed to drive the system into the gapped plaquette  the same. _

RVB phase. All estimates from perturbation theory [2][10] M. Albrecht and F. Mila, Phys. Rev. B3, 2945 (1996).
and exact diagonalization [11] agree that the stabiliill] K- Sano and K. Takano, J. Phys. Soc. J§.46 (1996).

of this plaquette RVB phase and the gap are greatl;le] H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. L&f,

: . . 875 (1993).
enhanced by a frustrating next nearest neighbor coupl|nq13] Katoh and Imada [3] have also estimated the spin gap

Thus we expect that already a quite small frustration will from the difference of the energies of th& = 1 and

destroy LRO and can explain the substantial gap observed sz — ¢ subspaces. While this method is correct in the

in CaV,0,. T — 0 limit, their temperature of" = 0.1, which is of the
We would like to thank B. Ammon, H.G. Evertz, order of their gap estimate, seems to be not low enough to

M. Imada, N. Katoh, U.-J. Wiese, and M. Zhitomirsky accurately obtain the ground state properties.

for helpful discussions. The QMC program was written in[14] For a review see E. Manousakis, Rev. Mod. P1§4. 1
C++ using a parallelizing Monte Carlo library developed  (1991). _

by one of the authors [19]. The calculations were per115] S. Chakravarty, B.lI. Halpenn, and D.R. Nelson, Phys.
formed on the Intel Paragon massively parallel computer, . 59‘_\3' |\./3_tt.60, 1%5Z| (|1398YS) ngsbﬁevﬂég’li?i&isg)'
of ISSP. M.T. was supported by the Japanese Society f ] U.~J. Wiese and H.-P. Ying, Z. Phys. &, ( ):

; . . 57] Care must be taken in the extrapolation, since the shape
the Promotion of Science (JSPS). We acknowledge fi- of the cluster is different for each cluster size. In fact the

nancial support from a Grant-in-Aid from the Ministry of 16 and 24 site clusters studied by Sano and Takano [11]
Education, Science and Culture of Japan. consist of2 X 2 and2 X 3 plaquettes. This extrapolation
should thus rather be viewed as a one-dimensional one to
the2 X oo limit.
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