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Phase Diagram of Depleted Heisenberg Model for CaV4O9
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Using the quantum Monte Carlo loop algorithm we have determined the phase diagram
1y5-depleted Heisenberg square lattice model representing CaV4O9 as a function of the ratio of the
two different couplings: bonds within a plaquette and dimer bonds between plaquettes. At iso
coupling long range ordersurvivesthe depletion, but the system is close to the quantum critical po
Already a small frustration can thus drive the system into the quantum disordered phase and exp
spin gap behavior of CaV4O9. [S0031-9007(96)00205-0]

PACS numbers: 75.10.Jm, 75.30.Kz, 75.40.Mg, 75.50.Ee
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The stability of the long range ordered (LRO) grou
state of the planar Heisenberg model has been the fo
of investigations for a long time. The recent discovery
a spin gap in CaV4O9 [1] has given special importance t
this question. This compound can be described by a1y5-
depleted planar antiferromagnetic Heisenberg model [2
One of the important questions regarding this materia
whether the depletion of the square lattice can acco
for the spin gap, or if additionally frustration effec
are important.

The role of lattice defects and depletion in destabilizi
LRO has been studied in a variety of contexts. O
example is spin ladders which can be obtained from
planar copper oxide materials, by breaking up the pla
into ladders of constant width [4]. Another way to destr
LRO is to deplete the lattice. The bonds between sp
are then weakened, similar to the introduction of hol
and quantum fluctuations are enhanced, which mi
destroy LRO. An example is the triangular Heisenbe
antiferromagnet, which exhibits LRO. Depletion of1y4
of the spins leads to the kagomé lattice, which is believ
to have no LRO [5].

The stability of LRO is also of relevance in the fie
of high temperature superconductors. There the ra
destruction of LRO upon hole doping and the possibil
of realizing a doped resonating valence bond (RV
phase [6], exhibiting a finite gap in the spin excitati
spectrum (spin gap), are of great current interest. T
study of lattice defects, such as depletion or the forma
of ladders, can give valuable insights [7].

The lattice structure of CaV4O9 and the 8-spin unit cel
[8] used in our simulations are shown in Fig. 1. It c
be viewed as consisting of loosely connected4-spin pla-
quettes. Two topologically different types of bonds c
be distinguished. One is bonds within a plaquetteJ0; the
other is dimer bonds connecting plaquettesJ1. Addition-
ally CaV4O9 is believed to have a significant frustratin
next nearest neighbor (NNN) antiferromagnetic inter
tion [9].

Uedaet al. [2] and Katoh and Imada [3] have argue
that the spin gap can be explained as originating in
0031-9007y96y76(20)y3822(4)$10.00
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plaquette RVB state, consisting of local singlets of t
four spins on a plaquette. This plaquette RVB st
is the exact ground state in the limitJ1 ­ 0. Second
order perturbation theory around this limit suggests tha
survives even at isotropic coupling [2,3]. A perturbati
around the dimer limitJ0 ­ 0 [2] also leads to a wide
range of stability of the dimer singlet phase, but a sm
range of the couplings exists, where no gap is observe
perturbation theory. First quantum Monte Carlo (QM
results by Katoh and Imada [3] also suggest the existe
of a finite gapD ­ 0.11 6 0.03 at isotropic coupling.

Linear spin wave theory (LSW) [2] and Schwinger b
son mean field theory results [10], on the other hand, in
cate that LRO could survive at isotropic coupling desp
the depletion of the lattice. Exact diagonalization resu
are also contradictory [10,11]. They suffer greatly fro
the restriction to very small clusters and the extrapolat
to the infinite system size is difficult. Sano and Taka
[11] and Albrecht and Mila [10] find a small spin ga
but also a substantial staggered magnetization [10].
definite conclusions can thus be drawn from these ca
lations either.

FIG. 1. The lattice structure of the depleted Heisenberg lat
describing CaV4O9. Indicated are the two different types o
bonds, plaquette bondsJ0 and dimer bondsJ1.
© 1996 The American Physical Society
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To resolve these conflicting results we have determi
the phase diagram (see Fig. 2) of the nonfrustrated m
using the QMC loop algorithm [12]. Using this highl
efficient cluster method we can investigate larger syste
at lower temperatures and with a much higher accur
than possible with the standard world line algorith
used by Katoh and Imada [3]. We have investiga
lattices with up toN ­ 800 spins at temperatures down
T ­ 0.02. The QMC method suffers from no systema
errors, and the results are reliable within the stati
cal errors.

FIG. 2. Phase diagram as a function of the ratioJ0yJ1. (a)
The whole range of couplings. The leftmost point correspo
to the dimer limit J0 ­ 0 and the rightmost point to the
plaquette limit J1 ­ 0. (b) A detail of the phase diagram
around the isotropic point plotted as a function ofJ0yJ1.
Circles indicate our QMC results for the spin gap, normaliz
by J0 1 J1. In the gapless region the error bar indicat
an upper limit for the gap. Diamonds show the stagge
magnetization. The error bars indicate the upper and lo
bounds, as described in more detail in the text. As a refere
we have included the perturbation theory estimates for the
[2] and the linear spin wave theory (LSW) estimates for t
staggered moment.
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We find a wide region of stability of the Neel
ordered phase as a function of the ratio of the co
plingsa ­ J0yJ1. We estimate the lower boundary to li
between0.55 , al

c , 0.65 and the upper boundary be
tween1.05 , au

c , 1.1. At isotropic coupling LRO thus
survives the depletion of the lattice. The critical pointau

c
is quite close to isotropic coupling, and a small frustr
tion might be sufficient to drive the system into the di
ordered state.

To determine this phase diagram we have calcula
both the spin gap and the staggered magnetization.
spin gapD can be obtained from the low temperatu
behavior of the uniform susceptibilityx. Figure 3 shows
xsT d for some representative points. In a gapped sys
it decreases exponentially ase2DyT for low temperatures.

Any finite system exhibits a gap, and thus a care
treatment of finite size effects is necessary. For e
temperature we have done calculations on clusters
different size (up toN ­ 800 spins) to see whether ou
results have converged to the infinite system size limit.
the regions of a large gap the convergence is quite ra
and it is no problem to obtain the gapD from a fit of the
low temperature behavior of the uniform susceptibilityx

by an exponential decaye2DyT . In case of a vanishing
or very small gap, on the other hand, the susceptibi
decreases linearly down to the lowest temperaturesT0 we
could study reliably on our finite clusters. In these cas
we cannot definitely decide about the existence of a g
but can only give an upper boundD , T0.

In Fig. 2 we plot the gap obtained in this way togeth
with the perturbation theory estimates [2,3]. Perturbat
theory is surprisingly accurate, but overestimates the
slightly. Specifically at the isotropic point we do no
see any indication for a gap, in contradiction to Kat

FIG. 3. Temperature dependence of the uniform susceptib
x for different ratios of the couplingsJ0yJ1. For each
temperature the system size was taken large enough to se
value for the infinite system. The lowest temperatures w
calculated on anN ­ 512 spin lattice. As a reference we hav
included results for the square lattice Heisenberg model.
temperature is in units of the larger of the couplingsJ0 andJ1.
3823
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and Imada [3]. Their calculation ofxsT d is for a much
smaller lattice (80 spins), and their gap may be due
finite size effects [13].

The existence of LRO can be checked by calculat
the staggered magnetizationms,

m2
s ­ kcj

"
1
N

X
r

Srs21djjrjj

#2

jcl. (1)

ms vanishes in the infinite system size limit in case
purely short range correlations, while it is finite for LRO
The finite size scaling ofms is known and a reliable
extrapolation possible [14],

mssNd ­ mss`d 1 O

√
1

p
N

!
. (2)

Figure 4 shows the system size dependence ofms. Let
us first discuss couplings in the spin gap regime. Th
the finite cluster results can be extrapolated linearly
1y

p
N to zero moment in the infinite system [Fig. 4(a)

In the double logarithmic plot [Fig. 4(b)] it can clearl
be seen that the results for finite clusters bend down
approach the linear decrease (slope1). The results for
couplings in the LRO phase, on the other hand, bend
and reach a constant value asymptotically. At the criti
coupling itself we expect a power law with a critica
exponent different from the1y

p
N behavior of the gapped

phase. A rough estimate shows an exponent of the o
0.5, as expected from the mapping to the nonlinears

model [15]. This exponent is indicated as a dotted lin
A more detailed investigation to obtain a reliable estima
for the exponent and a better estimate for the criti
coupling is currently under progress.

Although the system size dependence is asymptotic
linear in N21y2, our lattices are not yet large enoug
to be really in that limit. To get an estimate for th
quality of our extrapolations we extrapolate bothms and
m2

s . In case of LRO both extrapolations should be line
We observe that, as seen in Fig. 4(a), the system
dependence is not perfectly linear, but still bends do
a little bit. Thus we take the value obtained from th
fit as an upper bound. In a plot ofm2

s , on the other
hand, a slight upwards bend can be observed, and we
that extrapolation as a lower bound. Both extrapolatio
agree well. In the phase diagram (Fig. 2) we show
average value, with the error bars indicating these up
and lower bounds. We have tested this procedure
the square lattice, where our result ofms ­ 0.306s3d
agrees perfectly with the most accurately known va
ms ­ 0.3074s4d [16]. Again close to the critical points
the moment is very small and a definite decision ab
a nonzero magnetization difficult. The magnitude of t
staggered moment compares well with the results of LS
(also shown in Fig. 2), but the range of stability of th
LRO phase is overestimated by the LSW.

The conclusions obtained from the estimation of t
gap and the staggered moment are perfectly consis
Starting from the dimer limit we see a decrease of t
3824
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FIG. 4. System size dependence of the staggered magne
tion ms for different ratios of the couplingsJ0yJ1. For each
system size the temperature was chosen low enough to see
ground state properties. The largest systems containN ­ 800
spins. (a)ms plotted as a function ofN21y2. A linear ex-
trapolation gives the bulk value. (b) A double logarithmic pl
clearly shows the existence of long range order or the linear
crease with system size, respectively. Included as guides to
eye are two straight lines corresponding to power law dec
with powers1 and0.5.

gap asJ0 is increased. Ata ­ J0yJ1 ­ 0.55 we can still
find a finite gap, while ata ­ 0.65 we observe a finite
staggered magnetization and a zero or small gap. T
we conclude that at a critical coupling0.55 , al

c , 0.65
the dimer singlet phase becomes unstable and the m
exhibits LRO. The critical coupling is probably close t
a ­ 0.6. There we cannot definitely decide about th
existence of a gap or LRO from our finite cluster resul
Starting from the plaquette side the gap also decrease
we increaseJ1, but the plaquette RVB state is stable fo
a wider range of couplings than the dimer state. This
quite natural, as each spin is connected to one dimer bo
but two plaquette bonds. Perturbation theory predicts t
the isotropic point is still in the range of stability of th
plaquette RVB state, but our QMC simulations show th
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LRO sets in at1.05 , au
c , 1.11. At the isotropic point

we observe a substantial nonzero staggered magnetiz
ms ­ 0.178s8d.

Comparing our results to previous calculations we fi
that the region of stability of LRO is larger than estima
by second order perturbation theory [2], but smaller t
estimated by linear spin wave theory and Schwin
boson mean field theory [10]. Our results also agree
with the exact diagonalization estimates of the stagg
magnetization [10], while the extrapolation of the spin g
data by exact diagonalization is unreliable [17].

By varying the ratio of the couplings in the1y5th
depleted square lattice we can study both the LRO ph
and the disordered phase of a two-dimensional quan
antiferromagnet, without having to introduce frustrat
or to break symmetries, as in the dimerized square la
model [18]. This model is thus ideal to study the critic
behavior and to test the predictions made by Chakrav
Halperin, and Nelson based on thes2 1 1d-dimensional
nonlinears model [15].

In comparison to experimental results on CaV4O9 we
conclude that the depletion of the square lattice al
is not sufficient to destroy LRO in the Heisenbe
antiferromagnet, but it is very close to the critical poi
An additional frustrating next nearest neighbor coupl
is needed to drive the system into the gapped plaqu
RVB phase. All estimates from perturbation theory
and exact diagonalization [11] agree that the stab
of this plaquette RVB phase and the gap are gre
enhanced by a frustrating next nearest neighbor coup
Thus we expect that already a quite small frustration
destroy LRO and can explain the substantial gap obse
in CaV4O9.
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