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Current-Loop Model for the Intermediate State of Type-I Superconductors
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A theory is developed of the intricately fingered patterns of flux domains observed in the interm
state of thin type-I superconductors. The patterns are shown to arise from the competition be
the long-range Biot-Savart interactions of the Meissner currents encircling each region an
superconductor-normal surface energy. The energy of a set of such domains is expressed as a
functional of the positions of their boundaries, and a simple gradient flow in configuration space
branched flux domains qualitatively like those seen in experiment. Connections with pattern form
in amphiphilic monolayers and magnetic fluids are emphasized. [S0031-9007(96)00250-5]
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When a thin film of a type-I superconductor is placed
a magnetic field normal to the sample, the large dema
tizing effects associated with the film geometry preclu
the establishment of the Meissner phase (with magn
inductionB ­ 0). The sample instead accommodates
field by breaking up into a large number of supercondu
ing (B ­ 0) and normal (B fi 0) regions, usually forming
very intricate patterns [1]. As has been understood s
Landau’s pioneering work [2] these structures arise fr
the competition between the magnetic field energy of
domains and the surface energy between the supe
ducting and normal regions. All existing theories of the
patterns [2,3] have explored this competition with var
tional calculations that assumeregular geometries of the
flux domains. The hypothesized parallel stripes, orde
arrays of circles, etc. are rarely seen, the norm ins
being the disordered patterns well documented in ex
iments [1,4]. Moreover, the temperature and magn
field history of the sample strongly influence the patte
suggesting that they are likely not in a global energ
minimum.

Recent work has emphasized that diffusion of m
netic flux in the normal phase can influence the
main morphology [5]. Asymptotic methods applied
the time-dependent Ginzburg-Landau model [6] yield
free-boundary dynamics of superconductor-normal (S
interfaces nearly identical to that for the growth of a so
into a supercooled liquid, where the interface motion
unstable (e.g., forming dendrites). By analogy it was s
gested, and confirmed by numerical studies [5], that
growth of the superconducting phase into the superco
normal phase should be dynamically unstable, leadin
highly ramified domain shapes. While such diffusive
stabilities may play a role in the pattern formation in t
intermediate state, these studies are not directly applic
as they have all ignored demagnetizing effects.

Here we ignore entirely any diffusional instabilities a
focus instead on the role of demagnetizing fields in p
ducing the observed patterns. This is done in a comple
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general way, without imposing a predetermined orde
flux structure. We ask the basic question:What is the
energy of a thin multiply connected superconducting
main, the normal regions of which are threaded with
magnetic field?A central issue is whether the interactio
between the Meissner currents flowing along the S-N
terfaces within the film are screened by the supercond
ing regions. Pearl [7] made the important observat
that, unlike in bulk, vortices in a thin film interact with a
unscreenedpotentialV srd , 1yr for large separationsr,
while for smallr, V srd , lnsLyrd, with L an appropriate
cutoff. The lack of screening reflects the dominant role
the electromagnetic fields in the vacuum above and be
the film. This suggests the simple model developed h
domains bounded by current loops interacting as in f
space, endowed with line tension, and subject to the c
straint of constant total magnetic flux through the samp
When applied to the stripe phase our model predicts e
librium lengths close to those found by Landau [2] a
seen in experiment [1], suggesting that it captures the
sential physics. More importantly, having formulated t
model for arbitrary domain shapes, we can address the
gin of the disordered patterns which are so prevalent.
simplified dynamicalmodel for the evolution of domain
boundaries is used to show that the long-range inte
tions destabilize flux domains of regular shape, produc
branched, fingered structures as seen in experiment.

Apart from the global flux constraint, this model
equivalent to one for domains of magnetic fluids
Hele-Shaw flow [8], which exhibit patterns like th
intermediate state [9], with history dependence like t
noted earlier. Thin magnetic films [10] and monolaye
of dipolar molecules [11] exhibit similar behavior, an
are described by such models through the underly
correspondence between electric and magnetic dip
phenomena [12]. This model is also very similar to
reaction-diffusion system [13] in which chemical fron
move in response to line tension and a nonlocal coupl
producing labyrinthine patterns seen in experiment [14
© 1996 The American Physical Society
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Note first a crucial separation of length scales betw
the typical size of the flux domains (.0.1 mm) and
the penetration depth (#1 mm) [1]. Thus on the scale
of the patterns the superconductor-normal interface
sharp, and we may view the order parameter magnit
as piecewise constant. It follows that the energy is
determined solely by the locations of the S-N interface

In this macroscopic approach, the energyF of a con-
figuration of flux domains arises from the condensat
energy, the boundaries between the domains, and the
netic field energy,

F ­ Fcond 1 Fwall 1 Ffield . (1)

Suppose the film has thicknessd, total areaA, volume
V ­ Ad, and contains a set of normal domainsi with
areaAi, lengthLi, and whose boundary positions arerissd
(Fig. 1). We assumeri is independent ofz, neglecting the
“fanning out” of the domains near the film surfaces [
The two phases occupy volumesVs and Vn ­ d

P
i Ai,

with Vs 1 Vn ­ V . Their bulk free energy densitiesFs

and Fn define the critical fieldHcsT d as Fn 2 Fs ­
H2

c y8p . With rn ­ AnyA the area fraction of the norma
phase, andsSN ­ sH2

c y8pdD the S-N interfacial tension
[DsT d being the interfacial width], we have

Fcond ­ V
H2

c

8p
rn, Fwall ­ sSNd

X
i

Li , (2)

where Fcond is measured with respect to the pure
superconducting state.

The complexity of this problem lies entirely in th
computation of the field energy. An applied fieldH ­
Haêz , produces a fieldHnêz in the normal regions, wher
AHa ­ AnHn by flux conservation, so

Hn ­
Ha

rn
. (3)

The requirement of tangential continuity ofH across a
S-N interface gives the field in the superconducting
gion as Hs ­ Hsêz ­ Hnêz . The superconducting re
gions are perfectly diamagnetic, with magnetizationM ­
2sHny4pdêz. The discontinuous magnetization at the

FIG. 1. A thin slab of type-I superconductor, viewed alo
the applied field Ha. Normal regions are shown blac
Adapted from [4].
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N boundaries implies that the sample consists of a c
lection of currentloops (of strengthHny4p) encircling
the domains. The field energy thus has two contributio
the first is simply that of the magnetizationM associated
with current loops in the presence of the external fie
(2

R
d3rHa ? M). The second contribution is the sel

induction and mutual induction of those loops. We obta

Ffield ­ V
HaHn

4p
s1 2 rnd

2
1
2

µ
Hn

4p

∂
2
X
i,j

Z d

0
dz

Z d

0
dz0

I
ds

I
ds0

t̂i ? t̂j

Rij
,

(4)

where t̂i ­ t̂issd is the tangent vector, and
Rij ­ hfrissd 2 rjss0dg2 1 sz 2 z0d2j1y2.

A first application of this model is to the laminar stat
a periodic structure of alternating superconducting a
normal domains. Landau’s calculation treated the cro
sectional shape of the domain walls as a free-bound
problem. Exploiting the two-dimensional nature of th
geometry, he found using conformal mapping techniqu
that deep within the slab the walls are indeed straight,
near the surface the normal lamina flare out, leading t
reduction in the magnetic field energy. The free ene
densityF ­ F yV in Landau’s model is

F ­
H2

c

8p

√
rn 1

h2

rn

!
1

H2
c

4p

∑
D

a
1

a
d

fsrnd
∏

, (5)

where a is the stripe period,h ­ HayHc, and f is
a known d-independent function. MinimizingF with
respect torn, we see that for larged the first (“bulk”)
term dominates, yielding the familiar resultrn ­ h; the
field at the S-N interface isHc. Minimization with respect
to a then yields the equilibrium period

ap ­

µ
Dd

fLshd

∂1y2

, (6)

wherefL is the Landau function [15]. Thus, the chara
teristic domain size is set by the geometric mean of
microscopic wall thicknessD and the slab thicknessd.
The current-loop (CL) model yields an energy of the for
in Eq. (5), and hence an equilibrium width given by (6
but with fLshd replaced by [17]

fCLshd ­
1

2p3

X̀
n­1

sin2snphd
n3 . (7)

As shown in Fig. 2 the functionsfLshd and fCLshd
have very similar forms over the entire range
h [16]. Analytically, at small h they have simi-
lar limiting behavior: fL . s1ypdh2 lns0.56yhd, and
fCL . s1y2pdh2 lns0.71yhd. The equilibrium widthsap

are therefore also close in the two models, and comp
favorably with experiment [1,4], suggesting the validi
of the current-loop model. Moreover, this model may
3819
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FIG. 2. Equilibrium stripe width in the laminar state as
function of reduced fieldh. Landau’s model (dashed) and th
current-loop approximation (solid) compare favorably. Ins
the Landau functionfLshd (dashed) compared with the curren
loop functionfCLshd (solid).

used to study perturbations about the laminar state, all
ing for the calculation of elastic moduli and dislocatio
energies [17], which simply cannot be determined us
Landau’s methods.

Having thus “calibrated” the current-loop model, w
turn to the most important new aspect of this work: d
main shape instabilities arising from long-range curre
current interactions. The dynamical evolution of flux d
main shapes with energy (1)–(4) is a many-body probl
of considerable computational complexity. Insight in
its behavior comes from a mean-field description of a s
gle current loop in which only its self-induction is treate
in detail, the mutual induction of the surrounding loo
contributing a bulk energy term analogous to that in
laminar calculation (5). For small departures from t
minimizing area fraction the amplitude of the circulatin
currents is then set byHc rather than the local field. The
area fraction is defined by assigning the loop to a cel
areaAcell, with rn ­ AnyAcell. Appropriate rescaling of
the spatial variables shows that the location of the sys
in the H-T plane is uniquely specified by the two dime
sionless quantitiesh andDyA

1y2
cell.

In this mean field model, we study the simple
dynamics for domain wall motion in which a generaliz
normal forcen̂ ? dF ydr balances a local viscous dra
2hn̂ ? ≠tr. The resulting equation of motion is

n̂ ?
≠rssd

≠t
­

H2
c d

8ph

Ω
P 2 DKissd

2
1

2pd

I
ds0 R̂ss, s0d 3 t̂ss0dFsRydd

æ
,

(8)
with Kissd the curvature, Rss, s0d ­ rssd 2 rss0d,
Fsjd ­ 1 2 s1 1 j22d1y2 is the Coulomb potentia
averaged over the thickness of the slab, and

P ­ h2yr2
n 2 1 . (9)
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The dynamics (8) is local in time; it neglects diffusion o
magnetic flux in the normal phase [6], which is equivale
to setting the normal state conductivity to zero. Th
magnetic vector potential is then “slaved” to the ord
parameter, analogous to the fast-inhibitor limit for
reaction-diffusion system [13]. In this slaving limit, w
estimate the kinetic coefficienth for strongly type-Ibulk
superconductors as [6]h ­ sH2

c dDy8pdp h̄y8kBTcj
2
0 ,

where Tc is the critical temperature andj0 is the zero-
temperature correlation length [18].

Equation (8) reveals a competition between a magne
pressureP incorporating flux conservation, the Young
Laplace force from interfacial tension and the Biot-Sav
force of circulating currents. The latter long-range cont
bution is well known for magnetic fluids [8] and monolay
ers [12,19]. Extensive analytical linear stability analys
[8,9,12] show branching instabilities of circular domain
(on a length scale given by the laminar calculation) a
buckling instabilities of stripes, phenomena which shou
carry over to the present problem with nonconserved ar
Indeed, buckled domains are well known in type-I supe
conductors [4] and monolayers [20].

To see the effects of the Biot-Savart interaction on t
stability of a circular flux domain, Fig. 3 shows the evo
lution of a domain prepared with an area significantly le
than the equilibrium value. The long-range interactio
result in the formation of a branched flux domain. We s
that a transient fourfold coordinated vertex is unstable
fission into two threefold nodes, very similar to those se
in experiment [1,4]. In the early epoch the shape evo
tion is primarily a dilation with little change in shape
while the branching instabilities occur on a longer tim
scale. The inset of Fig. 3 shows that when the Biot-Sav
coupling is omitted the weakly perturbed circle simply r
laxes to a circle of larger radius driven primarily by th
magnetic pressure. As found in previous studies [9],
the later stages of the fingered shape evolution the driv
force for the interfacial motion becomes extremely sma
with very small energy differences between rather diffe

FIG. 3. Numerical results from the gradient-flow model fo
flux domain boundary motion. Initial condition is a circle o
unit radius perturbed by low-order modes, evolving withD ­
0.01 and h ­ 0.5. Evolution displays rapid dilation followed
by fingering. Inset: rapid relaxation to a circle without long
range Biot-Savart interactions.
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ent shapes. This suggests that the interface motion w
be extremely sensitive to external perturbations such
impurities or grain boundaries, which would then be
fective in pinning the interfaces, not unlike the pinning
vortices in type-II superconductors. This may contrib
to the history dependence of the patterns discussed in
introduction.

Given the connections outlined here between pat
formation in the intermediate state and in other syste
it would be of interest to extend experimental studies
flux domain shapes to probe systematically the branch
instabilities as a function of field and temperature. Sim
larly, the results described here may be important for
derstanding the fingering instabilities observed during fl
invasion into films of type-II superconductors [21].
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