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Current-Loop Model for the Intermediate State of Type-lI Superconductors
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A theory is developed of the intricately fingered patterns of flux domains observed in the intermediate
state of thin type-l superconductors. The patterns are shown to arise from the competition between
the long-range Biot-Savart interactions of the Meissner currents encircling each region and the
superconductor-normal surface energy. The energy of a set of such domains is expressed as a nonlocal
functional of the positions of their boundaries, and a simple gradient flow in configuration space yields
branched flux domains qualitatively like those seen in experiment. Connections with pattern formation
in amphiphilic monolayers and magnetic fluids are emphasized. [S0031-9007(96)00250-5]

PACS numbers: 74.55.+h, 05.70.Ln, 75.60.—d

When a thin film of a type-1 superconductor is placed ingeneral way, without imposing a predetermined ordered
a magnetic field normal to the sample, the large demagnédlux structure. We ask the basic questidthat is the
tizing effects associated with the film geometry precludesnergy of a thin multiply connected superconducting do-
the establishment of the Meissner phase (with magnetimain, the normal regions of which are threaded with a
inductionB = 0). The sample instead accommodates thenagnetic fieldA central issue is whether the interactions
field by breaking up into a large number of superconductbetween the Meissner currents flowing along the S-N in-
ing (B = 0) and normal B # 0) regions, usually forming terfaces within the film are screened by the superconduct-
very intricate patterns [1]. As has been understood sinceng regions. Pearl [7] made the important observation
Landau’s pioneering work [2] these structures arise fronthat, unlike in bulk, vortices in a thin film interact with an
the competition between the magnetic field energy of theinscreenegbotential V(r) ~ 1/r for large separations,
domains and the surface energy between the supercowhile for smallr, V(r) ~ In(A/r), with A an appropriate
ducting and normal regions. All existing theories of thesecutoff. The lack of screening reflects the dominant role of
patterns [2,3] have explored this competition with varia-the electromagnetic fields in the vacuum above and below
tional calculations that assunmegular geometries of the the film. This suggests the simple model developed here:
flux domains. The hypothesized parallel stripes, orderedomains bounded by current loops interacting as in free
arrays of circles, etc. are rarely seen, the norm insteaspace, endowed with line tension, and subject to the con-
being the disordered patterns well documented in expesstraint of constant total magnetic flux through the sample.
iments [1,4]. Moreover, the temperature and magneti®Vhen applied to the stripe phase our model predicts equi-
field history of the sample strongly influence the patternslibrium lengths close to those found by Landau [2] and
suggesting that they are likely not in a global energeticseen in experiment [1], suggesting that it captures the es-
minimum. sential physics. More importantly, having formulated the

Recent work has emphasized that diffusion of magimodel for arbitrary domain shapes, we can address the ori-
netic flux in the normal phase can influence the do-gin of the disordered patterns which are so prevalent. A
main morphology [5]. Asymptotic methods applied to simplified dynamicalmodel for the evolution of domain
the time-dependent Ginzburg-Landau model [6] yield aboundaries is used to show that the long-range interac-
free-boundary dynamics of superconductor-normal (S-Njions destabilize flux domains of regular shape, producing
interfaces nearly identical to that for the growth of a solidbranched, fingered structures as seen in experiment.
into a supercooled liquid, where the interface motion is Apart from the global flux constraint, this model is
unstable (e.g., forming dendrites). By analogy it was sugequivalent to one for domains of magnetic fluids in
gested, and confirmed by numerical studies [5], that thélele-Shaw flow [8], which exhibit patterns like the
growth of the superconducting phase into the supercooleitermediate state [9], with history dependence like that
normal phase should be dynamically unstable, leading taoted earlier. Thin magnetic films [10] and monolayers
highly ramified domain shapes. While such diffusive in-of dipolar molecules [11] exhibit similar behavior, and
stabilities may play a role in the pattern formation in theare described by such models through the underlying
intermediate state, these studies are not directly applicabrrespondence between electric and magnetic dipolar
as they have all ignored demagnetizing effects. phenomena [12]. This model is also very similar to a

Here we ignore entirely any diffusional instabilities and reaction-diffusion system [13] in which chemical fronts
focus instead on the role of demagnetizing fields in pro-move in response to line tension and a nonlocal coupling,
ducing the observed patterns. This is done in a completelgroducing labyrinthine patterns seen in experiment [14].
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Note first a crucial separation of length scales betweeiN boundaries implies that the sample consists of a col-
the typical size of the flux domains=(0.1 mm) and lection of currentloops (of strengthH, /4s) encircling
the penetration depth<(1 wm) [1]. Thuson the scale the domains. The field energy thus has two contributions:
of the patterns the superconductor-normal interface isthe first is simply that of the magnetizatidvi associated
sharp, and we may view the order parameter magnitudevith current loops in the presence of the external field
as piecewise constantlt follows that the energy is (— [d°rH, - M). The second contribution is the self-
determined solely by the locations of the S-N interfaces. induction and mutual induction of those loops. We obtain

In this macroscopic approach, the ener§yof a con-
figuration of flux domains arises from the condensationg,. .. — V%(l - p,)

field Pn
energy, the boundaries between the domains, and the mag- 4

netic field energy, 1/ H d d i -1
B — —<—”>22] dz] dz’' fds '?éds’ —
F = Feond + Foant + Friela - (1) 2 \4m ij 70 0 R;;
(4

Suppose the film has thicknegs total areaA, volume )

V = Ad, and contains a set of normal domainsvith  \\here f, = f(s) is the tangent vector, and
areaA;, lengthL;, and whose boundary positions afés) Ry = {[r;(s) — ri(sl)]Z + (7 — Z)2W2,

(Fig. 1). We assume; is independent of, neglecting the A first application of this model is to the laminar state,
fanning out” of the domains near the film surfaces [2]. 3 periodic structure of alternating superconducting and

The two phases occupy volumés andV, = dz_i_Ai’ normal domains. Landau’s calculation treated the cross-
with V; + \{n = V. Thglr bullk free energy densities sectional shape of the domain walls as a free-boundary
and F, define the critical fieldH.(T) as F, — Fs =  proplem. Exploiting the two-dimensional nature of this

HZ/8m. With p, = ,%n/A the area fraction of the normal geometry, he found using conformal mapping techniques
phase, andrsy = (H;/87)A the S-N interfacial tension  hat deep within the slab the walls are indeed straight, but

[A(T) being the interfacial width], we have near the surface the normal lamina flare out, leading to a
H? reduction in the magnetic field energy. The free energy
Feond = Vg Pn, Foanl = O'SNdZLis (2)  densityF = F/V in Landau’s model is
' 2 2
where F.ona is measured with respect to the purely g — H; pn + h_2 + i[ﬁ + if(pn)} (5)
superconducting state. 8 n 47 | a d

The complexity of this problem lies entirely in the
computation of the field energy. An applied fiell =
H,é,, produces a fieldi,é, in the normal regions, where
AH, = A,H, by flux conservation, so

where a is the stripe period,s = H,/H., and f is
a known d-independent function. MinimizingF with
respect top,, we see that for large the first (“bulk”)
term dominates, yielding the familiar resylt, = &; the

H — H, 3) field at the S-N interface i#.. Minimization with respect
" opa to a then yields the equilibrium period
The requirement of tangential continuity ® across a . Ad \/?
S-N interface gives the field in the superconducting re- a = <fL(h)> ) (6)

gion asH; = H,é, = H,€é,. The superconducting re- ] ]
gions are perfectly diamagnetic, with magnetizatdn— wheref; is the Landau function [15]. Thus, the charac-

—(H,/4m)é,. The discontinuous magnetization at the S_te_ristic dor_nain size. is set by the geometric mean of the
microscopic wall thicknesa and the slab thicknesé.

) The current-loop (CL) model yields an energy of the form
Ho in Eg. (5), and hence an equilibrium width given by (6),
but with f; (h) replaced by [17]
1 < sirt(nmh)
Q fer(h) = F;T (1)

¥ 4 L As shown in Fig. 2 the functiong’ (k) and fcy(h)
have very similar forms over the entire range of
(i h [16]. Analytically, at small » they have simi-
!
)

& lar limiting behavior: f; = (1/7)h*In(0.56/k), and
fer = (1/2ar)h*In(0.71/h). The equilibrium widthsaz*
FIG. 1. A thin slab of type-l superconductor, viewed along &€ therefore also close in the two models, and compare

the applied field H,. Normal regions are shown black. favorably with experiment [1,4], suggesting the validity
Adapted from [4]. of the current-loop model. Moreover, this model may be

ri(s
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The dynamics (8) is local in time; it neglects diffusion of
1 magnetic flux in the normal phase [6], which is equivalent
to setting the normal state conductivity to zero. The
magnetic vector potential is then “slaved” to the order
parameter, analogous to the fast-inhibitor limit for a
reaction-diffusion system [13]. In this slaving limit, we
estimate the kinetic coefficienj for strongly type-lbulk
superconductors as [6)) = (H2dA/87)whi/8ksT &5,
where T, is the critical temperature ang, is the zero-
temperature correlation length [18].
Equation (8) reveals a competition between a magnetic
sl lnn b Lo Ly pressurell incorporating flux conservation, the Young-
00 02 04 h 06 08 10 Laplace force from interfacial tension and the Biot-Savart
o ] o . force of circulating currents. The latter long-range contri-
FIG. 2. Equilibrium stripe width in the laminar state as apytion is well known for magnetic fluids [8] and monolay-

function of reduced fieltd:. Landau’s model (dashed) and the . ; . L
current-loop approximation (solid) compare favorably. Inset:&M'S [12,19]. Extensive analytical linear stability analyses

the Landau functiory, (k) (dashed) compared with the current- [8,9,12] show branching instabilities of circular domains
loop functionfcy () (solid). (on a length scale given by the laminar calculation) and

buckling instabilities of stripes, phenomena which should

used to study perturbations about the laminar state, allowfarry over to the present problem with nonconserved area.
ing for the calculation of elastic moduli and dislocation Indeed, buckled domains are well known in type-I super-
energies [17], which simply cannot be determined usingonductors [4] and monolayers [20].
Landau’s methods. To see the effects of the Biot-Savart interaction on the

Having thus “calibrated” the current-loop model, we stability of a circular flux domain, Fig. 3 shows the evo-
turn to the most important new aspect of this work: do-lution of a domain prepared with an area significantly less
main shape instabilities arising from long-range currentthan the equilibrium value. The long-range interactions
current interactions. The dynamical evolution of flux do-result in the formation of a branched flux domain. We see
main shapes with energy (1)—(4) is a many-body problenthat a transient fourfold coordinated vertex is unstable to
of considerable computational complexity. Insight intofission into two threefold nodes, very similar to those seen
its behavior comes from a mean-field description of a sinin experiment [1,4]. In the early epoch the shape evolu-
gle current loop in which only its self-induction is treated tion is primarily a dilation with little change in shape,
in detail, the mutual induction of the surrounding loopsWhile the branching instabilities occur on a longer time
contributing a bulk energy term analogous to that in thescale. The inset of Fig. 3 shows that when the Biot-Savart
laminar calculation (5). For small departures from thecoupling is omitted the weakly perturbed circle simply re-
minimizing area fraction the amplitude of the circulating laxes to a circle of larger radius driven primarily by the
currents is then set b, rather than the local field. The magnetic pressure. As found in previous studies [9], in
area fraction is defined by assigning the loop to a cell othe later stages of the fingered shape evolution the driving
aread.;, with p, = A,/Ac1. Appropriate rescaling of force for the interfacial motion becomes extremely small,
the spatial variables shows that the location of the systerwith very small energy differences between rather differ-
in the H-T plane is uniquely specified by the two dimen-

sionless quantities and A/Aielzl.
In this mean field model, we study the simplest
dynamics for domain wall motion in which a generalized Q O O
normal forcef - 6 F/Sr balances a local viscous drag
—qh - 9,r. The resulting equation of motion is

L oor(s) _ Hid [
R T {H AK;(s) é&ﬁé%@%
! ds' R(s,s") % f(s/)q)(R/d)}‘,

 2md

20

Vi
oool L 1 1 ;
0.00.20406081.0 /
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a(h)/[Ad]*?

[
o

(8) FIG. 3. Numerical results from the gradient-flow model for
with  K;(s) the curvature, R(s,s’) = r(s) — r(s’), flux domain boundary motion. Initial condition is a circle of
-1 — -2\1/2 ; unit radius perturbed by low-order modes, evolving with=
D(¢) é (lt;: fth' )k IS ]Er:ﬁ Cloglomz potential 0.01 and 2 = 0.5. Evolution displays rapid dilation followed
averaged over the thickness of he sfab, an by fingering. Inset: rapid relaxation to a circle without long-
I =n*/p?—1. (9) range Biot-Savart interactions.
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